STAT 251 / OBEE 216
Winter 2003
Prof. Ivo D. Dinov
Inference for population variances and proportions and intro to categorical data
Reading: Ch. 4.4, Ch. 6
$\underline{\text { Inference for the unknown variance } \sigma^{2} \text { of a normal population }}$
A marine biologist wishes to use male angelfish for an experiment and hopes their weights don't vary much. In fact, a previous random sample of $n=16$ angelfish yielded the data below
$\left\{y_{1}, \ldots, y_{n}\right\}=$
$\{5.1,2.5,2.8,3.4,6.3,3.6,3.9,3.0,2.7,5.7,3.5,3.6,5.3,5.1,3.5,3.3\}$
Sample statistics from these data include

$$
\bar{y}=3.96 \mathrm{lbs}^{2}=1.35 \mathrm{lbs}^{2} \quad n=16
$$

Problem: obtain a $100(1-\alpha) \%$ confidence interval for $\sigma^{2}$.
Point Estimator for $\sigma^{2}$ ? How about $S^{2}$ ?
Sampling theory for $S^{2}$ ?
If a random sample $Y_{1}, \ldots, Y_{n}$ is taken from a normal population with mean $\mu$ and variance $\sigma^{2}$, then

$$
\frac{\sum\left(Y_{j}-\bar{Y}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)
$$

Critical values for the $\chi^{2}$ distribution appear in Table C. 3 on pp 813814 of Rao. These values cover distributions with up to $\nu=100$ degrees of freedom. This result can be used to obtain confidence intervals for the variance $\sigma^{2}$ of a normal population:

$$
1-\alpha=\operatorname{Pr}\left(\chi^{2}(n-1,1-\alpha / 2) \leq \frac{\sum\left(Y_{j}-\bar{Y}\right)^{2}}{\sigma^{2}} \leq \chi^{2}(n-1, \alpha / 2)\right)
$$

The term in the middle is just $(n-1) S^{2} / \sigma^{2}$. The usual algebraic rearrangement yields a confidence interval of the variance of the form

$$
\frac{(n-1) S^{2}}{\chi^{2}(n-1, \alpha / 2)} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{\chi^{2}(n-1,1-\alpha / 2)}
$$

Figure 1: Assessments of normality/sampling distribution of $(n-1) S^{2} / \sigma^{2}$ :


For the angelfish data, first we might check for obvious departures from normality: To obtain a $95 \%$ confidence interval, the appropriate critical values are

$$
\chi^{2}(15,0.025)=27.49 \text { and } \chi^{2}(15,0.975)=6.26 \text {. }
$$

This yields the interval

$$
\frac{(n-1) s^{2}}{\chi^{2}(n-1, \alpha / 2)}, \frac{(n-1) s^{2}}{\chi^{2}(n-1,1-\alpha / 2)}
$$

or

$$
\frac{(16-1) 1.35}{27.49}, \frac{(16-1) 1.35}{6.26}
$$

or

The ratio of two population variances, $\sigma_{1}^{2} / \sigma_{2}^{2}$, from independent samples
Consider two independent random samples

$$
\begin{aligned}
& Y_{1,1}, \ldots, Y_{1, n_{1}} \\
& Y_{2,1}, \ldots, Y_{2, n_{2}}
\end{aligned}
$$

from two normal populations with unknown variances $\sigma_{1}^{2}$ and $\sigma_{2}^{2}$, respectively. Questions:

- What is a good point estimator of $\sigma_{1}^{2} / \sigma_{2}^{2}$ ?
- Can this be used for a test of significance or confidence interval for $\sigma_{1}^{2} / \sigma_{2}^{2}$ ?

Sampling distributions of $S_{1}^{2}$ and $S_{2}^{2}$ from normal populations

## Suppose we compare air pollution in homes of smokers and

 non-smokers. The common variances procedure was ruled out because of the large difference in sample variances:$$
\begin{array}{ll}
S_{1}^{2}=26.0 & \left(\mathrm{n}_{1}=11\right) \text { smokers } \\
S_{2}^{2}=195.4 & \left(\mathrm{n}_{2}=9\right) \quad \mathrm{n} \text { o } \mathrm{n}-\mathrm{s} \text { m o k er s }
\end{array}
$$

Suppose we want to formally test the hypothesis that the population variances are equal. Consider a test of the form

$$
H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad \text { vs. } \quad H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

which can also be written

$$
H_{0}: \theta=\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=1 \quad \text { vs. } \quad H_{1}: \theta=\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \neq 1 .
$$

