UCLA STAT 251
 Statistical Methods for the Life Sciences

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

University of California, Los Angeles, Winter 2003
http://www.stat.ucla.edu/~dinov/courses_students.html

Let's Make a Deal Paradox aka, Monty Hall 3-door problem

- This paradox is related to a popular television show in the 1970's. In the show, a contestant was given a choice of three doors/cards of which one contained a prize (diamond). The other two doors contained gag gifts like a chicken or a donkey (clubs).

Let's Make a Deal Paradox.

- The intuition of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a 50-50 chance of winning with either selection? This, however, is not the case.
- The probability of winning by using the switching technique is $2 / 3$, while the odds of winning by not switching is $1 / 3$. The easiest way to explain this is as follows:

Probabilities, Bayesian Rule, Marginal and Joint PMF/PDFs

Let's Make a Deal Paradox.

- After the contestant chose an initial door, the host of the show then revealed an empty door among the two unchosen doors, and asks the contestant if he or she would like to switch to the other unchosen door. The question is should the contestant switch. Do the odds of winning increase by switching to the remaining door?

Let's Make a Deal Paradox.

- The probability of picking the wrong door in the initial stage of the game is $2 / 3$.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly $2 / 3$.

Definitions ...

The law of averages about the behavior of coin tosses - the relative proportion (relative frequency) of heads-to-tails in a coin toss experiment becomes more and more stable as the number of tosses increases. The law of averages applies to relative frequencies not absolute counts of \#H and \#T.

- Two widely held misconceptions about what the law of averages about coin tosses:
■ Differences between the actual numbers of heads \& tails becomes more and more variable with increase of the number of tosses - a seq. of 10 heads doesn't increase the chance of a tail on the next trial.
\square Coin toss results are fair, but behavior is still unpredictable

Sample Spaces and Probabilities

- When the relative frequency of an event in the past is used to estimate the probability that it will occur in the future, what assumption is being made?
- The underlying process is stable over time;
- Our relative frequencies must be taken from large numbers for us to have confidence in them as probabilities.
- All statisticians agree about how probabilities are to be combined and manipulated (in math terms), however, not all agree what probabilities should be associated with for a particular real-world event.
- When a weather forecaster says that there is a 70% chance of rain tomorrow, what do you think this statement means? (Based on our past knowledge, according to the barometric pressure, temperature, on our past knowledge, according to the barometric pressure, temperat
etc. of the conditions we expect tomorrow, 70% of the time it did rain etc. of the conditions we
under such conditions.)

The complement of an event

- The complement of an event A, denoted \bar{A}, occurs if and only if A does not occur.
 taining event A
Figure 4.4.1 An event A in the sample space S.

Job losses in the US

TABLE 4.4.1 Job Losses in the US (in thousands) for 1987 to 1991

	Reason for Job Loss Workplace moved/closed	Slack work	Position abolished	Total
Male	1,703	1,196	548	3,447
Female	1,210	564	363	2,137
Total	2,913	1,760	911	5,584

Review

- What is a sample space? What are the two essential criteria that must be satisfied by a possible sample space? (completeness - every outcome is represented; and uniqueness no outcome is represented more than once.
- What is an event? (collection of outcomes)
- If A is an event, what do we mean by its complement, \bar{A} ? When does \bar{A} occur?
If A and B are events, when does A or \boldsymbol{B} occur? When does \boldsymbol{A} and \boldsymbol{B} occur?

Probability distributions

Probabilities always lie between 0 and 1 and they sum up to 1 (across all simple events).

- $\boldsymbol{p r}(\boldsymbol{A})$ can be obtained by adding up the probabilities of all the outcomes in A.

Properties of probability distributions

- A sequence of number $\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right\}$ is a probability distribution for a sample space $S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$, if $\operatorname{pr}\left(\mathrm{s}_{\mathrm{k}}\right)=\mathrm{p}_{\mathrm{k}}$, for each $1<=\mathrm{k}<=\mathrm{n}$. The two essential properties of a probability distribution $p_{1}, p_{2}, \ldots, p_{n}$?

$$
p_{k} \geq 0 ; \sum_{k} p_{k}=1
$$

- How do we get the probability of an event from the probabilities of outcomes that make up that event?
- If all outcomes are distinct \& equally likely, how do we calculate $\operatorname{pr}(A)$? If $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{9}\right\}$ and $\operatorname{pr}\left(a_{1}\right)=\operatorname{pr}\left(a_{2}\right)=\ldots=\operatorname{pr}\left(a_{9}\right)=p$; then

$$
\operatorname{pr}(A)=9 \times \operatorname{pr}\left(a_{1}\right)=9 p
$$

Example of probability distributions

Tossing a coin twice. Sample space $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}$, TT \}, for a fair coin each outcome is equally likely, so the probabilities of the 4 possible outcomes should be identical, p. Since, $p(H H)=p(H T)=p(T H)=p(T T)=p$ and

$$
p_{k} \geq 0 ; \sum_{k} p_{k}=1
$$

p $=1 / 4=0.25$.

