UCLA STAT 251
Statistical M ethods for the Life and
Health Sciences

elnstructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

University of California, Los Angeles, Winter 2003
http://www.stat.ucla.edu/~dinov/

Definitions

® An experiment isanaturally occurring phenomenon,
ascientific study, asampling trial or atest., in which
an object (unit/subject) is selected at random (and/or
treated at random) to observe/measure different

outcome characteristics of the process the experiment

studies.

® A random variable is atype of measurement taken on
the outcome of arandom experiment.
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Discrete Random Variables

®Random variables
®Probability functions

®The Binomial distribution
®Poisson Distribution
®Expected values

Definitions

® The probability function for a discrete random
variable X gives P(X =x) [denoted pr(x) or P(x)]
for every value x that the R.V. X can take

® E.g., number of heads when a coin is tossed twice




Hospital stays

Tossing a biased coin twice

® For eachtoss, P(Head) =p = P(Tail) =
P(comp(H))=1-p

Daysstayed | x | 4 5 6 7 8 9 10 |Total
® QOutcomes: HH, HT TH TT Frequency 10 30 13 79 21 8 2 | 263

Proportion pr(X =x) 0.038 0.114 0.430 0.300 0.080 0.030 0.008 | 1000

® Probabilities: p.p, p(l-p), (1_p)p, (1_p)(1_p) %L:g;;jg%igr? pr(Xs<x)[0.038 0.152 0.582 0.882 0.962 0.992 1.000
® Count X, the number of headsin 2 tosses

X 0 1 2
pr(x ) 1-p) 2p (1-p) p

From Chance Encounters by C.J. Wild and GA F. Seber, © John Wiley & Sons, 2000.

Calculating I nterval probabilities

Review
from cumulative probabilities -

® What is arandom variable? What is a discrete
random variabl€? wypeor takenonth o rark
® What general principleisused for finding P(X=x)?

(Adding the probabilities of all outcomes of the experiment where we have
measured the RV, X=x)

® What two general properties must be satisfied by the
probabilities making up a probability function?
(PX)>=0; :P(x)=1)

® What are the two names given to probabilities of the

form P(X < X)? (cumulative & lower/left-tail)

|
x-values: 1 2 3

Figure5.2.2 Interval probabilities from cumulative probabilities’
[ This Figure represents an arbitrary distribution, not the hospital distribution.]

JFrom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, _

Thetwo-color urn model

N ballsin an urn, of which there are

M black balls —
N-M whiteballs -

Sample n ballsand count X = # black ballsin sample

® How do we find an upper/right-tail probability from a
cumul ative probability? [P(x>x) = 1-P(x<= x)]

©® When weuse P(X < 12) - P(X < 5) to calculate the
probability that X fallswithin aninterval of values,
what numbers areincluded in theinterval ? (s:12))




The biased-coin tossing model

toss 1 toss 2 toss n
pr(H)=p pr(H)=p pr(H)=p

Perform n tosses and count X = # heads

Binomial Distribution

The biased-coin tossing model is aphysical model for
situations which can be characterized as a series of
trials where:

M each trial has only two outcomes: success or
failure;

W p = P(success) isthe samefor every trial; and
Mtrials are independent.

® Thedistribution of X = number of successes (heads)
in N such trialsis

Binomial (N, p)

Theanswer is; Binomial distribution

® Thedistribution of the number of headsinn
tosses of abiased coin is called the Binomial
distribution.

Binary random process

The biased-coin tossing model isa physical model for
situations which can be characterized as a series of
trials where:

M each trial has only two outcomes: success or
failure;

W p = P(success) isthe samefor every trial; and
Mtrials are independent.

® Thedistribution of X = number of successes (heads)
in N such trialsis

Binomial (N, p)

Saml from afinite population —
Binomial Approximation

If wetake asampleof sizen
® fromamuch larger population (of size N)

® inwhich aproportion p have a characteristic of
interest, then the distribution of X, the number in
the sample with that characteristic,

® isapproximately Binomial(n, p).

