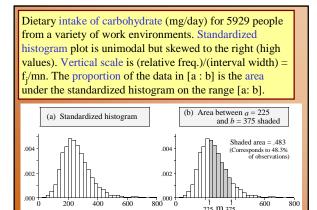
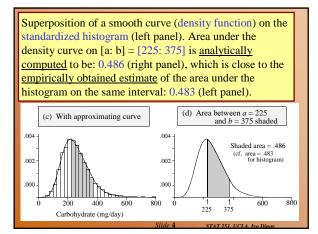
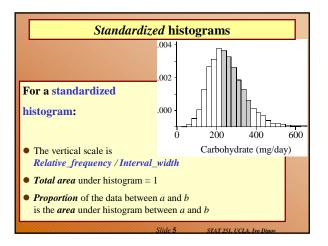


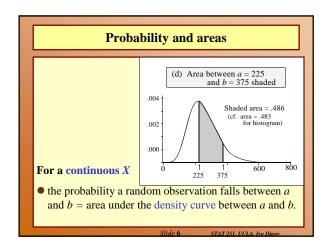
225 m 375

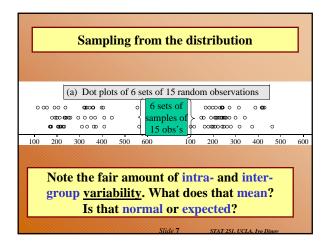


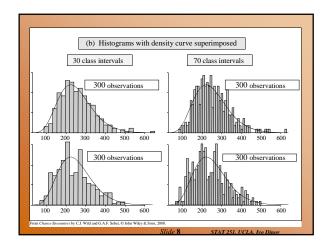
Carbohydrate (mg/day)

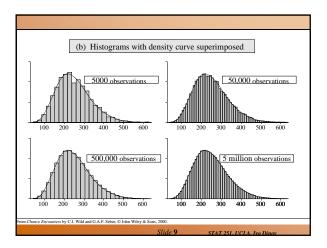


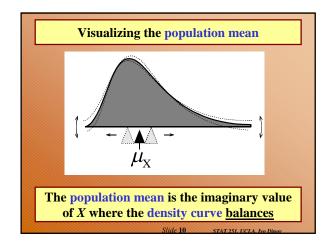


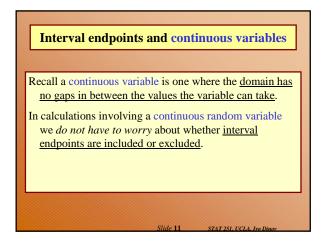


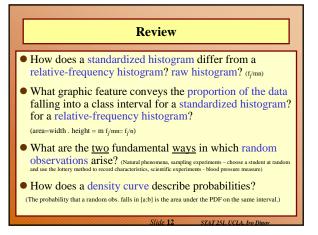


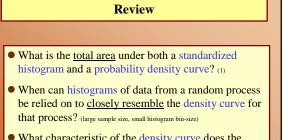






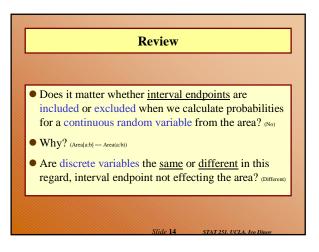


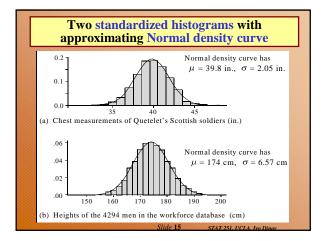


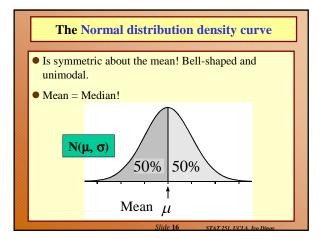


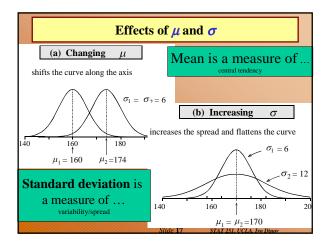
STAT 251 UCLA IN

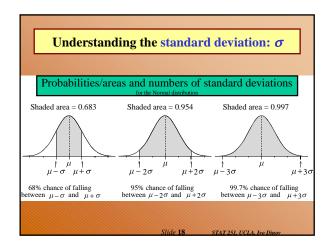
• <u>What characteristic</u> of the density curve does the mean correspond to? (imaginary value of *X*, where the density curve balances)

