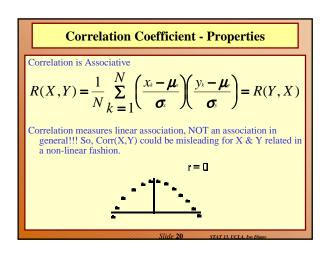
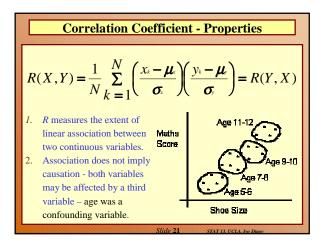
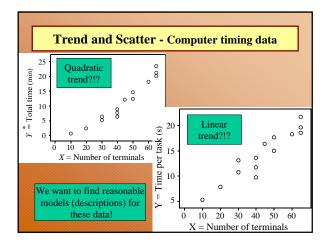
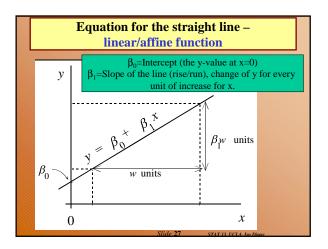

Correlation Coefficient
Example:


$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_{k} - \mu}{\sigma_{k}} \right) \left(\frac{y_{k} - \mu}{\sigma_{k}} \right)$$

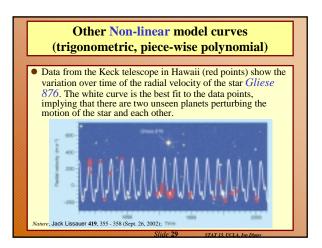

$$\mu_{k} = \frac{966}{6} = 161 \text{ cm}, \quad \mu_{k} = \frac{332}{6} = 55 \text{ kg},$$

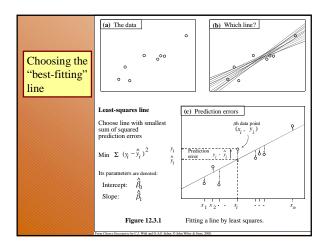
$$\sigma_{k} = \sqrt{\frac{216}{5}} = 6.573, \quad \sigma_{Y} = \sqrt{\frac{215.3}{5}} = 6.563,$$

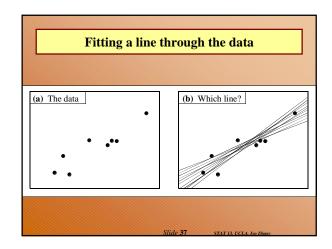

$$Corr(X,Y) = R(X,Y) = 0.904$$

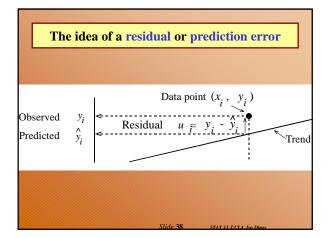


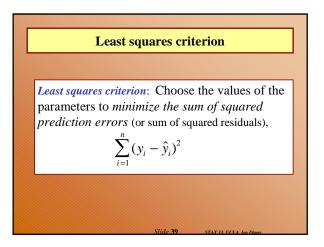


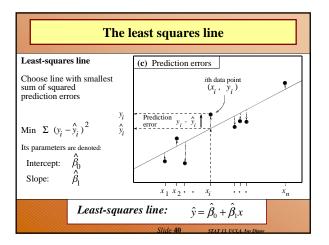


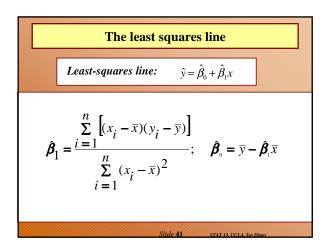

		Trend and Second	catter	- Co	ompu	ter ti	ming	data	L			
				11111	(1111)		10000			5		
	•	• The major components of a regression relationship are trend and scatter around the trend.										
	•	To investigate a smooth the data.	nvestigate a trend – fit a math function to data, or oth the data.									
	•	• Computer timing data: a mainframe computer has X users, each running jobs taking Y min time. The main CPU swaps between all tasks. Y* is the total time to finish all tasks. Both Y and Y* increase with increase of tasks/users, but how?										
	10		111111	11111	[[[[[]]	11111	111111	11111	11111			
Х	=	Number of terminals:	40	50	60	45	40	10	30	20		
Y*	=	Total Time (mins):	6.6	14.9	18.4	12.4	7.9	0.9	5.5	2.7		
Y	=	Time Per Task (secs):	9.9	17.8	18.4	16.5	11.9	5.5	11	8.1		
х	=	Number of terminals:	50	30	65	40	65	65				
Y*	=	Total Time (mins):	12.6	6.7	23.6	9.2	20.2	21.4				
Y	=	Time Per Task (secs):	15.1	13.3 Slide 2	21.8	13.8	18.6	19.8				

