
STAT 251 / OBEE 216
Winter 2003
Prof. Ivo D. Dinov
Inference for population variances and proportions and intro to
categorical data
Reading: Ch. 4.4, Ch. 6
.

Inference for the unknown variance σ2 of a normal population

A marine biologist wishes to use male angelfish for an experiment
and hopes their weights don’t vary much. In fact, a previous random
sample of n = 16 angelfish yielded the data below

{y1, . . . , yn} =

{5.1, 2.5, 2.8, 3.4, 6.3, 3.6, 3.9, 3.0, 2.7, 5.7, 3.5, 3.6, 5.3, 5.1, 3.5, 3.3}

Sample statistics from these data include

ȳ = 3.96 lbs s2 = 1.35 lbs2 n = 16

Problem: obtain a 100(1 − α)% confidence interval for σ2.

Point Estimator for σ2? How about S2?

Sampling theory for S2?

If a random sample Y1, . . . , Yn is taken from a normal population
with mean µ and variance σ2, then∑

(Yj − Ȳ )2

σ2
∼ χ2(n− 1)

Critical values for the χ2 distribution appear in Table C.3 on pp 813-
814 of Rao. These values cover distributions with up to ν = 100
degrees of freedom. This result can be used to obtain confidence
intervals for the variance σ2 of a normal population:

1− α = Pr(χ2(n− 1, 1− α/2) ≤
∑

(Yj − Ȳ )2

σ2
≤ χ2(n − 1, α/2)).

The term in the middle is just (n − 1)S2/σ2. The usual algebraic
rearrangement yields a confidence interval of the variance of the form

(n−1)S2

χ2(n−1,α/2)
≤ σ2 ≤ (n−1)S2

χ2(n−1,1−α/2)
.
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Figure 1: Assessments of normality/sampling distribution of (n− 1)S2/σ2:
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For the angelfish data, first we might check for obvious departures
from normality: To obtain a 95% confidence interval, the appropri-
ate critical values are

χ2(15, 0.025 ) = 27.49 and χ2(15, 0.975) = 6.26.

This yields the interval

(n− 1)s2

χ2(n − 1, α/2)
,

(n− 1)s2

χ2(n− 1, 1− α/2)

or
(16− 1)1.35

27.49
,

(16− 1)1.35

6.26
or

(0.74, 3.24)
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The ratio of two population variances, σ2
1/σ

2
2 , from independent samples

Consider two independent random samples

Y1,1, . . . , Y1,n1

Y2,1, . . . , Y2,n2

from two normal populations with unknown variances σ2
1 and σ2

2,
respectively. Questions:

• What is a good point estimator of σ2
1/σ

2
2?

• Can this be used for a test of significance or confidence interval
for σ2

1/σ
2
2?

Sampling distributions of S2
1 and S2

2 from normal populations

Suppose we compare air pollution in homes of smokers and
non-smokers. The common variances procedure was ruled out be-
cause of the large difference in sample variances:

S2
1 = 26.0 (n1 = 11) smokers

S2
2 = 195.4 (n2 = 9)  n o n - s m o k e r s

Suppose we want to formally test the hypothesis that the population
variances are equal. Consider a test of the form

H0 : σ2
1 = σ2

2 vs. H1 : σ2
1 6= σ2

2

which can also be written

H0 : θ =
σ2

1

σ2
2

= 1 vs. H1 : θ =
σ2

1

σ2
2

6= 1.

How about

θ̂ =
S2

1

S2
2

?

Where
S2

1 is the sample variance from Y1,1, . . . , Y1,n1 and
S2

2 is the sample variance from Y2,1, . . . , Y1,n2 :

S2
1 =

1

n1 − 1

n1∑
i=1

(Y1,i − Ȳ1)2

S2
2 =

1

n2 − 1

n2∑
i=1

(Y2,i − Ȳ2)2

(θ̂ is sometimes called an F -ratio.)

Ivo Dinov
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To test H0, the hypothesis of equality population variances, we use
the following result:

θ̂

θ
∼ Fn1−1,n2−1

which can also be written

S2
1/σ

2
1

S2
2/σ

2
2

∼ Fn1−1,n2−1.

This yields a probability statement of the form

1−α = Pr(F (n1−1, n2−1, 1−α/2) ≤ S2
1

S2
2

1

θ
≤ F (n1−1, n2−1, α/2) |  H0 is true )

(1)
Values of the F-ratio which are far from one constitute evidence
against the null hypothesis. Formally, the critical region with level
α calls for rejection of H0 whenever

θ̂ < Fn1−1,n2−1(1− α/2) or θ̂ > Fn1−1,n2−1(α/2).