How about

$$
\hat{\theta}=\frac{S_{1}^{2}}{S_{2}^{2}} ?
$$

Where
$S_{1}^{2}$ is the sample variance from $Y_{1,1}, \ldots, Y_{1, n_{1}}$ and $S_{2}^{2}$ is the sample variance from $Y_{2,1}, \ldots, Y_{1, n_{2}}$ :

$$
\begin{aligned}
S_{1}^{2} & =\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(Y_{1, i}-\bar{Y}_{1}\right)^{2} \\
S_{2}^{2} & =\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(Y_{2, i}-\bar{Y}_{2}\right)^{2}
\end{aligned}
$$

( $\hat{\theta}$ is sometimes called an $F$-ratio.)

Stat 251 / OBEE 216

To test $H_{0}$, the hypothesis of equality population variances, we use the following result:

$$
\frac{\hat{\theta}}{\theta} \sim F_{n_{1}-1, n_{2}-1}
$$

which can also be written

$$
\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1}
$$

This yields a probability statement of the form

$$
\begin{equation*}
1-\alpha=\operatorname{Pr}\left(\left.F\left(n_{1}-1, n_{2}-1,1-\alpha / 2\right) \leq \frac{S_{1}^{2}}{S_{2}^{2}} \frac{1}{\theta} \leq F\left(n_{1}-1, n_{2}-1, \alpha / 2\right) \right\rvert\, H_{0} \text { is true }\right) \tag{1}
\end{equation*}
$$

Values of the F-ratio which are far from one constitute evidence against the null hypothesis. Formally, the critical region with level $\alpha$ calls for rejection of $H_{0}$ whenever

$$
\hat{\theta}<F_{n_{1}-1, n_{2}-1}(1-\alpha / 2) \quad \text { or } \quad \hat{\theta}>F_{n_{1}-1, n_{2}-1}(\alpha / 2) .
$$

Manipulation of (1) leads to the following $100(1-\alpha) \%$ confidence interval for $\theta=\sigma_{1}^{2} / \sigma_{2}^{2}$ :

$$
\left(\frac{S_{1}^{2}}{S_{2}^{2}} \frac{1}{F\left(n_{1}-1, n_{2}-1, \alpha / 2\right)}, \quad \frac{S_{1}^{2}}{S_{2}^{2}} \frac{1}{F\left(n_{1}-1, n_{2}-1,1-\alpha / 2\right)}\right)
$$

For a $95 \%$ confidence interval for $\sigma_{1}^{2} / \sigma_{2}^{2}$ in the smoking data, we need

$$
F(10 ; 8 ; 0.975)=0.259 ; \quad F(10 ; 8 ; 0.025)=4.295
$$

which yields the interval

$$
\left(\frac{26.0}{195.4 \times 4.295}, \quad \frac{26.0}{195.4 \times 0.259}\right)
$$

or
(0.031; 0.512)
which clearly doesn't contain 1 , so that $\mathbf{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ is rejected at level $\alpha=0.05$.

The $p$-value for such a test can be obtained from the $F$ distribution and the observed test statistic:

$$
F_{o b s}=\hat{\theta}_{o b s}=26 / 195.4=0.133
$$

However, recall that Table C. 4 only gives upper critical values.

Therefore, to obtain a $p$-value, take as the test statistic

$$
\max \{\hat{\theta}, 1 / \hat{\theta}\}
$$

and multiply the right-tail probability from the $F$-distribution by 2 . Use the following numerator $\left(d f_{1}\right)$ and denominator $\left(d f_{2}\right)$ degrees of freedom:

$$
\begin{aligned}
d f_{1} & =d f \text { from bigger of }\left\{s_{1}^{2}, s_{2}^{2}\right\} \\
d f_{2} & =d f \text { from smaller of }\left\{s_{1}^{2}, s_{2}^{2}\right\}
\end{aligned}
$$

The observed test statistic becomes

$$
F_{o b s}=1 / \hat{\theta}=\frac{s_{2}^{2}}{s_{1}^{2}}=\frac{195.4}{26.0}=7.53
$$

and since

$$
F(8,10,0.01)=5.057
$$

the area to the right of $F_{o b s}=7.53$ under the $F_{8,10}$ distribution is less than 0.01 , which corresponds to a two-sided $p$-value less than 0.02 . Note that the degrees of freedom must be switched when $S_{2}^{2}>S_{1}^{2}$.

```
options ls=75 nodate;
data one;
    infile "datasets/smokers.dat";
    input y smoke;
    label y="suspended particulate matter";
run;
proc ttest;
    class smoke;
    var y;
run;
```



