## UCLA STAT 251

Statistical Methods for the Life and Health Sciences
-Instructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology
University of California, Los Angeles, Winter 2003
http://www.stat.ucla.edu/~dinov/

## Correlation Coefficient

Correlation coefficient $(-1<=R<=1)$ : a measure of linear association, or clustering around a line of multivariate data.
Relationship between two variables ( $\mathrm{X}, \mathrm{Y}$ ) can be summarized by: $\left(\mu_{\mathrm{X}}, \sigma_{\mathrm{X}}\right),\left(\mu_{\mathrm{Y}}, \sigma_{\mathrm{Y}}\right)$ and the correlation coefficient, $R . R=1$, perfect positive correlation (straight line relationship), $R=0$, no correlation (random cloud scatter), $R=-1$, perfect negative correlation.
Computing $R(\mathrm{X}, \mathrm{Y})$ : (standardize, multiply, average)
$R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{i}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}}{\boldsymbol{\sigma}}\right)$ $\mathrm{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
$\mathrm{Y}=\left\{\mathrm{y}_{1}, y_{2}, \ldots, y_{N}\right\}$
$\left(\mu_{X}, \sigma_{X}\right),\left(\mu_{Y}, \sigma_{Y}\right)$ sample mean / SD.

## Correlation Coefficient

Example:

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}^{\prime}}{\boldsymbol{\sigma}}\right)
$$

$$
\boldsymbol{\mu}_{x}=\frac{966}{6}=161 \mathrm{~cm}, \quad \boldsymbol{\mu}_{r}=\frac{332}{6}=55 \mathrm{~kg},
$$

$$
\sigma_{x}=\sqrt{\frac{216}{5}}=6.573, \quad \sigma_{x}=\sqrt{\frac{215.3}{5}}=6.563
$$

$\operatorname{Corr}(X, Y)=R(X, Y)=0.904$

## Multiple Regression Analysis



## Correlation Coefficient - Properties

Correlation is quasi-invariant w.r.t. linear transformations of X or Y

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y_{k}-\mu_{y}}{\sigma_{y}}\right)=
$$

$$
\operatorname{sign}(a) \times \operatorname{sign}(c) \times R(a X+b, c Y+d), \quad \text { since }
$$

$$
\left(\frac{a x_{k}+b-\mu_{a x+b}}{\sigma_{a x+b}}\right)=\left(\frac{a x_{k}+b-\left(a \mu_{x}+b\right)}{|a| \times \sigma_{x}}\right)=
$$

$$
\left(\frac{a\left(x_{k}-\mu\right)+b-b}{|a| \times \sigma_{x}}\right)=\operatorname{sign}(a) \times\left(\frac{x_{k}-\mu_{x}}{\sigma_{x}}\right)
$$




## Example - Method/Hemi/Tissue/Value



## Example

Let $y$ be the monthly sales revenue for a company. This might be a function of several variables:
$\square x_{1}=$ advertising expenditure
$\square x_{2}=$ time of year

- $x_{3}=$ state of economy
$\square x_{4}=$ size of inventory
- We want to predict $y$ using knowledge of $x_{1}, x_{2}, x_{3}$ and $x_{4}$.


## The General Linear Model

$$
\square y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+\varepsilon
$$

- where
$\checkmark y$ is the response variable you want to predict.
$\checkmark \beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}$ are unknown constants
$\boldsymbol{\imath} \boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{\mathbf{2}, \ldots, \boldsymbol{x}_{\boldsymbol{k}}}$ are independent predictor variables, measured without error.


## Example

- Consider the model $\mathrm{E}(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
- This is a first order model (independent variables appear only to the first power).
- $\beta_{0}=\boldsymbol{y}$-intercept $=$ value of $\mathrm{E}(y)$ when $x_{1}=x_{2}=0$.
- $\beta_{1}$ and $\beta_{2}$ are the partial regression coefficients-the change in $y$ for a one-unit change in $x_{\mathrm{i}}$ when the other independent variables are held constant.
- Traces a plane in three dimensional space.