Manipulation of (1) leads to the following 100(1 − α)% confidence
interval for θ = σ2

1/σ
2
2 :(

S2
1
S2

2

1
F (n1−1,n2−1,α/2)

, S2
1
S2

2

1
F (n1−1,n2−1,1−α/2)

)

For a 95% confidence interval for σ2
1/σ

2
2 in the smoking data, we

need
F(10;  8;  0.975) = 0.259 ;  F(10;  8;  0.025) = 4.295

which yields the interval(
26.0

195.4× 4.295
,

26.0

195.4× 0.259

)
or

(0.031;  0.512)

which clearly doesn't contain 1, so that  H0 : σ2
1 = σ2

2 is rejected at
level α = 0.05.

The p-value for such a test can be obtained from the F distribution
and the observed test statistic:

Fobs = θ̂obs = 26/195.4 = 0.133

However, recall that Table C.4 only gives upper critical values.
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Therefore, to obtain a p-value, take as the test statistic

max{θ̂, 1/θ̂}

and multiply the right-tail probability from the F -distribution by 2.
Use the following numerator (df1) and denominator (df2) degrees of
freedom:

df1 = df from bigger of {s2
1, s

2
2}

df2 = df from smaller of {s2
1, s

2
2}

The observed test statistic becomes

Fobs = 1/θ̂ =
s2

2

s2
1

=
195.4

26.0
= 7.53

and since
F (8, 10, 0.01) = 5.057

the area to the right of Fobs = 7.53 under the F8,10 distribution is less
than 0.01, which corresponds to a two-sided p-value less than 0.02.
Note that the degrees of freedom must be switched when S2

2 > S2
1 .

options ls=75 nodate;

data one;

infile "datasets/smokers.dat";

input y smoke;

label y="suspended particulate matter";

run;

proc ttest;

class smoke;

var y;

run;

The SAS System 1

TTEST PROCEDURE

Variable: Y suspended particulate matter

SMOKE N Mean Std Dev Std Error

-------------------------------------------------------------------------

0 9 92.77777778 13.98014465 4.66004822

1 11 133.18181818 5.09545252 1.53633674

Variances T DF Prob>|T|

---------------------------------------

Unequal -8.2343 9.7 0.0001

Equal -8.9320 18.0 0.0000

For H0: Variances are equal, F’ = 7.53 DF = (8,10) Prob>F’ = 0.0045
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Large sample interval estimation for a population proportion
Out of a random sample of n = 330 triathletes, 167 indicated that
they had suffered a training-related injury during the past year. Us-
ing these data, give a point estimate, standard error and confidence
interval for

p : the proportion among ALL triathletes who suffered an injury

Let
p̂ := sample proportion of injured triathletes

We know from the CLT for proportions that the sampling distribu-
tion of p̂ is approximately normal. This yields the following approx-
imate probability statement:

0.95 ≈ Pr

−1.96 <
p̂− p√
p(1−p)
n

< 1.96


...

= Pr
(
p̂− 1.96

√
p(1− p)/n < p < p̂ + 1.96

√
p(1− p)/n

)

≈ Pr

p̂− 1.96

√
p̂(1− p̂)

n
< p < p̂ + 1.96

√
p̂(1− p̂)

n


The endpoints for a 95% confidence interval for an unknown popu-
lation proportion p based on a random sample of size n with sample
proportion p̂ are then given by

p̂− 1.96

√
p̂(1− p̂)

n
and p̂ + 1.96

√
p̂(1− p̂)

n

which is commonly written

p̂ ± 1.96
√
p̂(1−p̂)
n .

For the triathlete data, a 95% confidence interval for p based on the
sample proportion of p̂ = 167/330 = 0.506 is given by

p̂± 1.96

√
p̂(1− p̂)

n
or

0.506± 1.96(0.028)

or
0.506± 0.053
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Sample size computations for confidence intervals

Case 2: Estimation of a population proportion p.
The sample size necessary to obtain a 95% confidence interval of the
form

p̂±B
for an unknown population proportion p based on a random sample
can be solved for similarly, yielding the equation

n =

1.96
√
p̂(1− p̂)

B

2

. (2)

Upon inspection of (2), it can be seen that the term on the right is
bounded above by (

1.96

B

)2

∗ (1/4)

so that a conservative sample size, which will ensure a 95% confi-
dence interval of length 2*B is given by

n =
(

1.96

B

)2

∗ (1/4).