O (Operating Rule: Approximation is adequate if n/ N< 0.1.)
® Example, polling the US population to see what
proportion ishas-been married.



Oddsand ends....

@ For what types of situation is the urn-sampling model
useful? For modeling binary random processes. When
sampling with replacement, Binomial distribution is exact,
where as, in sampling without replacement Binomial
distribution is an approximation.

® For what types of situation is the biased-coin

sampling model useful ? Defective parts. Approval poll of cloning
for medicinal purposes. Number of Boysin 151 presidential children (90).

® Givethethree essential conditions for its
applicability. (two outcomes; same p for every trial; independence)

Binomial Probabilities—
the moment we all have been waiting for!

® Suppose X ~ inoial(n, p), then the probability
n
P(X=x)=[ |p"@-p)"™, 0sxsn
X

® Wherethe binomial coefficients are defined by

ny_—n
=7|X!’ N=1x2x3x..x(n=1)xn
X (n - X)- \ n-factorial

Expected values

® The game of chance: cost to play:$1.50; Prices{$1, $2, $3},
probabilities of winning each price are{0.6, 0.3, 0.1}, respectively.

® Should we play the game? What are our chances of
winning/loosing?

Prize ($) x| 1 2 3

Probability pr(x) | 0.6 0.3 0.1

\What we would " expect” from 100 games add across row
Number of games won 0.6 x 100 0.3 x100 0.1 x 100 /
$won 1x0.6x100 2x0.3 X100 3x0.1 x100 Sum

otal prizemoney = Sum; Average prize money = Sum/100

priceto play expected return

=1x0.6 + 2<0.3 + 3«0.1
=15

Oddsand ends....

® What is the distribution of the number of headsinn
tosses of abiased coin?

® Under what conditions does the Binomial distribution
apply to samples taken without replacement from a
finite popul ation? wWhen interested in assessing the distribution of a
R.V., X, the number of observationsin the sample (of n) with one specific

characteristic, wheren / N< 0.1 and aproportion p have the characteristic
of interest in the beginning of the experiment.

Binomial Formula with examples

® Does the Binomial probability satisfy the requirements?

n n—x
ZxP(X =) =Zx(x)px(1‘ "™ =pra-p) =1
® Explicit examplesfor n=2, do the case n=3 at home!
22:0(3 pX(1- p)(Z—X) - {Threetermsin the sum
X=

2 2 2
°(1= D) + {(1- p) + (1-p)°.=
[o)"( ) [l)p( ) (z)p( =
. _ > %= quadratic-
1x1x(1- p)' +2x px(1-p)+1x p'x1= § T

(p+(1_p))2 =1 formula

TABLE5.4.1 Arage\Mnni ngs from a Game conducted N times

Number Prizewon in dollars(x)
of games 1 2 3 Average winnings
played frequencies

) (Reltive frequencies) &)
100 R 1
(8 (2 (11 17
1000 573 316 111
(573 (316) (110) 1538
10000 595 3015 990
(5005 (3015 (.09) 149%5
20000 11917 6080 2000
(5959) (.3040) (.1001) 15042

30,000 17946 9049 3005
(5982) (.3016) (.1002)

(6 (9 (1




Example

Definition of the expected value, in general.

® The expected value:

[= [x P(x)de
al X

= Sum of (value times probability of value)

The expected value and population mean

M. = E(X) iscalled the mean of the distribution of X.
Hy = E(X) isusually called the population mean.

M« isthe point where the bar graph of P(X = x) balances.

The mean g, is the balance point.

Population standard deviation

The population standard deviation is

sd(X) = VEI(X - p)°]

Notethat if X isa RV, then (X-H) isalsoaRV,
and sois (X-H)2 Hence, the expectation,
E[(X-M)?], makes sense.




For the Binomial distribution .