## The Random Error

- The deterministic part of the model,

$$
\Delta E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k},
$$

- describes average value of $y$ for any fixed values of $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{k}}$. The population of measurements is generated as $y$ deviates from the line of means by an amount $\boldsymbol{\varepsilon}$. We assume
$\checkmark \varepsilon$ are independent
$\checkmark$ Have a mean 0 and common variance $\sigma^{2}$ for any set $x_{1}, x_{2}, \ldots, x_{k}$.
$\checkmark$ Have a normal distribution.


## The Method of Least Squares

- The best-fitting prediction equation is calculated using a set of $n$ measurements $\left(y, x_{1}, x_{2}, \ldots x_{k}\right)$ as


## $\hat{y}=b_{0}+b_{1} x_{1}+\ldots+b_{k} x_{k}$

- We choose our estimates $b_{0}, b_{1}, \ldots, b_{k}$ to estimate $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$ to minimize

$$
\begin{aligned}
& \mathrm{SSE}=\sum(y-\hat{y})^{2} \\
& =\sum\left(y-b_{0}-b_{1} x_{1}-\ldots-b_{k} x_{k}\right)^{2}
\end{aligned}
$$

## Example

- A computer database in a small community contains the listed selling price $y$ (in thousands of dollars), the amount of living area $x_{1}$ (in hundreds of square feet), and the number of floors $x_{2}$, bedrooms $x_{3}$, and bathrooms $x_{4}$, for $n=15$ randomly selected residences currently on the market.

| Property | y | $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{x}_{3}$ | $\mathrm{x}_{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 69.0 | 6 | 1 | 2 | 1 |
| 2 | 118.5 | 10 | 1 | 2 | 2 |
| 3 | 116.5 | 10 | 1 | 3 | 2 |
|  | Fit a first order <br> model to the data <br> using the method <br> of least squares. |  |  |  |  |
|  | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
| 15 | 209.9 | 21 | 2 | 4 | 3 |

## The Analysis of Variance

- The total variation in the experiment is measured by the total sum of squares:


## Total SS $=S_{y y}=\sum(y-\bar{y})^{2}$

The Total SS is divided into two parts:
$\checkmark \quad$ SSR (sum of squares for regression): measures the variation explained by using the regression equation.
SSE (sum of squares for error): measures the leftover variation not explained by the independent variables.

## The Real Estate Problem

Another portion of the SYSTAT printout shows the ANOVA Table, with $n=15$ and $k=4$.

## $\sqrt{M S E}$




## Testing the Usefulness of the Model

- The first question to ask is whether the regression model is of any use in predicting $y$.
- If it is not, then the value of $y$ does not change, regardless of the value of the independent variables, $x_{1}$, $x_{2}, \ldots, x_{k}$. This implies that the partial regression coefficients, $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ are all zero.


## The F Test



Measuring the Strength of the Relationship

- If the independent variables are useful in predicting $y$, you will want to know how well the model fits.
- The strength of the relationship between $x$ and $y$ can be measured using:

Multiple coefficient of determination :

$$
R^{2}=\frac{\mathrm{SSR}}{\text { Total SS }}
$$

## Testing the Partial Regression Coefficients

- Is a particular independent variable useful in the model, in the presence of all the other independent variables? The test statistic is function of $b_{i}$, our best estimate of $\beta_{i}$.


Comparing Regression Models
The strength of a regression model is measured using $\mathrm{R}^{2}=\mathrm{SSR} /$ Total SS. This value will only increase as variables are added to the model.
To fairly compare two models, it is better to use a measure that has been adjusted using $d f$ :

$$
R^{2}(\operatorname{adj})=\left(1-\frac{\mathrm{MSE}}{\operatorname{TotalSS} /(n-1)}\right) 100 \%
$$

Slide 38

## Diagnostic Tools

-We use the same diagnostic tools used in Chapter 11 and 12 to check the normality assumption and the assumption of equal variances.