Exercise: Suppose you want to estimate the proportion p of trees
that will survive to a certain lifetime under some treatment of in-
terest. In particular, you’d like a 95% confidence interval of the
form

p̂± 0.02.

How large does your sample size n need to be . . .

• without knowing anything about p?

• with the knowledge that the least p could reasonably be is
p = 0.9?
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Testing with dichotomous data

Example: There is a theory that the anticipation of a birthday can
prolong a person’s life. In a study, it was found that only x =
60 out of a random sample of n = 747 people whose obituaries
were published in Salt Lake City in 1975 died in the three-month
period preceding their birthday (Newsweek, 1978). Let p denote
the proportion of all deaths which fall in the three-month period
preceding a birthday. Consider the following test

H0 : p = 0.25 (= p0) vs H1 : p < 0.25

The test statistic for this problem takes the usual form

Z =
est− null

SE(est)
=

p̂− p0√
p0(1− p0)/747

Note that the standard error term in the denominator does not need
to be estimated (by p̂) since it is specified under H0. The left-tailed
test with level α rejects H0 if Z < −z(α). Similarly for right-tailed
and two-tailed tests:

Alternative Critical region
H1 : p < p0 Z < −z(α)
H1 : p > p0 Z > z(α)
H1 : p 6= p0 |Z| > z(α/2)

For the Newsweek obituary data,

zobs =
60/747 − 0.25√

0.25(1− 0.25)/747
=

0.08− 0.25

0.0099
= −17

So we reject H0 with a p-value less than 0.001.
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Some “categorical” datasets:

Dataset #1: Tomato plants.

Phenotype Frequency
Tall, cut 926

Tall, potato 288
Dwarf, cut 293

Dwarf, potato 104

Dataset #2: Yeast cells

The distribution of yeast cells observed over n = 400 squares of a
haemacytometer:

y 0 1 2 3 4 5 ≥ 6
f(y) 213 128 37 18 3 1 0

Dataset #3: Colds among skiers taking vitamin C and placebo

Cold No Cold Total
Placebo 31 109 140

Vitamin C 17 122 139

Dataset #4: Presidential candidates

after debate
G B

before G 63 21 84
debate B 4 12 16

Dataset #5: Handedness and gender

Handedness Men Women Total
Right 934 1070 2004
Left 113 92 205

Ambidextrous 20 8 28
Total 1067 1170 2237



Stat  251 / OBEE 216

The multinomial probability distribution
The multinomial distribution is a generalization of the binomial
distribution arising from independent, identically distributed trials,
each of which can be categorized as one and only one of C ≥ 2
possible categories, with probabilities π1, π2, . . . , πC. If n such i.i.d.
trials are observed, each with probabilities (π1, . . . , πC) then the
probability of obtaining exactly

• y1 trials categorized as type 1

• y2 trials categorized as type 2

• ...

• yC trials categorized as type C

is given by
n!

y1!y2!× · · · × yC !
πy1

1 π
y2
2 × · · · × πyCC

For example, if tomato plants are grown in such a way that they
are classified as one of the four phenotypes in Dataset #1 with
probabilities

π1 = 0.56, π2 = 0.19, π3 = 0.19, π4 = 0.063

and n = 10 plants are grown, then the chance of getting, say exactly

y1 = 5 Tall,cut
y2 = 2 Tall,potato
y3 = 2 Dwarf/cut
y4 = 1 Dwarf/potato

is given by

10!

5!2!2!1!
0.5650.1920.1920.0631 = 0.033

Note: Results for the multinomial distribution underlie many of the
techniques for categorical data analysis we’ll study.
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The χ2 goodness-of-fit tests for categorical data
with completely specified cell probabilities

The χ2 goodness-of-fit test can be used for inference about these
C − 1 parameters. (Since π1 + π2 + · · · + . . . πC = 1 there are
really only C − 1 parameters.) In particular, it can be used to test
hypotheses of the form

H0 : π1 = π10, π2 = π20, . . . , πC = πC0

versus
H1 : πj 6= πj0 for at least one j

Suppose that n i.i.d. trials are observed, each with probability of
being classified (uniquely) as category j given by πj. Let the RV
representing the number of trials classified as category j be denoted
by Oj :

Oj = # trials classified as typej.