For the Binomial di

stribution ... SD

For the Binomial distribution

sd(X) =1/n- )

For the Binomial distribution . .. SD

109 = 1 )]

For the Binomial dist . mean

00y D

Linear Scaling (affine transformations) ax + b

For any constants a and b, the expectation of the RV aX + b
is equal to the sum of the product of a and the expectation of
the RV X and the constant b.

E(aX + b) = aE(X) +b

And similarly for the standard deviation (b, an additive
factor, does not affect the SD).

SD(aX +b) = [a] SD(X)




Linear Scaling (affine transformations) ax + b

Why is that s0?
E(aX + b) =a E(X) +b SD(aX +h) = [a] SD(X)

(ax+b) PX=x)=
0

Linear Scaling (affine transformations) ax + b

And why do we care?
E(aX +b) =aE(X) +b SD(aX +hb) =|a] SD(X)

-E.g., say the rules for the game of chance we saw before change and
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of
{0.6,0.3, 0.1}, as before. What is the newly expected return of the
game? Remember the old expectation was equal to the entrance fee of
$1.50, and the game was fair!

Y = 3(X-1)/2
{$1, $2, $3} > {$0, $1.50, $3},
E(Y)= 3/2E(X)-3/2=3/4=%0.75

And the game became clearly biased. Note how easy it isto comp

Poisson Distribution — Definition

® Used to model counts — number of arrivals (k) on a
giveninterva ...

® The Poisson distribution is a so sometimes referred to
asthedistribution of rare events. Examples of
Poisson distributed variables are number of accidents
per person, number of sweepstakes won per person,
or the number of catastrophic defects found in a

production process.

Linear Scaling (affine transformations) ax + b

And why do we care?
E(aX + b) =aE(X) +b SD(aX +h) = [a] SD(X)

-completely general strategy for computing the distributions
of RV'swhich are obtained from other RV’swith known
distribution. E.g., X~N(0,1), and Y =aX+b, then we need
not calculate the mean and the SD of Y. We know from the
above formulasthat E(Y) = b and SD(Y) =Jal.

-These formulas hold for all distributions, not only for
binomial.

Review

® What does the expected value of X tell you about?
(Exgevu;e(t)i outcome from an experiment regarding the characteristics measured by
the

® Why is the expected value also called the population
Mean? [because for finite population E(X) is the ordinary mean (average)]

® What is the relationship between the population mean
and the bar graph of the probability function? paances
the graph)

® What are the mean and standard deviation of the
Binomial distribution? (np; np(1-p))

® Why is SD(X+10) = SD(X)?

® Why is SD(2X) = 2SD(X)?

Functional Brain Imaging —
Positron Emission Tomography (PET)

Annihilation (simple)

conservation of momentum:




Functional Brain Imaging - Positron Emission
Tomography (PET)

Annihilation detection

Functional Brain Imaging —
Positron Emission Tomography (PET)

Left Hand
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Poisson Distribution - Variance

® Y~Poisson(A), then P(Y=k) = A€ k-012..
Kl

® Varianceof Y, o, = A, since

02 =Var (Y)= Z(k A)Z/‘k e’

® For example, supposethat Y denotes the number of
blocked shots (arrivals) in arandomly sampled game
for the UCLA Bruins men's basketball team. Then
a Poisson distribution with mean=4 may be used to

model Y .

Functional Brain Imaging —
ositron Emission Tomography (PET)

us 0.96
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: ,stopeEnargy (Mev) Range(mm) /21ife Application

11 20min receptor studies
15 2min stroke/activation
10 110min  neurology
16 45days oncology

Poisson Distribution —Mean

® Used to model counts — number of arrivals (k) on a
given interval ...

. e
®|Y~Poisson( ] ), then P(Y=k) = koL
® Meanof Y, pu, = A, since

k/‘k —/] —/lz Ak
E(Y —=
3 PIrrsey
o Ak =i,
= e’ “z -/\e"'e" =A
= (k-1 1)l k=0

Poisson Distribution - Example

® For example, supposethat Y denotes the number of
blocked shotsin arandomly sampled game for the
UCLA Bruins men's basketball team. Poisson
distribution with mean=4 may be used to model Y .
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Continuous Distributions

® Normdl distribution

® Student’s T distribution
® F-distribution

® Chi-squared ( X 3

® Cauchy’sdistribution

® Exponential distribution
o ..