1. Normal probability plot of residuals
2. Plot of residuals versus fit or residuals versus variables


## Estimation and Prediction

- Once you have
$\checkmark$ determined that the regression line is useful
$\checkmark$ used the diagnostic plots to check for violation of the regression assumptions.
- You are ready to use the regression line to
$\checkmark$ Estimate the average value of $y$ for a given value of $x$
$\checkmark \quad$ Predict a particular value of $y$ for a given value of $x$.


## Estimation and Prediction

- Enter the appropriate values of $x_{1}, x_{2}, \ldots, x_{k}$ in SoftPackage to calculate

$$
\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{k} x_{k}
$$

- and both the confidence interval and the prediction interval.
- Particular values of $\boldsymbol{y}$ are more difficult to predict, requiring a wider range of values in the prediction interval.


## Using Regression Models

When you perform multiple regression analysis, use a stepby step approach:

1. Obtain the fitted prediction model.
2. Use the analysis of variance $F$ test and $R^{2}$ to determine how well the model fits the data.
3. Check the $t$ tests for the partial regression coefficients to see which ones are contributing significant information in the presence of the others.
4. If you choose to compare several different models, use $R^{2}(\mathrm{adj})$ to compare their effectiveness.
5. Use diagnostic plots to check for violation of the regression assumptions.

## Example

- A market research firm has observed the sales $(y)$ as a function of mass media advertising expenses $(x)$ for 10 different companies selling a similar product.

| Company | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | 6 | 7 | $\mathbf{8}$ | 9 | $\mathbf{1 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Expenditure, $x$ | 1.0 | 1.6 | 2.5 | 3.0 | 4.0 | 4.6 | 5.0 | 5.7 | 6.0 | 7.0 |
| Sales, $y$ | 2.5 | 2.6 | 2.7 | 5.0 | 5.3 | 9.1 | 14.8 | 17.5 | 23.0 | 28.0 |

## The Real Estate Problem




## Using Qualitative Variables

- Multiple regression requires that the response $y$ be a quantitative variable.
- Independent variables can be either quantitative or qualitative.
- Qualitative variables involving $k$ categories are entered into the model by using $k-1$ dummy variables.

Example: To enter gender as a variable, use - $x_{\mathrm{i}}=1$ if male; 0 if female

## Example

- We want to predict a professor's salary based on years of experience and gender. We think that there may be a difference in salary depending on whether you are male or female.
- The model we choose includes experience ( $x_{1}$ ), gender $\left(x_{2}\right)$, and an interaction term ( $x_{1} x_{2}$ ) to allow salary's for males and females to behave differently.
$y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+\varepsilon$



## Testing Sets of Parameters

Suppose the demand $y$ may be related to five independent variables, but that the cost of measuring three of them is very high.

- If it could be shown that these three contribute little or no information, they can be eliminated.
$\square_{\text {You want to test the null hypothesis }}$
${ }^{\square} H_{0}: \beta_{3}=\beta_{4}=\beta_{5}=0-$
that is, the independent variables $x_{3}, x_{4}$, and $x_{5}$ contribute no information for the prediction of $y$-versus the alternative hypothesis:
${ }^{-} \boldsymbol{H}_{\mathrm{a}}$ : At least one of $\boldsymbol{\beta}_{\mathbf{3}}, \boldsymbol{\beta}_{\mathbf{4}}$, or $\boldsymbol{\beta}_{\mathbf{5}}$ differs from $\mathbf{0}$ -
that is, at least one of the variables $x_{3}, x_{4}$, or $x_{5}$ contributes information for the prediction of $y$.