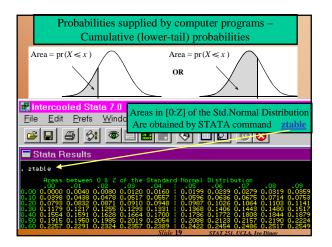


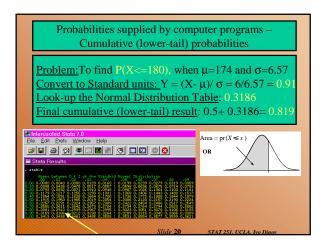


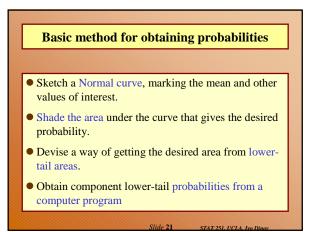


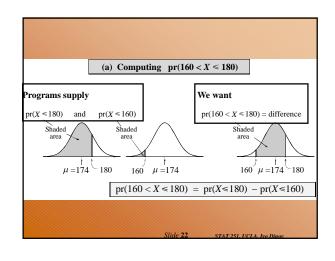


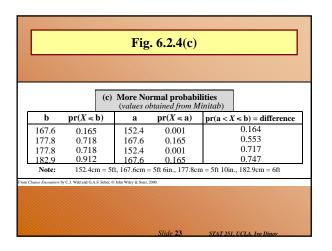


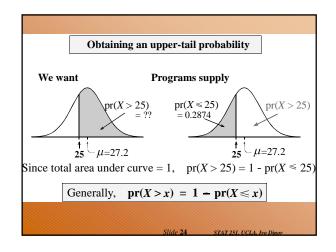








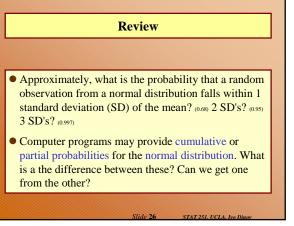


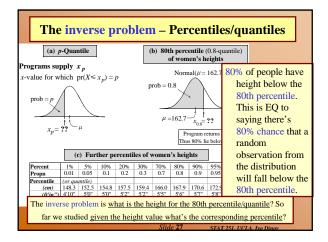


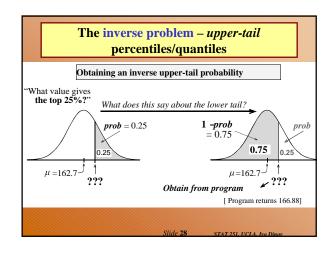
Review

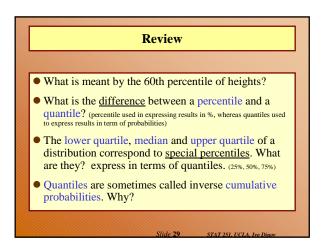
- What features of the Normal curve do μ and σ visually correspond to? (point-of-balance; width/spread)
- What is the probability that a random observation from a normal distribution is <u>smaller than the mean</u>?
 <u>larger than the mean</u>?
 <u>exactly equal to the</u> <u>mean</u>?