Large sample interval estimation for a population proportion Out of a random sample of $n=330$ triathletes, 167 indicated that they had suffered a training-related injury during the past year. Using these data, give a point estimate, standard error and confidence interval for
$p$ : the proportion among ALL triathletes who suffered an injury

Let

$$
\hat{p}:=\text { sample proportion of injured triathletes }
$$

We know from the CLT for proportions that the sampling distribution of $\hat{p}$ is approximately normal. This yields the following approximate probability statement:

$$
\begin{aligned}
0.95 \approx & \operatorname{Pr}\left(-1.96<\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}<1.96\right) \\
& \vdots \\
= & \operatorname{Pr}(\hat{p}-1.96 \sqrt{p(1-p) / n}<p<\hat{p}+1.96 \sqrt{p(1-p) / n}) \\
\approx & \operatorname{Pr}\left(\hat{p}-1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}<p<\hat{p}+1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)
\end{aligned}
$$

The endpoints for a $95 \%$ confidence interval for an unknown population proportion $p$ based on a random sample of size $n$ with sample proportion $\hat{p}$ are then given by

$$
\hat{p}-1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \text { and } \hat{p}+1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

which is commonly written

$$
\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} .
$$

For the triathlete data, a $95 \%$ confidence interval for $p$ based on the sample proportion of $\hat{p}=167 / 330=0.506$ is given by

$$
\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

or

$$
0.506 \pm 1.96(0.028)
$$

or

$$
0.506 \pm 0.053
$$

$\underline{\text { Sample size computations for confidence intervals }}$
Case 2: Estimation of a population proportion $p$.
The sample size necessary to obtain a $95 \%$ confidence interval of the form

$$
\hat{p} \pm B
$$

for an unknown population proportion $p$ based on a random sample can be solved for similarly, yielding the equation

$$
\begin{equation*}
n=\left(\frac{1.96 \sqrt{\hat{p}(1-\hat{p})}}{B}\right)^{2} \tag{2}
\end{equation*}
$$

Upon inspection of (2), it can be seen that the term on the right is bounded above by

$$
\left(\frac{1.96}{B}\right)^{2} *(1 / 4)
$$

so that a conservative sample size, which will ensure a $95 \%$ confidence interval of length $2^{*} \mathrm{~B}$ is given by

$$
n=\left(\frac{1.96}{B}\right)^{2} *(1 / 4)
$$

Exercise: Suppose you want to estimate the proportion $p$ of trees that will survive to a certain lifetime under some treatment of interest. In particular, you'd like a $95 \%$ confidence interval of the form

$$
\hat{p} \pm 0.02
$$

How large does your sample size $n$ need to be ...

- without knowing anything about $p$ ?
- with the knowledge that the least $p$ could reasonably be is $p=0.9$ ?
$\underline{\text { Testing with dichotomous data }}$
Example: There is a theory that the anticipation of a birthday can prolong a person's life. In a study, it was found that only $x=$ 60 out of a random sample of $n=747$ people whose obituaries were published in Salt Lake City in 1975 died in the three-month period preceding their birthday (Newsweek, 1978). Let $p$ denote the proportion of all deaths which fall in the three-month period preceding a birthday. Consider the following test

$$
H_{0}: p=0.25\left(=p_{0}\right) \quad \text { vs } \quad H_{1}: p<0.25
$$

The test statistic for this problem takes the usual form

$$
Z=\frac{\mathrm{est}-\text { null }}{\mathrm{SE}(\mathrm{est})}=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / 747}}
$$

Note that the standard error term in the denominator does not need to be estimated (by $\hat{p}$ ) since it is specified under $H_{0}$. The left-tailed test with level $\alpha$ rejects $H_{0}$ if $Z<-z(\alpha)$. Similarly for right-tailed and two-tailed tests:

$$
\begin{array}{cc}
\text { Alternative } & \text { Critical region } \\
H_{1}: p<p_{0} & Z<-z(\alpha) \\
H_{1}: p>p_{0} & Z>z(\alpha) \\
H_{1}: p \neq p_{0} & |Z|>z(\alpha / 2)
\end{array}
$$

For the Newsweek obituary data,

$$
z_{o b s}=\frac{60 / 747-0.25}{\sqrt{0.25(1-0.25) / 747}}=\frac{0.08-0.25}{0.0099}=-17
$$

