

		Co	rrela	tion (Coeffi	cient	
Exampl	e: R(2	(X,Y)	$=\frac{1}{N}$	$\frac{1}{r-1} k$	$\sum_{i=1}^{V} \left(\frac{x_i}{2}\right)$	$\left(\frac{-\mu}{\sigma}\right)\left(\frac{y_{t}}{s}\right)$	$\frac{-\mu}{\sigma}$
Student	Height ' ^X i	Weight Yi	Xj - X	¥1 – Y	(4- ₹) ²	(y₁-y) ²	(x _i - X)(y _i - Y)
1	167	60	6	4.67	36	21.6069	28.02
2	170	64	9	8.67	81	75.1689	78.03
Э	160	57	-1	1.67	1	2.7869	-1.67
4	152	46	-8	-0.33	81	87.0489	83.97
6	157	55	-4	-0.33	16	0.1089	1.32
6	160	50	-1	-6.39	1	28.4089	5.33
Tatəri	98 6	332	0	#0	216	215.3334	195.0
				Slide	- 4	STAT 251, UCLA	Ivo Dinov

Example:

$$R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_{k} - \mu}{\sigma} \right) \left(\frac{y_{k} - \mu}{\sigma} \right)$$

$$\mu_{x} = \frac{966}{6} = 161 \text{ cm}, \quad \mu_{y} = \frac{332}{6} = 55 \text{ kg},$$

$$\sigma_{x} = \sqrt{\frac{216}{5}} = 6.573, \quad \sigma_{y} = \sqrt{\frac{215.3}{5}} = 6.563,$$

$$Corr(X,Y) = R(X,Y) = 0.904$$

The least squares line
Least-squares line: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
$\boldsymbol{\beta}_{1} = \frac{\sum_{i=1}^{n} \left[(x_{i} - \overline{x})(y_{i} - \overline{y}) \right]}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}; \boldsymbol{\beta}_{0} = \overline{y} - \boldsymbol{\beta}_{1} \overline{x}$
Slide 14 STAT 251, UCIA, Ivo Dinov

	Ex	xample – Method/Hemi/Tissue/Value
1	. C:\Ivo.di	r\Research\Data.dir\WM_GM_CSF_tissueMaps.dir
2	. SYSTA	T: \rightarrow regression Value = $c_0 + c_1M + c_2H + c_3T$
3	. Results	:
E	ffect	Coefficient SE t P(2 Tail)
C	ONSTANT	1.02231E+05 9087 11.24911 0.00000
м	ETHOD	-3703.77667 3635 -1.01887 0.31038 <u>← Insignif</u>
т	ISSUE -	22623.47875 2226 -1.01E01 0.00000
н	EMISPH -	2.13667 3635 -0.00059 0.99953
1 -	ffect	Coeff. Lower < 95%> Upper
-	ONSTANT	1.02231E+05 84231.33157 1.20231E+05
	ETHOD	-3703.77667 -10903.69304 3496.13971
T	ISSUE	-22623.47875 -27032.50908 -18214.44842
н	EMISPH	-2.13667 -7202.05304 7197.77971
		Slide 17 STAT 251, UCLA, Ivo Dinov

]	Exa	mp	le
listed amour and th bathro	selling nt of liv e numb	price ing a er o , for	e y (area of flo n =	(in the formula x_1 (formula x_1 (formula x_1 (formula x_1), $x_1 = 15 r$	nousa in hu x ₂ , b	Il community contains the ands of dollars), the undreds of square feet), edrooms x_3 , and omly selected residences
Property	у	x ₁	x ₂	x3	x4	Fit a first order
1	69.0	6	1	2	1	model to the data
2	118.5	10	1	2	2	using the method
3	116.5	10	1	3	2	of least squares.
15	209.9	21	2	4	3	

E fit usin four i	$(y) = \beta_0$ g <i>Splus</i> independent	Example der model is $_{0}+\beta_{1}x_{1}+\beta_{2}x_{2}+\beta_{3}x_{3}+\beta_{4}x_{4}$ s with the values of y and the ndent variables entered into s of the output Regression equation
The regression	on equation	ce versus SqFeet NumFirs, Bdrms, Baths is SqFeet - 16.2 NumFirs - 2.67 Bdrms + 30.3 Baths
Predictor Constant SqFeet NumFlrs Bdrms Baths	Coef 18.763 6.2698 -16.203 -2.673 30.271	SE Coef T P 9.207 2.04 0.069 0.7252 8.65 0.000 Partial regression 5.655 coefficients 0.001

 Is a particular independent variable useful in the model, *in the presence of all the other independent* variables? The test statistic is function of b_i, our best estimate of β_i.