Continuous Distributions— Student’s T

® Student’s T distribution [approx. of Normal(0,1)]
mY, Y, .., Yy IIDfromaNormal(U;0)
B Variance 02 is unknown

® |n 1908, William Gosset (pseudonym Student) derived the
exact sampling distribution of the statistics

T - Y_ILIY
8, 1N

Continuous Distributions — F-distribution |

® F-distribution k-samples of different sizes
TABLE10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squares®  F-statistic P-value
- o2 2
Between Ln(.~%) k-1 S |fu ZSZBIS\ZNI pr(F> fo)
2
Within 2008 gk Sw
P pJ
Totd L2 -%) Ng -1 T n(x -x.)
M ean sum of squares = (sum of squares)/df 2 _ ..

e —
® <, isameasure of variability of B k-1

2
sample means, how far apart they are. ) 2(n -Ds
® 3, reflectsthe avg. internal W o
variability within the samples. "ot ~

Continuous Distributions - Normal

° eneral) Normal distribution
_Gen)?

e 2072

Continuous Distributions — F-distribution

® F-distribution k-samples of different sizes.

® Snedecor's F distribution is most commonly used in tests of
variance (e.g., ANOVA). Theratio of two chi-squares divided
by their respective degrees of freedom issaid to follow an F

distribution

B (Y, Yo i Y i} 11D from aNormal(Hy;0,)
K B {Y,}, Y, Yoot 11D fromaNormal(Hy;0,)

| |

B {Y,; Yo oo Yinot 11D from aNormal(H,;0,)
B 0=0,=05... 0, = 0. (U2<=g,/0;<=2)
B Samples are independent!

H Continuous Distributions — x? [Chi-Squar €]

® 2 [Chi-Square] goodness of fit test:
B Let{X;, X,, ..., X5} aelID N(O, 1))
BW=X2+X2+ X2+ ...+ X2
B W ~x*(df=N)
ENote: If {Y,,Y,, ..., Yy} aellD N(u, o), then
1 N
D(Y)=——
=yl
N-1
2 N(Ok_Ek)2 w= o?
X2 = ~ X2
ZE X
m E(W)=N; Var(W)=2N

Y, -Y)

B And the Statistics W ~ x(df=N-1)
SDA(Y)




Continuous Distributions— Cauchy’s |

® Cauchy’s distribution, X~Cauchy(t,s), t=location; s=scale

IFERRYE G0 1 51 XOR (reals)
sﬂ1+(x—t)/s) ’ 1
, . f(x) =

® PDF(Std Cauchy’5(0,1)): ( Sal + %2 j

® The Cauchy distribution is (theoretically) important as an example of
a pathological case. Cauchy distributions look similar to a normal
distribution. However, they have much heavier tails. When studying
hypothesis tests that assume normality, seeing how the tests perform
on data from a Cauchy distribution is agood indicator of how
sensitive the tests are to heavy-tail departures from normality. The
mean and standard deviation of the Cauchy distribution are
undefined!!! The practical meaning of thisis that collecting 1,000
data points gives no more accurate an estimate of the mean and

standard deviation than does a single point.
SSSSSSSSSSSSSSSeEEESSammaenn

Continuous Distributions — Exponential |

® Exponential distribution, X~Exponential(A)

® The exponential model, with only one unknown parameter, is the
simplest of all life distribution models.

f(x)=e™; x=0
® E(X)=U\; Var(X)=U )\

® Another name for the exponential mean isthe Mean Time To Fail
or MTTF and we have MTTF = 1/ A.

If X is the time between occurrences of rare events that happen on the average
with arate | per unit of time, then X is distributed exponentially with parameter A.
Thus, the exponential distribution is frequently used to model the time interval
between successive random events. Examples of variables distributed in this
manner would be the gap length between cars crossing an intersection, life-times
of electronic devices, or arrivals of customers at the check-out counter in a grocery
store.