So we reject $H_{0}$ with a $p$-value less than 0.001 .
$\underline{\text { Some "categorical" datasets: }}$
Dataset \#1: Tomato plants.

| Phenotype | Frequency |
| :---: | :---: |
| Tall, cut | 926 |
| Tall, potato | 288 |
| Dwarf, cut | 293 |
| Dwarf, potato | 104 |

Dataset \#2: Yeast cells
The distribution of yeast cells observed over $n=400$ squares of a haemacytometer:

| $y$ | 0 | 1 | 2 | 3 | 4 | 5 | $\geq 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(y)$ | 213 | 128 | 37 | 18 | 3 | 1 | 0 |

Dataset \#3: Colds among skiers taking vitamin C and placebo

|  | Cold | No Cold | Total |
| :---: | :---: | :---: | :---: |
| Placebo | 31 | 109 | 140 |
| Vitamin C | 17 | 122 | 139 |

Dataset \#4: Presidential candidates

|  |  | after debate |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | G | B |  |
| before | G | 63 | 21 | 84 |
| debate | B | 4 | 12 | 16 |

Dataset \#5: Handedness and gender

| Handedness | Men | Women | Total |
| :---: | :---: | :---: | :---: |
| Right | 934 | 1070 | 2004 |
| Left | 113 | 92 | 205 |
| Ambidextrous | 20 | 8 | 28 |
| Total | 1067 | 1170 | 2237 |

The multinomial probability distribution
The multinomial distribution is a generalization of the binomial distribution arising from independent, identically distributed trials, each of which can be categorized as one and only one of $C \geq 2$ possible categories, with probabilities $\pi_{1}, \pi_{2}, \ldots, \pi_{C}$. If $n$ such i.i.d. trials are observed, each with probabilities $\left(\pi_{1}, \ldots, \pi_{C}\right)$ then the probability of obtaining exactly

- $y_{1}$ trials categorized as type 1
- $y_{2}$ trials categorized as type 2
- !
- $y_{C}$ trials categorized as type C
is given by

$$
\frac{n!}{y_{1}!y_{2}!\times \cdots \times y_{C}!} \pi_{1}^{y_{1}} \pi_{2}^{y_{2}} \times \cdots \times \pi_{C}^{y_{C}}
$$

For example, if tomato plants are grown in such a way that they are classified as one of the four phenotypes in Dataset \#1 with probabilities

$$
\pi_{1}=0.56, \quad \pi_{2}=0.19, \quad \pi_{3}=0.19, \quad \pi_{4}=0.063
$$

and $n=10$ plants are grown, then the chance of getting, say exactly

$$
\begin{array}{lc}
y_{1}=5 & \text { Tall,cut } \\
y_{2}=2 & \text { Tall,potato } \\
y_{3}=2 & \text { Dwarf/cut } \\
y_{4}=1 & \text { Dwarf/potato }
\end{array}
$$

is given by

$$
\frac{10!}{5!2!2!1!} 0.56^{5} 0.19^{2} 0.19^{2} 0.063^{1}=0.033
$$

Note: Results for the multinomial distribution underlie many of the techniques for categorical data analysis we'll study.

## The $\chi^{2}$ goodness-of-fit tests for categorical data with completely specified cell probabilities

The $\chi^{2}$ goodness-of-fit test can be used for inference about these $C-1$ parameters. (Since $\pi_{1}+\pi_{2}+\cdots+\ldots \pi_{C}=1$ there are really only $C-1$ parameters.) In particular, it can be used to test hypotheses of the form

$$
H_{0}: \pi_{1}=\pi_{10}, \pi_{2}=\pi_{20}, \ldots, \pi_{C}=\pi_{C 0}
$$

versus

$$
H_{1}: \pi_{j} \neq \pi_{j 0} \text { for at least one } j
$$

Suppose that $n$ i.i.d. trials are observed, each with probability of being classified (uniquely) as category $j$ given by $\pi_{j}$. Let the RV representing the number of trials classified as category $j$ be denoted by $O_{j}$ :

$$
O_{j}=\# \text { trials classified as type } j
$$

Using properties of this multinomial distribution, it can be shown that when $H_{0}$ holds, the $\chi^{2}$ test statistic below has (approximately) the $\chi^{2}$ distribution with $C-1$ degrees of freedom:

$$
\chi^{2}=\sum_{j=1}^{j=C} \frac{\left(O_{j}-n \pi_{j 0}\right)^{2}}{n \pi_{j 0}}
$$