Review

If A and B are mutually exclusive, what is the probability that both occur? ${ }_{(0)}$ What is the probability that at least one occurs? (sum of probabilities)

- If we have two or more mutually exclusive events, how do we find the probability that at least one of them occurs? (sum of probabilities)
- Why is it sometimes easier to compute $\operatorname{pr}(A)$ from $\operatorname{pr}(A)=1-\operatorname{pr}(\bar{A})$? (The complement of the even may be easer to find or may have a known probability. E.g., a random number between 1 and 10 is drawn. Let $\mathrm{A}=\{$ a number less than or equal to 9 appears $\}$. Find $\operatorname{pr}(\mathrm{A})=1-\operatorname{pr}(\bar{A})$). probability of \bar{A} is $\operatorname{pr}(\{10$ appears $\})=1 / 10=0.1$. Also Monty Hall 3 door example!

Slide 21

Conditional Probability

The conditional probability of \boldsymbol{A} occurring given that B occurs is given by

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \text { and } B)}{\operatorname{pr}(B)}
$$

Suppose we select one out of the 400 patients in the study and we want to find the probability that the cancer is on the extremities given that it is of type nodular: $\mathrm{P}=73 / 125=\mathrm{P}$ (C. on Extremities \mid Nodular)
\#nodular patients with cancer on extremities \#nodular patients

Multiplication rule- what's the percentage of

 Israelis that are poor and Arabic?

Figure 4.6.1 Illustration of the multiplication rule.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley \& Sons, 2000

A tree diagram for computing conditional probabilities

Suppose we draw 2 balls at random one at a time without replacement from an urn containing 4 black and 3 white balls, otherwise identical. What is the probability that the second ball is black? Sample Spc?

$$
\begin{gathered}
\mathrm{P}(\{2 \text {-nd ball is black }\})= \\
\mathrm{P}(\{2-n d \text { is black }\} \&\{1 \text {-st is black }\}) / \begin{array}{l}
\text { Mutually } \\
\text { exclusive }
\end{array} \\
\mathrm{P}(\{2-\text { nd is black }\} \&\{1 \text {-st is white }\})= \\
4 / 7 \times 3 / 6+4 / 6 \times 3 / 7=4 / 7 .
\end{gathered}
$$

Figure 4.6.2 Tree diagram for a sampling problem.

Statistical independence

Events A and B are statistically independent if knowing whether B has occurred gives no new information about the chances of A occurring,

$$
\text { i.e. if } \operatorname{pr}(A \mid B)=\operatorname{pr}(A)
$$

- Similarly, $\mathrm{P}(B \mid A)=\mathrm{P}(B)$, since
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B} \& \mathrm{~A}) / \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B}) / \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})$
- If A and B are statistically independent, then

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(A) \times \operatorname{pr}(B)
$$

Summary of ideas cont.

An event is a collection of outcomes

- An event occurs if any outcome making up that event occurs
- The probability of event A can be obtained by adding up the probabilities of all the outcomes in A
- If all outcomes are equally likely,

$$
\operatorname{pr}(A)=\frac{\text { number of outcomes in } A}{\text { total number of outcomes }}
$$

Summary of ideas cont.

- The conditional probability of A occurring given that B occurs is given by

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \text { and } B)}{\operatorname{pr}(B)}
$$

- Events A and B are statistically independent if knowing whether B has occurred gives no new information about the chances of A occurring, i.e. if $\mathrm{P}(A \mid B)=\mathrm{P}(A) \quad \rightarrow \quad \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$.
- If events are physically independent, then, under any sensible probability model, they are also statistically independent
- Assuming that events are independent when in reality they are not can often lead to answers that are grossly too big or grossly too small

Summary

- What does it mean for two events A and B to be statistically independent?
- Why is the working rule under independence, $P(A$ and $B)=P(A) P(B)$, just a special case of the multiplication rule $P(A \& B)=P(A \mid B) P(B)$?
- Mutual independence of events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots, \mathrm{~A}_{\mathrm{n}}$ if and only if $P\left(A_{1} \& A_{2} \& \ldots \& A_{\mathrm{n}}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{\mathrm{n}}\right)$
- What do we mean when we say two human characteristics are positively associated? negatively associated? (blond hair - blue eyes, pos.; black hair - blue eyes, neg.assoc.)