Continuous Distributions — Exponential Examples

® Customers arrive at a certain store at an average of 15 per hour. What is the
probability that the manager must wait at least 5 minutes for the first customer?

® The exponential distribution is often used in probability to model (remaining)
lifetimes of mechanical objects for which the average lifetime is known and for
which the probability distribution is assumed to decay exponentially.

® Suppose after thefirst 6 hours, the average remaining lifetime of batteries for a
portable compact disc player is 8 hours. Find the probability that a set of batteries
lasts between 12 and 16 hours.

Solutions:

® Here the average waiting time is 60/15=4 minutes. Thus X ~ exp(1/4). E(X)=4.
Now we want P(X>5)=1-P(X <= 5). We obtain aright tail value of .2865. So
around 28.65% of the time, the store must wait at least 5 minutes for the first
customer.

® Here the remaining lifetime can be assumed to be X ~ exp(1/8). E(X)=8. For the
total lifetime to be from 12 to 16, then the remaining lifetimeis from 6 to 10. We
find that P(6 <= X <=10) =.1859.

r Normal, T & Cauchy Distributions

Connection between T, Cauchy and Standard Normal (Gaussian) Distributions

Gaussian =

Cauchy ——

T Distribution (n=2) —e&—

T Distribution (n=10)
T Distribution (n=50)

Continuous Distributions — Exponential

® Exponential distribution, Example:

® On weeknight shifts between 6 pm and 10 pm, there are an
average of 5.2 callsto the UCLA medical emergency
number. Let X measure the time needed for the first call on
such ashift. Find the probability that thefirst call arrives
(a) between 6:15 and 6:45 (b) before 6:30. Also find the
median time needed for thefirst call.

B We must first determine the correct average of this exponential
distribution. If we consider the time interval to be 4x60=240
minutes, then on average thereisa call every 240/ 5.2 (or 46.15)
minutes. Then X ~ Exp(1/46), [E(X)=46] measures the timein

minutes after 6:00 pm until the first call.

10



Summary

Random variable

® A type of measurement made on the outcome of a
random experiment

Probability function

® P(X = x) for every value X can take, abbreviated to
P(x)

Population standard deviation

® Standard deviation for arandom variable X, denoted
SD(X) is:
B also called the population standard deviation and denoted
oy (abbreviated 0)
M |s ameasure of the variability of X-values.
H Formula:

o, =SD(X) = E[(X - )]

B for adiscrete random variable X,

EL(X - )] = 3 (x = 1) P(X)

Sampling from a finite population

® Theurn model isaphysical model for situationsin
which we
B sample nindividuals at random from afinite population
and
M count X, the number of individuals with a characteristic of
interest

® When n/N < 0.1, the distribution of Xis
approximately Binomial(n, p)

B where p is the population proportion with the characteristic
of interest

Expected value

Expected Value fr arandom variable X, denoted E(X).

® Also called the popul ation mean and denoted iy
(abbreviated to ).

® |sameasure of thelong-run average of X-valuesin
many repetitions of the experiment.

® Formula (for adiscrete random variable):

p =E(X) =2 xP(x)

Affine Transformations aX + b

For any constants a and b,
® E(aX + b) =aE(X) +b

and
® SD(aX +h) = [a| SD(X)

Observing arandom process

The biased-coin tossing model is a physical model for
situations which can be characterized as a series of
trialswhere:

W each trial has only two outcomes: success and failure;
W p = P(success) is the same for every trial; and
M trials are independent.

® Thedistribution of X = number of successes (heads)
innsuchtrialsis

Binomial(n, p)

11



Binomial distribution

® Thedistribution of the number of successesinn trlds
(or the number of heads in n tosses) is Binomial (n, p)

® The Binomid distribution has

E(X)=p =np SD(X)=0 =./np(l-p)

12