This test statistic is a bit easier to remember in the following form

$$
\chi^{2}=\sum_{j=1}^{j=C} \frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}
$$

where $O_{j}$ denotes the observed count in the $j^{\text {th }}$ category and $E_{j}$ is the expected count under $H_{0}$ :

$$
E_{j}=E\left(O_{j} ; H_{0}\right)=n \pi_{j 0}
$$

A critical region for $\chi^{2}$ is the set of values bigger than $\chi^{2}(C-1, \alpha)$. That is,

$$
\text { reject } H_{0} \text { if } \chi^{2} \geq \chi^{2}(C-1, \alpha) .
$$

The $p$-value is just the area to the right of the observed value of the test statistic under the $\chi^{2}$ curve with $C-1$ degrees of freedom.

Example: Two traits that have been widely studied in tomato plants are height ("tall" vs "dwarf") and leaf type ("cut" vs "potato"). "Tall" and "cut" are dominant. When a homozygous "tall,cut" is crossed with a "dwarf,potato" the resulting progeny is called a dihybrid. When dihybrids are crossed, the following proportions of phenotypes should appear in the offspring provided the alleles governing the two traits segregate independently (this is a $9: 3: 3: 1$ ratio:)

| Phenotype | Relative Frequency |
| :---: | :---: |
| Tall, cut | 0.5625 |
| Tall, potato | 0.1875 |
| Dwarf, cut | 0.1875 |
| Dwarf, potato | 0.0625 |

In one experiment done with these two traits a total of 1611 progeny of dihybrid crosses were categorized by phenotype. The data are summarized in the table below:

| Phenotype | Frequency |
| :---: | :---: |
| Tall, cut | 926 |
| Tall, potato | 288 |
| Dwarf, cut | 293 |
| Dwarf, potato | 104 |

Specify the null and alternative hypothesis for this experiment:

$$
\begin{aligned}
& H_{0}: ? \\
& H_{1}: ?
\end{aligned}
$$

How about

$$
H_{0}: \pi_{1}=0.5625, \pi_{2}=0.1875, \pi_{3}=0.1875, \pi_{4}=0.0625
$$

vs

$$
H_{1}: \text { at least one } \pi_{j} \neq \pi_{j 0} ?
$$

To test these hypotheses, the $\chi^{2}$ test statistic becomes

$$
\begin{aligned}
\chi^{2} & =\sum_{1}^{4} \frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}} \\
& =\frac{(926-906.2)^{2}}{906.2}+\frac{(288-302.1 .2)^{2}}{302.1}+\frac{(293-302.1)^{2}}{302.1906}+\frac{(104-100.7)^{2}}{100.7} \\
& =1.47
\end{aligned}
$$

Is this statistically significant?
The distributional result on page 1 implies that when $H_{0}$ holds, the test statistic should have a $\chi^{2}$ sampling distribution with $4-1=3$ degrees of freedom. The $95^{\text {th }}$ percentile for this distribution, found in Rao, is given by

$$
\chi^{2}(0.05,3)=7.8147
$$

The observed test statistic is therefore not statistically significant using $\alpha=0.05$. The $p$-value, obtained using statistical software is given by

$$
p-\text { value }=\operatorname{Pr}\left(\chi^{2} \geq 1.47 ; H_{0}\right)=0.69
$$

Conclusion?
$\underline{\text { Rule of thumb to check validity of } \chi^{2} \text { approximation }}$

- at least $75 \%$ of the cells have $E_{j} \geq 5$ (Expected counts are not too small) AND
- no Expected 0's ( $\mathrm{E}_{j} \neq 0$ )

Another test for categorical data: partially specified probabilities
Often, the category probability parameters are not completely specified, but rather are specified up to some unknown parameter. Examples include fitting a well-known discrete probability model, such as the poisson or binomial models to data, or making a continuous model into a discrete model by grouping observations in bins.