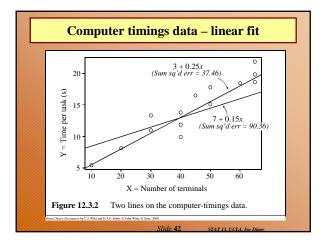


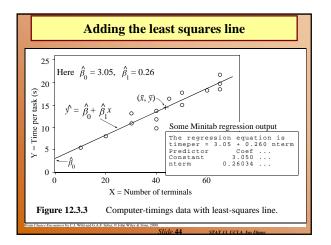


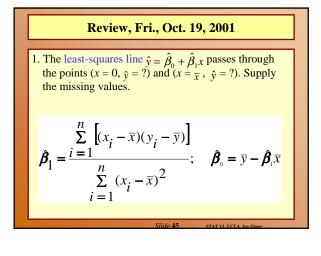


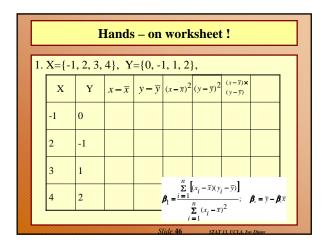












		3 + 0.2	5x 7 + 0.15x			
x	у	ŷ	$y - \hat{y}$	ŷ	$y - \hat{y}$	
40	9.90	13.00	-3.10	13.00	-3.10	
50	17.80	15.50	2.30	14.50	3.30	
60	18.40	18.00	0.40	16.00	2.40	
45	16.50	14.25	2.25	13.75	2.75	
40	11.90	13.00	-1.10	13.00	-1.10	
10	5.50	5.50	0.00	8.50	-3.00	
30	11.00	10.50	0.50	11.50	-0.50	
20	8.10	8.00	0.10	10.00	-1.90	
50	15.10	15.50	-0.40	14.50	0.60	
30	13.30	10.50	2.80	11.50	1.80	
65	21.80	19.25	2.55	16.75	5.05	
40	13.80	13.00	0.80	13.00	0.80	
65	18.60	19.25	-0.65	16.75	1.85	
65	19.80	19.25	0.55	16.75	3.05	
Sum of squared errors			37.46		90.36	
11111		1111111111	Slide 43	STAT 13, UCLA, Ivo		

		I	Iands	s – on	work	sheet	:!			
1.	X={-1, 2, 3, 4}, Y={0, -1, 1, 2}, $\bar{x} = 2$, $\bar{y} = 0.5$									
	х	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$\begin{array}{c} (x-\overline{x}) \times \\ (y-\overline{y}) \end{array}$			
	-1	0	-3	-0.5	9	0.25	1.5			
	2	-1	0	-1.5	0	2.25	0			
	3	1	1	0.5	1	0.25	0.5			
	4	2	2	1.5	4	2.25	3	$\frac{\beta_1 = 5/1}{\beta_0 = y^{-\beta} 1 * x^{-\beta}}$		
	2	0.5			14	5	5	$\beta_0 = 0.5$ 10/14		

Course Material Review

- 1. =====Part I========
- 2. Data collection, surveys.
- 3. Experimental vs. observational studies
- 4. Numerical Summaries (5-#-summary)
- 5. Binomial distribution (prob's, mean, variance)
- 6. Probabilities & proportions, independence of events and conditional probabilities

Slide 48 STAT 13. UCLA. Ivo Di

7. Normal Distribution and normal approximation

Course Material Review – cont.

- 1. ======Part II==========
- 2. Central Limit Theorem sampling distribution of \overline{X}
- 3. Confidence intervals and parameter estimation
- 4. Hypothesis testing
- 5. Paired vs. Independent samples
- 6. Analysis Of Variance (1-way-ANOVA, one categorical var.)

Slide 49 STAT 13. UCLA. Ivo D.

- 7. Correlation and regression
- 8. Best-linear-fit, least squares method