Using properties of this multinomial distribution, it can be shown
that when H0 holds, the χ2 test statistic below has (approximately)
the χ2 distribution with C − 1 degrees of freedom:

χ2 =
j=C∑
j=1

(Oj − nπj0)2

nπj0

This test statistic is a bit easier to remember in the following form

χ2 =
j=C∑
j=1

(Oj − Ej)2

Ej

where Oj denotes the observed count in the jth category and Ej is
the expected count under H0:

Ej = E(Oj ;H0) = nπj0

A critical region for χ2 is the set of values bigger than χ2(C − 1, α).
That is,

reject H0 if χ2 ≥ χ2(C − 1, α).

The p-value is just the area to the right of the observed value of the
test statistic under the χ2 curve with C − 1 degrees of freedom.
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Example: Two traits that have been widely studied in tomato plants
are height (“tall” vs “dwarf”) and leaf type (“cut” vs “potato”).
“Tall” and “cut” are dominant. When a homozygous “tall,cut”
is crossed with a “dwarf,potato” the resulting progeny is called a
dihybrid. When dihybrids are crossed, the following proportions
of phenotypes should appear in the offspring provided the alleles
governing the two traits segregate independently (this is a 9 : 3 : 3 : 1
ratio:)

Phenotype Relative Frequency
Tall, cut 0.5625

Tall, potato 0.1875
Dwarf, cut 0.1875

Dwarf, potato 0.0625

In one experiment done with these two traits a total of 1611 progeny
of dihybrid crosses were categorized by phenotype. The data are
summarized in the table below:

Phenotype Frequency
Tall, cut 926

Tall, potato 288
Dwarf, cut 293

Dwarf, potato 104

Specify the null and alternative hypothesis for this experiment:

H0 :?

H1 :?

How about

H0 : π1 = 0.5625, π2 = 0.1875, π3 = 0.1875, π4 = 0.0625

vs
H1 : at least one πj 6= πj0?
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To test these hypotheses, the χ2 test statistic becomes

χ2 =
4∑
1

(Oj − Ej)2

Ej

=
(926− 906.2)2

906.2
+

(288 − 302.1.2)2

302.1
+

(293− 302.1)2

302.1906
+

(104− 100.7)2

100.7
= 1.47

Is this statistically significant?

The distributional result on page 1 implies that when H0 holds, the
test statistic should have a χ2 sampling distribution with 4− 1 = 3
degrees of freedom. The 95th percentile for this distribution, found
in Rao, is given by

χ2(0.05, 3) = 7.8147

The observed test statistic is therefore not statistically significant
using α = 0.05. The p-value, obtained using statistical software is
given by

p− value = Pr(χ2 ≥ 1.47;H0) = 0.69.

Conclusion ?:

Rule of thumb to check validity of χ2 approximation

• at least 75% of the cells have Ej ≥ 5 (Expected counts are not too small) AND

• no Expected 0’s ( Ej 6= 0)
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Another test for categorical data: partially specified probabilities

Often, the category probability parameters are not completely spec-
ified, but rather are specified up to some unknown parameter. Ex-
amples include fitting a well-known discrete probability model, such
as the poisson or binomial models to data, or making a continuous
model into a discrete model by grouping observations in bins.

Example: a poisson probability model. The distribution of yeast
cells observed over n = 400 squares of a haemacytometer is given
below:

y 0 1 2 3 4 5 ≥ 6
f(y) 213 128 37 18 3 1 0

To test the hypothesis that these data are a random sample from a
Poisson distribution, we could write

H0 : Pr(y yeast cells in a square) = e−λλy/y! for y = 0, 1, 2, . . .

H1 : Pr(y yeast cells in a square) 6= e−λλy/y! for for some y

however, there would be many zeroes and many small cell counts,
so we can bin the data a bit differently to avoid this problem.

Category j j = 1 j = 2 j = 3 j = 4 j = 5
y 0 1 2 3 ≥ 4

f(y) 213 128 37 18 4

Then we can test

H0 : π1 = e−λ,
π2 = e−λλ,

π3 = e−λλ2/2!,
π4 = e−λλ3/3!,
π5 = 1−∑4

1 πj
H1 : any other probabilities

only we don’t know λ and must estimate it from the data. This is
what is meant by partially specified probabilities. The resulting test
statistic below has an approximate χ2 distribution with C − 1 − p
degrees of freedom where C denotes the number of categories or
bins and p denotes the number of parameters used to specify the
category probabilities. For the poisson model, p = 1.