Example: a poisson probability model. The distribution of yeast cells observed over $n=400$ squares of a haemacytometer is given below:

| $y$ | 0 | 1 | 2 | 3 | 4 | 5 | $\geq 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(y)$ | 213 | 128 | 37 | 18 | 3 | 1 | 0 |

To test the hypothesis that these data are a random sample from a Poisson distribution, we could write

$$
\begin{gathered}
H_{0}: \operatorname{Pr}(y \text { yeast cells in a square })=e^{-\lambda} \lambda^{y} / y!\text { for } y=0,1,2, \ldots \\
H_{1}: \operatorname{Pr}(y \text { yeast cells in a square }) \neq e^{-\lambda} \lambda^{y} / y!\text { for for some } y
\end{gathered}
$$

however, there would be many zeroes and many small cell counts, so we can bin the data a bit differently to avoid this problem.

| Category $j$ | $j=1$ | $j=2$ | $j=3$ | $j=4$ | $j=5$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 1 | 2 | 3 | $\geq 4$ |
| $f(y)$ | 213 | 128 | 37 | 18 | 4 |

Then we can test

$$
\begin{array}{cc}
H_{0}: & \pi_{1}=e^{-\lambda}, \\
& \pi_{2}=e^{-\lambda} \lambda, \\
& \pi_{3}=e^{-\lambda} \lambda^{2} / 2!, \\
& \pi_{4}=e^{-\lambda} \lambda^{3} / 3! \\
& \pi_{5}=1-\sum_{1}^{4} \pi_{j}
\end{array}
$$

$H_{1}$ : any other probabilities
only we don't know $\lambda$ and must estimate it from the data. This is what is meant by partially specified probabilities. The resulting test statistic below has an approximate $\chi^{2}$ distribution with $C-1-p$ degrees of freedom where $C$ denotes the number of categories or bins and $p$ denotes the number of parameters used to specify the category probabilities. For the poisson model, $p=1$.
(For a normal model, where $\mu$ and $\sigma$ must be estimated by $\bar{Y}$ and $S$, the number of parameters would be $p=2$.)

The mean of the sample, $\bar{Y}$ can be used to estimate $\lambda$, the mean of the poisson distribution:

$$
\hat{\lambda}=\bar{y}=\frac{\sum y_{j}}{n}=\frac{273}{400}=0.6825 .
$$

Substituting $\hat{\lambda}$ into the poisson model for the category probabilities yields the following expected cell counts:

| $y$ | 0 | 1 | 2 | 3 | $\geq 4$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $j$ | 1 | 2 | 3 | 4 | 5 |
| $O_{j}$ | 213 | 128 | 37 | 18 | 4 |
| $\hat{\pi}_{j}$ | 0.505 | 0.345 | 0.118 | 0.028 | 0.005 |
| $E_{j}$ | 202.1 | 138.0 | 47.1 | 10.7 | 2.1 |

The $j=3$ cell probability $\hat{\pi}_{3}$, for example, comes from

$$
\hat{\pi}_{3}=\frac{e^{-\hat{\lambda}} \hat{\lambda}^{2}}{2!}=0.118
$$

and the expected cell counts are just

$$
E_{j}=n \hat{\pi}_{j} \text { for } j=1, \ldots, 5
$$

The $\alpha=0.05$ critical value for the $\chi^{2}$ test statistic can be obtained from the $\chi^{2}$ distribution with $C-1-p=3$ degrees of freedom from Table C.3, (p. 814) of Rao:

$$
\chi^{2}(3,0.05)=7.8147
$$

The observed value of the test statistic is

$$
\chi^{2}=\sum \frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}=\frac{(213-202.1)^{2}}{202.1}+\cdots+\frac{(4-2.1)^{2}}{2.1}=10.12
$$

Q: Does the test statistic fall in the $\alpha=0.05$ critical region?
Q: Do the poisson model fit these data?
Q: What is the $p$-value for the test statistic $\chi^{2}$ under $H_{0}$ ?

$$
\chi^{2}(3,0.025)=9.3 \text { and } \chi^{2}(3,0.01)=11.3
$$

Large sample comparison of population proportions, $\pi_{1}, \pi_{2}$ based on independent random samples

Example: In a review of the evidence regarding the therapeutic value of vitamin C for prevention of the common cold, Pauling (1971) describes a 1961 French study involving 279 skiers during two periods of 5-7 days. One group of 140 subjects received a placebo while the remaining 139 received 1 gram of vitamin C per day. Of interest is the relative occurrence of colds for the two groups. The data are shown below. Let $p_{1}$ denote the proportion among a population of people who take the treatment who would catch a cold. Let $p_{2}$ denote the proportion among a population of people who take the placebo who would catch a cold.

|  | Cold | No Cold | Total |
| :---: | :---: | :---: | :---: |
| Placebo | 31 | 109 | 140 |
| Vitamin C | 17 | 122 | 139 |

1. Formulate a test of hypotheses to investigate whether or not the catching of colds differs by vitamin C intake.
2. Calculate the $p$-value for your test from these data. If you use an approximation to obtain this $p$-value, verify that it is appropriate.
3. Obtain a $95 \%$ confidence interval for the quantity $p_{1}-p_{2}$.
4. Let $q_{1}$ be defined by $q_{1}=1-p_{1}$. Suppose that you are particularly interested in the quantity $\theta=q_{1}-p_{1}$. Propose a point estimator of this quantity.
5. Construct a $95 \%$ confidence interval for $\theta$.

