

A 95\% confidence interval

- A type of interval that contains the true value of a parameter for 95% of samples taken is called a 95% confidence interval for that parameter, the ends of the CI are called confidence limits.
- (For the situations we deal with) a confidence interval (CI) for the true value of a parameter is given by

$$
\text { estimate } \pm t \text { standard errors }
$$

Difference between proportions

Confidence Interval for a difference between population proportions ($p_{1}-p_{2}$):

Difference between sample proportions $\pm z$ standard errors of the difference
$\hat{p}_{1}-\hat{p}_{2} \pm z \operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)$
How do we compute the $\operatorname{SE}\left(\hat{p}_{1}-\hat{p}_{2}\right)$ for different cases?
Slide 15 surzshuch tivpione

Difference between means

Confidence Interval for a difference between population means $\left(\mu_{1}-\mu_{2}\right)$:

Difference between sample means

$\pm t$ standard errors of the difference
or

$$
\bar{x}_{1}-\bar{x}_{2} \pm t \operatorname{se}\left(\bar{x}_{1}-\bar{x}_{2}\right)
$$

SE's for the $\mathbf{3}$ cases of differences in proportion

(a) Proportions from two independent samples of sizes n_{1} and n_{2}, respectively

$$
\operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

b) One sample of size \mathbf{n}, several response categories
$\operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1}+\hat{p}_{2}-\left(\hat{p}_{1}-\hat{p}_{2}\right)^{2}}{n}}$
c) One sample of size \mathbf{n}, many Yes/No items
$\operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\operatorname{Min}\left(\hat{p}_{1}+\hat{p}_{2}, \hat{q}_{1}+\hat{q}_{2}\right)-\left(\hat{p}_{1}-\hat{p}_{2}\right)^{2}}{n}}$

$$
\text { where } \quad \hat{q}_{1}=1-\hat{p}_{1} \text { ind } \quad \hat{q}_{2}=1-\hat{p}_{2}
$$

Sample size - proportion

- For a 95\% CI, margin $=1.96 \times \sqrt{\hat{p}(1-\hat{p}) / n}$
- Sample size for a desired margin of error:

For a margin of error no greater than m, use a sample size of approximately

$$
n=\left(\frac{z}{m}\right)^{2} \times p^{*}\left(1-p^{*}\right)
$$

- p^{*} is a guess at the value of the proportion -- err on the side of being too close to 0.5
- z is the multiplier appropriate for the confidence level
- m is expressed as a proportion (between 0 and 1), not a percentage (basically, What's n , so that $\mathrm{m}>=$ margin?)

1998 Back-to-school survey - smoking/drinking 2000 students participating in the survey

Characteristics by Smoking and Drinking Status				
(Table entry \% of group saying yes	Smoker	Nonsmoker	Drinker	Nondrinker
Get mostly A's or B's?	41	68		
Read 1 or more hours/day? \&	54	72	56	75
Get drunk at least once a month?	63	10		
Have smoked Marijuana?	79 \&	14	52	12
Likely to try illegal drug in future?	42	14	35	11
n	130	870	260	740
1 Sample many yes/no Answers - compare proportions of smokers who get a drink at least once a month(63) With proportion of smokers who have smoked marijuana (79). Smokers group, say, are not forced to choose 1 category out of a set of categories as in the previous situation.				
Slide 25 STAT25Luctuduo bin				

- Sample size for a desired margin of error:

For a margin of error no greater than m, use a sample size of approximately

$$
n=\left(\frac{z \boldsymbol{\sigma}^{*}}{m}\right)^{2}
$$

- σ^{*} is an estimate of the variability of individual observations
- z is the multiplier appropriate for the confidence level

Covariance - a measure of LINEAR association between two variables, $X \& Y$
$E\left(a Y_{1}+b Y_{2}\right)=a E\left(Y_{1}\right)+b E\left(Y_{2}\right)$ $=\mathbf{a} \mu_{1}+\mathbf{b} \mu_{2}$
$\operatorname{Var}\left(\mathbf{a Y} \mathbf{Y}_{1}+\mathrm{bY}+\mathbf{c}\right)=$ $a^{2} \operatorname{Var}\left(Y_{1}\right)+b^{2} \operatorname{Var}\left(Y_{2}\right)+2 \operatorname{abCov}\left(Y_{1} ; Y_{2}\right)$
$\operatorname{Cov}\left(Y_{1} ; Y_{2}\right)=E\left[\left(Y_{1}-\mu_{1}\right)\left(Y_{2}-\mu_{2}\right)\right]$

HypothesisTesting4a.ppt and then:

F_Chi2_dist_Ch4_6.pdf Variance estimates/CI's