(For a normal model, where µ and σ must be estimated by Ȳ and
S, the number of parameters would be p = 2.)
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The mean of the sample, Ȳ can be used to estimate λ, the mean of
the poisson distribution:

λ̂ = ȳ =

∑
yj
n

=
273

400
= 0.6825.

Substituting λ̂ into the poisson model for the category probabilities
yields the following expected cell counts:

y 0 1 2 3 ≥ 4
j 1 2 3 4 5
Oj 213 128 37 18 4
π̂j 0.505 0.345 0.118 0.028 0.005
Ej 202.1 138.0 47.1 10.7 2.1

The j = 3 cell probability π̂3, for example, comes from

π̂3 =
e−λ̂λ̂2

2!
= 0.118

and the expected cell counts are just

Ej = nπ̂j for j = 1, . . . , 5

The α = 0.05 critical value for the χ2 test statistic can be obtained
from the χ2 distribution with C−1−p = 3 degrees of freedom from
Table C.3, (p. 814) of Rao:

χ2(3, 0.05) = 7.8147

The observed value of the test statistic is

χ2 =
∑ (Oj −Ej)2

Ej
=

(213− 202.1)2

202.1
+ · · ·+ (4− 2.1)2

2.1
= 10.12

Q: Does the test statistic fall in the α = 0.05 critical region?

Q: Do the poisson model fit these data?

Q: What is the p-value for the test statistic χ2 under H0?

χ2(3, 0.025) = 9.3 and χ2(3, 0.01) = 11.3
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Large sample comparison of population proportions, π1, π2

based on independent random samples

Example: In a review of the evidence regarding the therapeutic value
of vitamin C for prevention of the common cold, Pauling (1971) de-
scribes a 1961 French study involving 279 skiers during two periods
of 5-7 days. One group of 140 subjects received a placebo while the
remaining 139 received 1 gram of vitamin C per day. Of interest is
the relative occurrence of colds for the two groups. The data are
shown below. Let p1 denote the proportion among a population
of people who take the treatment who would catch a cold. Let p2

denote the proportion among a population of people who take the
placebo who would catch a cold.

Cold No Cold Total
Placebo 31 109 140

Vitamin C 17 122 139

1. Formulate a test of hypotheses to investigate whether or not
the catching of colds differs by vitamin C intake.

2. Calculate the p−value for your test from these data. If you
use an approximation to obtain this p−value, verify that it is
appropriate.

3. Obtain a 95% confidence interval for the quantity p1 − p2.

4. Let q1 be defined by q1 = 1− p1. Suppose that you are partic-
ularly interested in the quantity θ = q1 − p1. Propose a point
estimator of this quantity.

5. Construct a 95% confidence interval for θ.
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We’ve seen from the CLT for proportions that if p̂1 denotes a sample
proportion (of some 0-1 trait of interest) from a random sample of
size n1 taken from a population with proportion p1 then (approxi-
mately)

p̂1 − p1√
p̂1(1−p̂1)

n1

∼ N(0, 1)

Similarly, if another sample proportion p̂2 is obtained from a random
sample of size n2 taken independently from another population with
proportion p2, then (approximately)

p̂2 − p2√
p̂2(1−p̂2)

n2

∼ N(0, 1)

We also know that a sum or difference of two independent, normally
distributed random variables also has a normal distribution. This
implies that

p̂1 − p̂2 − (p1 − p2)√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

∼ N(0, 1)

The following probability statement is a consequence of this normal-
ity:

1− α ≈ Pr

−z(α/2) ≤ p̂1 − p̂2 − (p1 − p2)√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

≤ z(α/2)


The usual rearrangement yields a 95% confidence interval for p1−p2

of the form

p̂1 − p̂2 ± z(α/2)
√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

For tests like H0 : p1 − p2 = D0 versus H1 : p1 − p2 6= D0, the
following test statistic can be used:

Z1 =
p̂1 − p̂2 −D0√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2

For the (most common) case where D0 = 0 is of interest, a better
test is one based on the statistic

Z2 =
p̂1 − p̂2 −D0√
p̂(1− p̂)( 1

n1
+ 1

n2
)

where
p̂ =

n1

n1 + n2
p̂1 +

n2

n1 + n2
p̂2.