We've seen from the CLT for proportions that if $\hat{p}_{1}$ denotes a sample proportion (of some 0-1 trait of interest) from a random sample of size $n_{1}$ taken from a population with proportion $p_{1}$ then (approximately)

$$
\frac{\hat{p}_{1}-p_{1}}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}}} \sim N(0,1)
$$

Similarly, if another sample proportion $\hat{p}_{2}$ is obtained from a random sample of size $n_{2}$ taken independently from another population with proportion $p_{2}$, then (approximately)

$$
\frac{\hat{p}_{2}-p_{2}}{\sqrt{\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}} \sim N(0,1)
$$

We also know that a sum or difference of two independent, normally distributed random variables also has a normal distribution. This implies that

$$
\frac{\hat{p}_{1}-\hat{p}_{2}-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}} \sim N(0,1)
$$

The following probability statement is a consequence of this normality:

$$
1-\alpha \approx \operatorname{Pr}\left(-z(\alpha / 2) \leq \frac{\hat{p}_{1}-\hat{p}_{2}-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}} \leq z(\alpha / 2)\right)
$$

The usual rearrangement yields a $95 \%$ confidence interval for $p_{1}-p_{2}$ of the form

$$
\hat{p}_{1}-\hat{p}_{2} \pm z(\alpha / 2) \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

For tests like $H_{0}: p_{1}-p_{2}=D_{0}$ versus $H_{1}: p_{1}-p_{2} \neq D_{0}$, the following test statistic can be used:

$$
Z_{1}=\frac{\hat{p}_{1}-\hat{p}_{2}-D_{0}}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}}
$$

For the (most common) case where $D_{0}=0$ is of interest, a better test is one based on the statistic

$$
Z_{2}=\frac{\hat{p}_{1}-\hat{p}_{2}-D_{0}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

where

$$
\hat{p}=\frac{n_{1}}{n_{1}+n_{2}} \hat{p}_{1}+\frac{n_{2}}{n_{1}+n_{2}} \hat{p}_{2} .
$$

Critical regions for one-sided and two-sided alternatives are formed in the usual manner. It can be shown that $Z^{2}$ and the $\chi^{2}$ statistic for independence in a $2 \times 2$ table are the same (see pp. 20-21.)

Stat 251 / OBEE 216

For the vitamin C data, a $95 \%$ confidence interval for $p_{p}-p_{C}$ is given by $(0.004,0.194)$. The 2 nd test statistic works out to $z_{o b s}=2.19$ and a two-sided $p$-value of 0.0283 :

```
data one;
    input cold trt $ frq;
    cards;
    1 p 31
    p p }10
    1 C 17
    O C 122
;
run;
proc freq;
    weight frq;
    tables cold*trt/chisq;
run;
```

The SAS System TABLE OF TRT BY COLD
TRT COLD


STATISTICS FOR TABLE OF TRT BY COLD

| Statistic |  | DF | Value | Prob |
| :---: | :---: | :---: | :---: | :---: |
| Chi-Square |  | 1 | 4.811 | 0.028 |
| Fisher's Exact Test | (Left) |  |  | 0.991 |
|  | (Right) |  |  | 0.021 |
|  | (2-Tail) |  |  | 0.038 |

McNemar's test for significance of changes
McNemar's test can be used to test for a difference of proportions in paired categorical data. That is, two 0-1 measurements are made on each experimental unit. Consider hypothetical data representing preferences among democratic voters for a presidential candidate, $G$ or $B$, before and after a debate. Here, there are two measurements made on each experimental unit (democratic voters).

|  |  | after debate |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | G | B |  |
| before | G | $a=63$ | $b=21$ | $N_{1}=84$ |
| debate | B | $c=4$ | $d=12$ | $N_{2}=16$ |
| Total |  | $M_{1}=67$ | $M_{2}=33$ | $N=100$ |