• Enter the appropriate values of $x_1, x_2, ..., x_k$ in SoftPackage to calculate

 $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$

- and both the confidence interval and the prediction interval.
- Particular values of y are more difficult to predict, requiring a wider range of values in the prediction interval.

Using Regression Models

- When you perform multiple regression analysis, use a stepby step approach:
- 1. Obtain the fitted prediction model.
- 2. Use the analysis of variance F test and R^2 to determine how well the model fits the data.
- 3. Check the *t* tests for the partial regression coefficients to see which ones are contributing significant information in the presence of the others.
- 4. If you choose to compare several different models, use $R^{2}(adj)$ to compare their effectiveness.
- 5. Use diagnostic plots to check for violation of the regression assumptions.

		Examp	ole	
profess along v gender	sors. The with year	researchers s of experier to the mode	recorded the formula (x_1) . T	heir salaries he professor
= 1 if r	nale; 0 if	not.		-
= 1 if r Professor	nale; 0 if	Experience, x1	Gender, x ₂	Interaction, x ₁ x ₂
		<u>, , , , , , , , , , , , , , , , , , , </u>	Gender, x ₂	Interaction, x ₁ x ₂
	Salary, y	<u>, , , , , , , , , , , , , , , , , , , </u>	Gender, x2 1 0	Interaction, x_1x_2 1 0
Professor 1	Salary, y \$50,710	<u>, , , , , , , , , , , , , , , , , , , </u>	1	1
Professor 1	Salary, y \$50,710	<u>, , , , , , , , , , , , , , , , , , , </u>	1	0

Important Points

- Causality: Be careful not to deduce a causal relationship between a response y and a variable x.
- Multi-collinearity: Neither the size of a regression coefficient nor its *t*-value indicates the importance of the variable as a contributor of information. This may be because two or more of the predictor variables are highly correlated with one another; this is called multi-collinearity.

Multicollinearity

- Multicollinearity can have these effects on the analysis:
 - The estimated regression coefficients will have large standard errors, causing imprecision in confidence and prediction intervals.
 - Adding or deleting a predictor variable may cause significant changes in the values of the other regression coefficients.

Multicollinearity

- How can you tell whether a regression analysis exhibits multicollinearity?
 - \checkmark The value of R^2 is large, indicating a good fit, but the individual *t*-tests are nonsignificant.
 - The signs of the regression coefficients are contrary to what you would intuitively expect the contributions of those variables to be.
 - A matrix of correlations, generated by the computer, shows you which predictor variables are highly correlated with each other and with the response y.

I. The General Linear Model

1. $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$

2. The random error ε has a normal distribution with mean 0 and variance σ^2 .

II. Method of Least Squares

1. Estimates $b_0, b_1, ..., b_k$ for $\beta_0, \beta_1, ..., \beta_k$, are chosen to minimize SSE, the sum of squared deviations about the regression line $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$. 2. Least-squares estimates are produced by computer.

Basic Concepts

5. Confidence intervals can be generated by computer to estimate the average value of y, E(y), for given values of $x_1, x_2, ..., x_k$. Computergenerated prediction intervals can be used to predict a particular observation y for given value of $x_1, x_2, ..., x_k$. For given $x_1, x_2, ..., x_k$, prediction intervals are always wider than confidence intervals.

Basic Concepts – Model Building

- 1. The number of terms in a regression model cannot exceed the number of observations in the data set and should be considerably less!
- To account for a curvilinear effect in a quantitative variable, use a second-order polynomial model. For a cubic effect, use a thirdorder polynomial model.
- 3. To add a **qualitative** variable with k categories, use (k 1) dummy or indicator variables.
- There may be interactions between two qualitative variables or between a quantitative and a qualitative variable. Interaction terms are entered as βx_rx_r.

69

5. Compare models using $R^2(adj)$.