## Testing Sets of Parameters

- The test of the hypothesis
$H_{0}: \beta_{3}=\beta_{4}=\beta_{5}=0$
$H_{a}$ : At least one of the $\boldsymbol{\beta}_{\mathrm{i}}$ differs from 0
uses the test statistic $\quad F=\frac{\left(\mathrm{SSE}_{1}-\mathrm{SSE}_{2}\right) /(k-r)}{\mathrm{MSE}_{2}}$
where $F$ is based on $d f_{1}=(k-r)$ and $d f_{2}=$ $n-(k+1)$.
The rejection region for the test is identical to other analysis of variance $F$ tests, namely $\mathrm{F}>\mathrm{F}_{\alpha}$.



## Testing Sets of Parameters

${ }^{-}$To explain how to test a hypothesis concerning a set of model parameters, we define two models:

Model One (reduced model)

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{r} x_{r}
$$

${ }^{\square}$ Model Two (complete model)
■ $E(y)=\frac{\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{r} x_{r}+\beta_{r+1} x_{r+1}+\beta_{r+2} x_{r+2}+\cdots+\beta_{k} x_{k}}{1}$
terms in model 1 additional terms in model 2

## Stepwise Regression

$\checkmark$ A stepwise regression analysis fits a variety of models to the data, adding and deleting variables as their significance in the presence of the other variables is either significant or nonsignificant, respectively.
Once the program has performed a sufficient number of iterations and no more variables are significant when added to the model, and none of the variables are nonsignificant when removed, the procedure stops.
$\checkmark$ These programs always fit first-order models and are not helpful in detecting curvature or interaction in the data.

## Important Points

$\checkmark$ Causality: Be careful not to deduce a causal relationship between a response $y$ and a variable $x$.
$\checkmark$ Multi-collinearity: Neither the size of a regression coefficient nor its $t$-value indicates the importance of the variable as a contributor of information. This may be because two or more of the predictor variables are highly correlated with one another; this is called multi-collinearity.

## Multicollinearity

How can you tell whether a regression analysis exhibits multicollinearity?
$\checkmark$ The value of $\boldsymbol{R}^{\mathbf{2}}$ is large, indicating a good fit, but the individual $\boldsymbol{t}$-tests are nonsignificant.
$\checkmark$ The signs of the regression coefficients are contrary to what you would intuitively expect the contributions of those variables to be.
$\checkmark$ A matrix of correlations, generated by the computer, shows you which predictor variables are highly correlated with each other and with the response $y$.

## Basic Concepts

IIII. Analysis of Variance

1. Total $\mathrm{SS}=\mathrm{SSR}+\mathrm{SSE}$, where Total $\mathrm{SS}=S_{y y}$.

The ANOVA table is produced by computer.
2. Best estimate of $\sigma^{2}$ is

$$
\text { MSE }=\frac{\text { SSE }}{n-k-1}
$$

IV. Testing, Estimation, and Prediction

1. A test for the significance of the regression,
$H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{\mathrm{k}}=0$, can be implemented using the analysis of variance $F$ test:

$$
F=\frac{\mathrm{MSR}}{\mathrm{MSE}}
$$

## Basic Concepts

5. Confidence intervals can be generated by computer to estimate the average value of $y, E(y)$, for given values of $x_{1}, x_{2}, \ldots, x_{k}$. Computergenerated prediction intervals can be used to predict a particular observation $y$ for given value of $x_{1}, x_{2}, \ldots, x_{k}$. For given $x_{1}, x_{2}, \ldots, x_{k}$, prediction intervals are always wider than confidence intervals.

## Basic Concepts - Model Building

1. The number of terms in a regression model cannot exceed the number of observations in the data set and should be considerably less!
2. To account for a curvilinear effect in a quantitative variable, use a second-order polynomial model. For a cubic effect, use a thirdorder polynomial model.
3. To add a qualitative variable with $k$ categories, use $(k-1)$ dummy or indicator variables.
4. There may be interactions between two qualitative variables or between a quantitative and a qualitative variable. Interaction terms are entered as $\beta x_{i} x_{j}$.
5. Compare models using $R^{2}(\mathrm{adj})$.

Slide 69

