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Principle Component Analysis (PCA)

�Introduction to PCA
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PCA - purpose

� The main applications of PCA analytic techniques are: 
� to reduce the number of variables and 
� to detect structure in the relationships between variables, that 

is to classify variables. 

� Therefore, PCA analysis is applied as a data reduction or 
structure detection method (the term factor analysis was 
first introduced by Thurstone, 1931). The topics listed 
below will describe the principles of factor analysis, and 
how it can be applied for addressing these two goals. 
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PCA - Basics

�Suppose we conducted a (rather "silly") study in 
which we measure 100 people's height in inches
and centimeters. Thus, we would have two 
variables that measure height. If in future studies, 
we want to research, for example, the effect of 
different nutritional food supplements on height, 
would we continue to use both measures? Probably 
not; height is one characteristic of a person, 
regardless of how it is measured, since there are 
measure-conversion rules!
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PCA - Basics

�Let us now extrapolate from this trivial study to 
something that one might actually do as a 
researcher. Suppose we want to measure people's 
satisfaction with their lives. We design a 
satisfaction questionnaire with various items; 
among other things we ask our subjects how 
satisfied they are with their hobbies (item 1) and 
how intensely they are pursuing a hobby (item 2). 
Most likely, the responses to the two items are 
highly correlated with each other. Given a high 
correlation between the two items, we can 
conclude that they may be quite redundant. 
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PCA - Basics

� Combining Two Variables into a Single Factor. 
Correlations between two variables may be summarized in a 
scatterplot. A regression line can then be fitted that represents the 
"best" summary of the linear relationship between the variables. If 
we could define a variable that would approximate the regression
line in such a plot, then that variable would capture most of the 
"essence" of the two items. Subjects' single scores on that new 
factor, represented by the regression line, could then be used in 
future data analyses to represent that essence of the two items. In a 
sense we have reduced the two variables to one factor. Note that the 
new factor is actually a linear combination of the two variables. 
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PCA - Basics

� Principal Components Analysis. The example described 
above, combining two correlated variables into one factor, 
illustrates the basic idea of factor analysis, or of principal 
components analysis to be precise.If we extend the two-
variable example to multiple variables, then the 
computations become more involved, but the basic 
principle of expressing two or more variables by a single 
factor remains the same. 
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PCA - Basics

� Computational aspects of principal components analysis: 
Study of the extraction of principal components amounts 
to a variance maximizing (varimax) rotation of the 
original variable space. For example, in a scatterplot we 
can think of the regression line as the original X axis, 
rotated so that it approximates the regression line. This 
type of rotation is called variance maximizing because the 
criterion for (goal of) the rotation is to: 
�maximize the variance (variability) of the "new" variable

(factor), while 
�minimizing the variance around the new variable. 

STAT 251, UCLA, Ivo DinovSlide 9

PCA - Basics

� Generalizing to the Case of Multiple Variables. When 
there are more than two variables, we can think of them as 
defining a "space," just as two variables defined a plane. 
Thus, when we have three variables, we could plot a 
three- dimensional scatterplot, and, again we could fit a 
plane through the data. 
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PCA – scatterplot example

� With more than 3 variables it becomes impossible to 
illustrate the points in a scatterplot, however, the logic of 
rotating the axes so as to maximize the variance of the 
new factor remains the same. But up to 3-variables we can 
use a scatterplot:
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PCA - Basics

� Multiple orthogonal factors. After we have found the 
line on which the variance is maximal, there remains some 
variability around this line. In PCA, after the first factor 
has been extracted, that is, after the first line has been 
drawn through the data, we iteratively continue to define 
others line that maximize the remaining variability. In this 
manner, consecutive factors are extracted. Because each 
consecutive factor is defined to maximize the 
variability that is not captured by the preceding factor, 
consecutive factors are independent of each other. Put 
another way, consecutive factors are uncorrelated or 
orthogonal to each other.
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PCA - Basics

�How many Factors to Extract? Remember that, 
so far, we are considering PCA as a data reduction 
method, that is, as a method for reducing the 
number of variables. The question then is, how 
many factors do we want to extract? Note that as 
we extract consecutive factors, they account for 
less and less variability. The decision of when to 
stop extracting factors basically depends on when 
there is only very little random variability left. 
The nature of this decision is arbitrary; however, 
various guidelines have been developed.
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PCA - Basics

�Standard results from a PCA analysis: We are 
extracting factors that account for less and less variance. 
To simplify matters, one usually starts with the correlation 
matrix, where the variances of all variables are equal to 
1.0. Therefore, the total variance in that matrix is equal to 
the number of variables. For example, if we have 10 
variables each with a variance of 1 then the total 
variability that can potentially be extracted is equal to 10 
times 1. Suppose that in the life-satisfaction study
introduced earlier we included 10 items to measure 
different aspects of satisfaction at home and at work. 
The variance accounted for by successive factors would 
be summarized as follows: 
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PCA - Example
Extraction: Principal components