The difference in the proportion of people who support Gore before $\left(\pi_{1}\right)$ and after $\left(\pi_{2}\right)$ the debate, $\theta=\pi_{1}-\pi_{2}$ can be estimated using

$$
\hat{\theta}=\hat{\pi}_{1}-\hat{\pi_{2}}=\frac{N_{1}}{N}-\frac{M_{1}}{N}
$$

For these data, this works out to

$$
\hat{\theta}=\frac{84}{100}-\frac{67}{100}=\frac{63+21-(63+4)}{100}=\frac{21-4}{100}
$$

In general $(a, b, c, d)$ this estimator works out to

$$
\hat{\theta}=\frac{b-c}{N}
$$

It can be shown that the standard error can be estimated by of $\hat{\theta}$ is given by

$$
S E(\hat{\theta})=\frac{\sqrt{b+c}}{N}
$$

yielding a test statistic for $H_{0}: \pi_{1}-\pi_{2}=\theta_{0}$ of the form

$$
Z=\frac{\hat{\theta}-\theta_{0}}{S E(\hat{\theta})}
$$

When $\theta_{0}=0$, this becomes

$$
Z=\frac{b-c}{\sqrt{b+c}} .
$$

In large samples, $Z \sim N(0,1)$ and confidence intervals and tests can be constructed as usual.

For these hypothetical data, the test statistic becomes

$$
Z_{o b s}=\frac{21-4}{\sqrt{21+4}}=3.4
$$

which differs significantly from 0 , indicating that Bush won the debate.
$\underline{\chi^{2} \text { test for independence }}$
The $\chi^{2}$ test for independence can be used to detect independence among two categorical variables.

Example: A random sample of $n_{++}=2237$ adults was conducted and there gender and handedness were observed and are tabulated below:

| Handedness | Men | Women | Total |
| :---: | :---: | :---: | :---: |
| Right | 934 | 1070 | 2004 |
| Left | 113 | 92 | 205 |
| Ambidextrous | 20 | 8 | 28 |
| Total | 1067 | 1170 | 2237 |

Define a RV $O_{i j}$ to model the observed counts for the cell in the $i^{t h}$ row and $j^{\text {th }}$ column. Note the notational difference between rows and columns. Let the expected value for these RVs be denoted by $E_{i j}$ respectively.

|  | Observed |  | Expected |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Handedness | Men | Women | Men | Women | Totals |
| Right | $O_{11}$ | $O_{12}$ | $E_{11}$ | $E_{12}$ | $n_{1+}$ |
| Left | $O_{21}$ | $O_{22}$ | $E_{21}$ | $E_{22}$ | $n_{2+}$ |
| Ambidextrous | $O_{31}$ | $O_{32}$ | $E_{31}$ | $E_{32}$ | $n_{3+}$ |
| Totals | $n_{+1}$ | $n_{+2}$ |  |  | $n_{++}$ |

Under the (null) hypotheses that handedness and gender are independent,

$$
\operatorname{Pr}(\text { Left-handed } \cap \operatorname{man})=\operatorname{Pr}(\text { Left-handed }) \times \operatorname{Pr}(\operatorname{man})
$$

and so on for each gender and each category of handedness. So, an estimate for the number of left-handed men in the sample under this hypothesis is just the fraction of left-handers times the fraction of men times the sample size, or for general cell $(i, j)$ :

$$
E_{i j}=n_{++} \times \frac{n_{i+}}{n_{++}} \times \frac{n_{+j}}{n_{++}}=n_{++} \times n_{i+} \times n_{+j}
$$

|  | Observed |  | Expected |  |
| :---: | :---: | :---: | :---: | :---: |
| Handedness | Men | Women | Men | Women |
| Right | 934 | 1070 | 955.9 | 1048.1 |
| Left | 113 | 92 | 97.8 | 107.2 |
| Ambidextrous | 20 | 8 | 13.4 | 14.6 |

Then the $\chi^{2}$ test for independence in an $I \times J$ contingency table is based upon the test stastistic

$$
\chi^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

which has a $\chi^{2}$ distribution with degrees of freedom given by $(I-$ 1) $\times(J-1)$ under the null hypothesis of independence. In our example,
$\chi^{2}=\left[\frac{(934-955.9)^{2}}{955.9}+\frac{(1070-1048.1)^{2}}{1048.1}+\cdots+\frac{(8-14.6)^{2}}{14.6}\right] \approx 12$
The critical value for this test statistic is $\chi^{2}(2,0.05)=5.99$.
$H_{0}$ and $H_{1}$ ?
Conclusion: ?
$p$-value: ?