Critical regions for one-sided and two-sided alternatives are formed
in the usual manner. It can be shown that Z2 and the χ2 statistic
for independence in a 2× 2 table are the same (see pp. 20-21.)
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For the vitamin C data, a 95% confidence interval for pp−pC is given
by (0.004, 0.194). The 2nd test statistic works out to zobs = 2.19 and
a two-sided p-value of 0.0283:

data one;

input cold trt $ frq;

cards;

1 p 31

0 p 109

1 C 17

0 C 122

;

run;

proc freq;

weight frq;

tables cold*trt/chisq;

run;

The SAS System 1

TABLE OF TRT BY COLD

TRT COLD

Frequency|

Row Pct | 0| 1| Total

---------+--------+--------+

C | 122 | 17 | 139

| 87.77 | 12.23 |

---------+--------+--------+

p | 109 | 31 | 140

| 77.86 | 22.14 |

---------+--------+--------+

Total 231 48 279

STATISTICS FOR TABLE OF TRT BY COLD

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 4.811 0.028

Fisher’s Exact Test (Left) 0.991

(Right) 0.021

(2-Tail) 0.038
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McNemar’s test for significance of changes
McNemar’s test can be used to test for a difference of proportions
in paired categorical data. That is, two 0-1 measurements are made
on each experimental unit. Consider hypothetical data representing
preferences among democratic voters for a presidential candidate, G
or B, before and after a debate. Here, there are two measurements
made on each experimental unit (democratic voters).

after debate
G B

before G a = 63 b = 21 N1 = 84
debate B c = 4 d = 12 N2 = 16
Total M1 = 67 M2 = 33 N = 100

The difference in the proportion of people who support Gore before
(π1) and after (π2) the debate, θ = π1 − π2 can be estimated using

θ̂ = π̂1 − π̂2 =
N1

N
− M1

N

For these data, this works out to

θ̂ =
84

100
− 67

100
=

63 + 21− (63 + 4)

100
=

21− 4

100

In general (a, b, c, d) this estimator works out to

θ̂ =
b− c
N

It can be shown that the standard error can be estimated by of θ̂ is
given by

SE(θ̂) =

√
b+ c

N
yielding a test statistic for H0 : π1 − π2 = θ0 of the form

Z =
θ̂ − θ0

SE(θ̂)
.

When θ0 = 0, this becomes

Z =
b− c√
b+ c

.

In large samples, Z ∼ N(0, 1) and confidence intervals and tests can
be constructed as usual.

For these hypothetical data, the test statistic becomes

Zobs =
21− 4√
21 + 4

= 3.4

which differs significantly from 0, indicating that Bush won the de-
bate.
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χ2 test for independence

The χ2 test for independence can be used to detect independence
among two categorical variables.

Example: A random sample of n++ = 2237 adults was conducted
and there gender and handedness were observed and are tabulated
below:

Handedness Men Women Total
Right 934 1070 2004
Left 113 92 205

Ambidextrous 20 8 28
Total 1067 1170 2237

Define a RV Oij to model the observed counts for the cell in the ith

row and jth column. Note the notational difference between rows
and columns. Let the expected value for these RVs be denoted by
Eij respectively.

Observed Expected
Handedness Men Women Men Women Totals

Right O11 O12 E11 E12 n1+

Left O21 O22 E21 E22 n2+

Ambidextrous O31 O32 E31 E32 n3+

Totals n+1 n+2 n++

Under the (null) hypotheses that handedness and gender are inde-
pendent,

Pr(Left-handed ∩man) = Pr(Left-handed)× Pr(man)

and so on for each gender and each category of handedness. So, an
estimate for the number of left-handed men in the sample under this
hypothesis is just the fraction of left-handers times the fraction of
men times the sample size, or for general cell (i, j):

Eij = n++ ×
ni+
n++

× n+j

n++
= n++ × ni+ × n+j

Observed Expected
Handedness Men Women Men Women

Right 934 1070 955.9 1048.1
Left 113 92 97.8 107.2

Ambidextrous 20 8 13.4 14.6
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Then the χ2 test for independence in an I × J contingency table is
based upon the test stastistic

χ2 =
I∑
i=1

J∑
j=1

(Oij −Eij)2

Eij

which has a χ2 distribution with degrees of freedom given by (I −
1) × (J − 1) under the null hypothesis of independence. In our
example,

χ2 =

[
(934− 955.9)2

955.9
+

(1070 − 1048.1)2

1048.1
+ · · ·+ (8− 14.6)2

14.6

]
≈ 12

The critical value for this test statistic is χ2(2, 0.05) = 5.99.

H0 and H1?

Conclusion: ?

p-value: ?

x

f(
x
)

0 2 4 6 8 10

0
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