100.000010.000000.85334.08533410
99.14679.914671.37970.1379709
97.76709.776701.70431.1704318
96.06269.606261.95808.1958087
94.10469.410462.93300.2933006
91.17169.117163.17222.3172225
87.99938.799934.07996.4079964
83.91948.391944.72888.4728883
79.19057.9190518.006821.8006822
61.18376.1183761.183696.1183691

Cumulative  
%

Cumulative
Eigenvalue

Total
Variance

Eigenvalue %Value
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PCA - Eigenvalues

� Eigenvalues - In the second column (Eigenvalue) above, 
we find the variance on the new factors that were 
successively extracted. In column 3, these values are 
expressed as a percent of the total variance (in this 
example, 10). As we can see, factor 1 accounts for 61 
percent of the variance, factor 2 for 18 percent, and so on. 
As expected, the sum of the eigenvalues is equal to the 
number of variables. The third column contains the 
cumulative variance extracted. The variances extracted by 
the factors are called the eigenvalues. This name derives 
from the computational issues involved. 
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PCA - Eigenvalues

� Eigenvalues and the Number-of-Factors Problem:
Now that we have a measure of how much variance each 
successive factor extracts, we can return to the question of 
how many factors to retain. By its nature this is an 
arbitrary decision. However, there are some guidelines 
that are commonly used, and that, in practice, seem to 
yield the best results. 
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PCA – How many Factors?!?

�The Kaiser criterion.
�First, we can retain only factors with eigenvalues

greater than 1. In essence this is like saying that, unless 
a factor extracts at least as much as the equivalent of 
one original variable, we drop it. This criterion was 
proposed by Kaiser (1960), and is probably the one 
most widely used. In our example above, using this 
criterion, we would retain 2 factors (principal 
components).

83.91948.391944.72888.4728883
79.19057.9190518.006821.8006822
61.18376.1183761.183696.1183691

Cumulative  
%

Cumulative
Eigenvalue

Total
Variance

Eigenvalue %Value

STAT 251, UCLA, Ivo DinovSlide 18

PCA – How many Factors?!?

�The scree test. 
�The scree test is a graphical method first proposed by 

Cattell (1966). We can plot the eigenvalues shown 
above in a simple line plot. Cattell’s idea: Find a

place where the smooth
decrease of eigenvalues
appears to level off to the
right of the plot.
To the right of this point,
one expects to find only
factorial scree – scree is the
geological term referring
to the debris which collects
on the lower part of a rocky
slope. According to this
criterion, we would probably
retain 2 or 3 factors here. 



4

STAT 251, UCLA, Ivo DinovSlide 19

PCA

� Which criterion to use? 
�Both criteria have been studied in detail (Browne, 1968; Cattell

& Jaspers, 1967; Hakstian, Rogers, & Cattell, 1982; Linn, 1968; 
Tucker, Koopman & Linn, 1969). 

� It appears as if the first method (Kaiser criterion) sometimes 
retains too many factors, while the second technique (scree test) 
sometimes retains too few;

�Both do quite well under normal conditions, that is, when there 
are relatively few factors and many cases. 

� In practice, an additional important aspect is the extent to which 
a solution is interpretable. Therefore, one usually examines 
several solutions with more or fewer factors, and chooses the 
one that makes the best "sense."
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PFA – Principal Factors Analysis

� Principal Factors Analysis
�Recall our satisfaction questionnaire example. Let’s 

slightly perturb this model for factor analysis. We can 
think of subjects' responses as being dependent on two 
components. 
�First, there are some underlying common factors, 

such as the "satisfaction-with-hobbies" factor we 
looked at before. Each item measures some part of 
this common aspect of satisfaction. 

�Second, each item also captures a unique aspect of 
satisfaction that is not addressed by any other item. 
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PCA vs. PFA

�Principal factors vs. principal components
�To distinguishes between the two factor analytic 

models is that:
�PCA assumes that all variability in an item should be used in 

the analysis, 
�PFA (principal factors analysis) we only use the variability 

in an item that it has in common with the other items. 
�In most cases, these two methods usually yield very 

similar results. However, principal components 
analysis is often preferred as a method for data 
reduction, while principal factors analysis is often 
preferred when the goal of the analysis is to detect 
structure.
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PCA

� Factor Analysis as a Classification Method 
�We’ll use the term factor analysis generically to encompass 

both PCA & PFA.
�Assume now that we are at the point in our analysis where we 

basically know how many factors to extract. We may now want 
to know the meaning of the (composite) factors. How can we 
interpret them in a meaningful manner? 