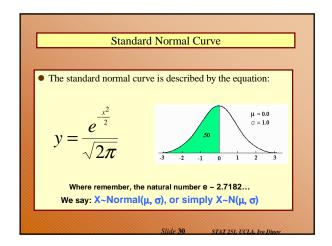
STAT 251 UCLA IN

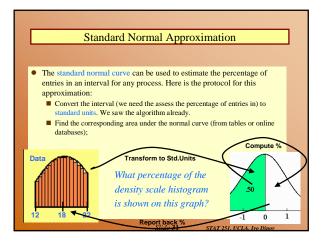


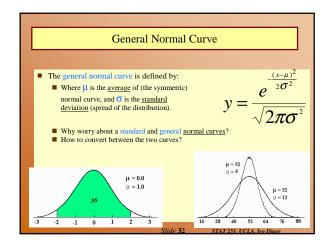


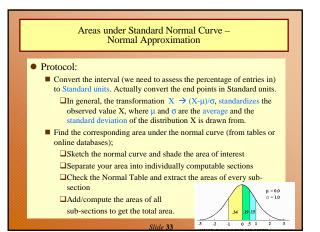


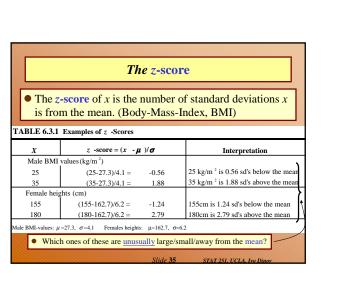


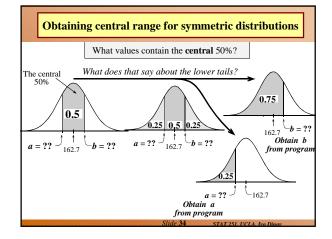


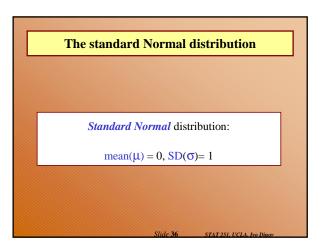


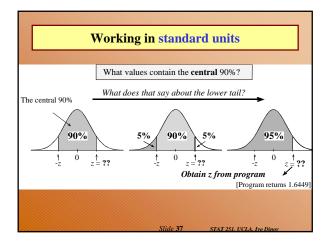


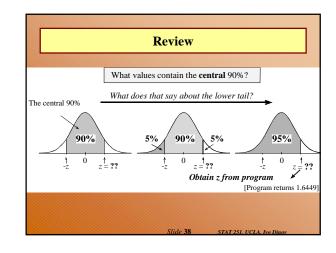






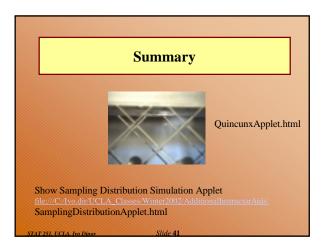


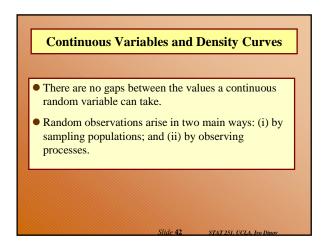




Working in standard units (# of SD's) TABLE 6.3.2 Central Ranges											
		Male	BM	II values	Female heights						
Percentage	ercentage z		σ	$\mu + z \sigma$	μ-τσ	$\mu + z\sigma$					
80%	1.2816	22.05		32.55	154.8	170.6					
90%	1.6449	20.56		34.04	152.5	172.9					
95%	1.9600	19.26		35.34	150.5	174.9					
99%	2.5758	16.74		37.86	146.7	178.7					
99.9%	3.2905	13.81		40.79	142.3	183.1					
Male BMI-values Females heights :				ndardizing erting	$Z = (X)$ $X = Z\sigma$	$(-\mu)/\sigma$					
			Slid	le 39 STA	T 251, UCLA, Ivo	Dinov					

TABL	E6.3.3	Usin	gz-sco	ore tab	les						
As an e	kamp le,	we sha	all find	$pr(Z \leq$	1.135	7) usi	ng part	of the	table g	ven in	
Append	lix A4 (reprod	uced be	elow).							
Step 1:	Correct the <i>z</i> -value to two decimal places, that is, use $z = 1.14$.										
Step 2:	Look down the z column until you find 1.1. This tells you which row to										
	look ii	ı.									
Step 3:	The second decimal place, here 4, tells you which column to look in.										
Step 4:	The entry in the table corresponding to that row and column is										
	pr(Z≤	1.14)	= 0.873	3							
						•					
	z	0	1	2	3	4	5	6	7	8	9
	1.0	.841	.844	.846	.848	.851	.853	.855	.858	.860	.86
	1.1	.864	.867	.869	.871	.873	.875	.877	.879	.881	.88
	1.2	.885	.887	.889	.891	.893	.894	.896	.898	.900	.90
	1.3	.903	.905	.907	.908	.910	.911	.913	.915	.916	.91
		.919	.921	.922	.924	.925	.926	.928	.929	.931	.93



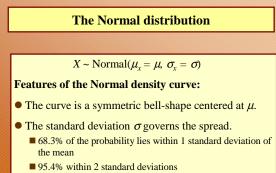


The density curve

- The probability distribution of a continuous variable is represented by a density curve.
 - Probabilities are represented by areas under the curve,
 the probability that a random observation falls between a and b equal to the area under the density curve between a and b.
 - The total area under the curve equals 1.
 - The population (or distribution) mean $\mu_X = E(X)$, is where the density curve balances.
 - When we calculate probabilities for a continuous random variable, it does not matter whether interval endpoints are included or excluded.

STAT 251 UCLA IN

• E(aX+b) = a E(X) + b and SD(aX+b) = |a| SD(X)



■ 99.7% within 3 standard deviations

Probabilities

- Computer programs provide lower-tail (or cumulative) probabilities of the form $pr(X \le x)$
- We give the program the x-value; it gives us the probability.
- Computer programs also provide inverse lower-tail probabilities (or quantiles)
 - We give the program the probability; it gives us the xvalue.
- When calculating probabilities, we shade the desired area under the curve and then devise a way of obtaining it via lower-tail probabilities.

Standard Units

The *z*-score of a value *a* is

- the number of standard deviations *a* is away from the mean
- positive if *a* is above the mean and negative if *a* is below the mean.
- The *standard Normal* distribution has $\mu = 0$ and $\sigma = 0$.
- We usually use *Z* to represent a random variable with a standard Normal distribution.

Ranges, extremes and *z***-scores**

Central ranges:

■ $P(-z \le Z \le z)$ is the same as the probability that a random observation from an arbitrary Normal distribution falls within *z* SD's either side of the mean.

Extremes:

- $P(Z \ge z)$ is the same as the probability that a random observation from an arbitrary Normal distribution falls more than *z* standard deviations above the mean.
- $P(Z \le -z)$ is the same as the probability that a random observation from an arbitrary Normal distribution falls more than *z* standard deviations below the mean.

Combining Random Quantities

Variation and independence:

- No two animals, organisms, natural or man-made objects are ever identical.
- There is always variation. The only question is whether it is large enough to have a practical impact on what you are trying to achieve.
- Variation in component parts leads to even greater variation in the whole.

STAT 251 UCLA

Independence

We model variables as being independent

- if we think they relate to physically independent processes
- and if we have no data that suggests they are related.
- Both sums and differences of independent random variables are more variable than any of the component random variables

STAT 251 UCL

