UCLA STAT 13
 Introduction to Statistical Methods for the Life and Health Sciences

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Janine Miller and Ming Zheng UCLA Statistics

University of California, Los Angeles, Winter 2003
http://www.stat.ucla.edu/~dinov/courses_students.html

Approaches for modeling data relationships

 Regression and Correlation- There are random and nonrandom variables
- Correlation applies if both variables (X/Y) are random (e.g., We saw a previous example, systolic vs. diastolic blood pressure SISVOL/DIAVOL) and are treated symmetrically.
- Regression applies in the case when you want to single out one of the variables (response variable, Y) and use the other variable as predictor (explanatory variable, X), which explains the behavior of the response variable, Y .

Correlation Coefficient

Example:

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}^{\prime}}{\boldsymbol{\sigma}}\right)
$$

$$
\text { Student Height Weight } \left.x_{1}-\bar{x} \quad y_{1}-\bar{y}=\left(x_{1}-\bar{x}\right)^{2} \quad\left(y_{1}-\bar{y}\right)^{2}\right)\left(x_{1}-\bar{x}\right)\left(y_{1}-\bar{y}\right)
$$

Correlation Coefficient

Correlation coefficient ($-1<=R<=1$): a measure of linear association, or clustering around a line of multivariate data.
Relationship between two variables (X, Y) can be summarized by: $\left(\mu_{\mathrm{X}}, \sigma_{\mathrm{X}}\right),\left(\mu_{\mathrm{Y}}, \sigma_{\mathrm{Y}}\right)$ and the correlation coefficient, $R . R=1$, perfect positive correlation (straight line relationship), $R=0$, no correlation (random cloud scatter), $R=-1$, perfect negative correlation.
Computing $R(\mathrm{X}, \mathrm{Y})$: (standardize, multiply, average)

Correlation Coefficient

Example:

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}}\right)
$$

$\boldsymbol{\mu}_{x}=\frac{966}{6}=161 \mathrm{~cm}, \quad \boldsymbol{\mu}_{\mathrm{r}}=\frac{332}{6}=55 \mathrm{~kg}$,
$\boldsymbol{\sigma}_{x}=\sqrt{\frac{216}{5}}=6.573, \quad \sigma_{v}=\sqrt{\frac{215.3}{5}}=6.563$,
$\operatorname{Corr}(X, Y)=R(X, Y)=0.904$

Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y

$$
\begin{aligned}
& R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}_{x}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}_{v}}{\boldsymbol{\sigma}_{v}}\right)= \\
& R(a X+b, c Y+d), \quad \text { since } \\
& \left(\frac{a x_{k}+b-\boldsymbol{\mu}_{k+b}}{\boldsymbol{\sigma}_{a x+b}}\right)=\left(\frac{a x_{k}+b-\left(a \boldsymbol{\mu}_{k}+b\right)}{a \times \boldsymbol{\sigma}_{x}}\right)= \\
& \left(\frac{a\left(x_{k}-\boldsymbol{\mu}\right)+b-b}{a \times \boldsymbol{\sigma}_{x}}\right)=\left(\frac{x_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}_{x}}\right)
\end{aligned}
$$

Correlation Coefficient - Properties

Correlation is Associative
$R(X, Y)=\frac{1}{N} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{x}}{\boldsymbol{\sigma}_{x}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}_{v}}{\boldsymbol{\sigma}_{v}}\right)=R(Y, X)$
Correlation measures linear association, NOT an association in general!!! So, Corr(X,Y) could be misleading for X \& Y related in a non-linear fashion.

Least squares criterion

Least squares criterion: Choose the values of the parameters to minimize the sum of squared prediction errors (or sum of squared residuals),
$\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$

Review, Fri., Oct. 19, 2001

1. The least-squares line $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$ passes through the points $(x=0, \hat{y}=$?) and $(x=\bar{x}, \hat{y}=$?). Supply the missing values.

$$
\hat{\boldsymbol{\beta}}_{1}=\frac{\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} ; \quad \hat{\boldsymbol{\beta}}_{0}=\bar{y}-\hat{\boldsymbol{\beta}}_{1} \bar{x}
$$

Hands - on worksheet !

| Course Material Review |
| :--- | :--- |
| 1. ===========Part I==========_======
 2. Data collection, surveys.
 3. Experimental vs. observational studies
 4. Numerical Summaries (5-\#-summary)
 5. Binomial distribution (prob's, mean, variance)
 6. Probabilities \& proportions, independence of events and
 conditional probabilities
 7. Normal Distribution and normal approximation |