�Let’s try to work backwards,  that is, begin with a meaningful 
structure and then see how it is reflected in the results of a factor 
analysis. 

� In our satisfaction example; here is the correlation matrix for 
items pertaining to satisfaction at work and items pertaining to 
satisfaction at home. 
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PCA

�Factor Analysis as a Classification Method 
�Symmetry of the Covariance matrix? Why?

1.000.730.590.250.240.14Home3

0.731.000.660.240.180.15Home2

0.590.661.000.160.140.14Home1

0.250.240.161.000.730.65Work3

0.240.180.140.731.000.65Work2

0.140.150.140.650.651.00Work1

Home3Home2Home1Work3Work2Work1Variable
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PCA

�Factor Analysis as a Classification Method 
�The work satisfaction items are highly correlated 

amongst themselves, and 
�the home satisfaction items are highly inter-correlated 

amongst themselves, too. 
�The correlations across these two types of items 

(work vs. home satisfaction items) is comparatively 
small. Are there only two relatively independent factors
reflected in the correlation matrix? 
� one related to satisfaction at work, 
� the other related to satisfaction at home. 
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PCA

� PCA analysis of the two-factors. Specifically, look at the 
correlations between the variables and the two factors (or 
derived variables), as they are extracted.

0.2985000.481885ProportTotal
1.7910002.891313ExplainedVar
-0.5256020.707446Home3
-0.5726580.706267Home2
-0.5631230.634120Home1
0.5082120.741688Work3
0.5414440.715256Work2
0.5641430.654384Work1
Factor 2Factor 1Variable
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PCA

� Apparently, the factor_1 is generally more highly 
correlated with the original variables than the factor_2. 
This is to be expected because, as previously described, 
these factors are extracted successively and will account 
for less and less variance overall. 
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PCA

�Interpreting the Factor Structure. 
� As expected, the first factor is marked by high 

loadings on the work satisfaction items.
� Factor 2 is marked by high loadings on the home 

satisfaction items. We would thus conclude that 
satisfaction, as measured by our questionnaire, is 
composed of those two aspects; 

�And there is our classification of the variables.

�Consider another example, this time with 4 
additional Hobby/Misc variables added to our 
earlier example.
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PCA

�E.g., The initial 10 variables were reduced to 3 
specific factors, a work factor, a home factor and a 
hobby/misc. factor. Note that factor loadings for 
each factor are spread out over the values of the 
other two factors but are high for its own values. 
For example, the factor loadings for the 
hobby/misc variables (in green) have both high 
and low "work" and "home" values, but all 3 of 
these variables have high factor loadings on the 
"hobby/misc" factor.
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PCA
�3 specific factors, work factor, a home factor and 

a hobby/misc. factor. 
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PCA

� If time permits do another example. 
� SYSTAT.
� C:\Ivo.dir\Research\Data.dir\WM_GM_CSF_tissueMaps.dir\
�ATLAS_IVO_all.xls
� PCA: Data Reduction � Factor Analysis

� Var’s:  Hemi. Tisse, Method, Value
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Practical Notes on PCA computation

– Data: X = {x1, x2, …, xn}
– Compute the standardized matrix, Z

– Z = {z1, z2, …, zn}, where zk=(xk - µµµµk)/σσσσn, 
– Compute the correlation matrix, R = ZTZ

– Compute the eigenvalues for R,    | R – λλλλI |=0

– Compute the eigenvectors, vk,  for R,  solve:              
R vk = λλλλkvk., Set V= {v1, v2, …, vn}

STAT 251, UCLA, Ivo DinovSlide 32

Practical Notes on PCA computation

– Test: the orthogonality of the matrix V={v1, v2,…, vn}
� VTV=I

– Let  L=diag( λλλλ1, λλλλ2, …, λλλλn), Compute L½

– Compute the factor structure matrix, S,  S=V L½

– Decide on the number of essential eigenvalues, scree 
test, w = n – max_arg( |λλλλ (k)|>=1).

– Compute the communality matrix, using only the 
first w eigenvectors from S, by the (order statistic),  
C = S ST.
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Practical Notes on PCA computation

– Compute the communality matrix, using only the 
first w eigenvectors from S, by the (order statistic), C 
= S ST.

– Communality diagonal entries report how much of 
the variability of the data is explained by the 1-st
(c1,1), 1 & 2 (c2,2), 1 & 2 & 3 (c3,3), … principle 
components.

– In the factor structure matrix, S,  S=V L½, the entry 
ci,j, shows the correlation between the ith variable 
and the jth principle component.
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Practical Notes on PCA computation

– Compute the coefficient matrix, B = V L-½, 

– Compute the Factor Scores F = Z B, the columns of 
F are the principle factors, these represent the 
loadings of the variables on each principle 
component, e.i., fi,j

shows the loading of the ith variable on the jth principle component.