Summary of ideas cont.

- The complement of an event A, denoted \bar{A}, occurs if A does not occur
- It is useful to represent events diagrammatically using Venn diagrams
- A union of events, \boldsymbol{A} or \boldsymbol{B} contains all outcomes in A or B (including those in both). It occurs if at least one of A or B occurs
- An intersection of events, \boldsymbol{A} and \boldsymbol{B} contains all outcomes which are in both A and B. It occurs only if both A and B occur
- Mutually exclusive events cannot occur at the same time

Formula summary cont.

- $\operatorname{pr}(S)=1$
- $\operatorname{pr}(\bar{A})=1-\operatorname{pr}(A)$
- If A and B are mutually exclusive events, then $\operatorname{pr}(A$ or $B)=\operatorname{pr}(A)+\operatorname{pr}(B)$
(here "or" is used in the inclusive sense)
- If $A_{1}, A_{2}, \ldots, A_{k}$ are mutually exclusive events, then $\operatorname{pr}\left(A_{1}\right.$ or A_{2} or \ldots or $\left.A_{k}\right)=\operatorname{pr}\left(A_{1}\right)+\operatorname{pr}\left(A_{2}\right)+\ldots+\operatorname{pr}\left(A_{k}\right)$

Formula summary cont.

Multiplication Rule under independence:

- If A and B are independent events, then

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(A) \operatorname{pr}(B)
$$

If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent,
$\operatorname{pr}\left(A_{1}\right.$ and A_{2} and \ldots and $\left.A_{n}\right)=\operatorname{pr}\left(A_{1}\right) \operatorname{pr}\left(A_{2}\right) \ldots \operatorname{pr}\left(A_{n}\right)$

Examples - Birthday Paradox

- The Birthday Paradox: In a random group of N people, what is the change that at least two people have the same birthday?
- E.x., if $\mathrm{N}=23, \mathrm{P}>0.5$. Main confusion arises from the fact that in real life we rarely meet people having the same birthday as us, and we meet more than 23 people.
- The reason for such high probability is that any of the 23 people can compare their birthday with any other one, not just you comparing your birthday to anybody else's.
- There are N-Choose-2 $=20^{*} 19 / 2$ ways to select a pair or people. Assume there are 365 days in a year, P (one-particular-pair-same-B-day) $=1 / 365$, and
- $\mathrm{P}($ one-particular-pair-failure) $=1-1 / 365 \sim 0.99726$.
- For $\mathrm{N}=20,20$-Choose-2 $=190$. $\mathrm{E}=\{$ No 2 people have the same birthday is the event all 190 pairs fail (have different birthdays) \}, then $\mathrm{P}(\mathrm{E})=\mathrm{P}(\text { failure })^{190}=0.99726^{190}=0.59$.
- Hence, $\mathrm{P}($ at-least-one-success $)=1-0.59=0.41$, quite high.
- Note: for $\mathrm{N}=42 \rightarrow \mathrm{P}>0.9$..

Marginal vs. Joint Bivariate Distributions			
$\mathrm{P}\{\boldsymbol{X}=\mathrm{i}, \boldsymbol{Y}=\mathrm{k}\}$	k		
1	2	3	Row Sum P\{ $\boldsymbol{X}=\mathrm{i}$ \}
0.01	0.02	0.08	0.11
20.01	0.02	0.08	0.11
$3 \quad 0.07$	0.08	0.63	0.78
Column Sum			
$\mathbf{P}\{Y=\mathrm{k}\} \quad \mathbf{0 . 0 9}$	0.12	0.79	1.00

The chance of waiting at least two minutes to catch the first fish is
$\mathrm{P}\{\mathrm{X}=2\}=0.11+0.78=0.89$
$\mathrm{P}\{\mathrm{X}=2, \mathrm{Y}=1\}+\mathrm{P}\{\mathrm{X}=2, \mathrm{Y}=2\}+\mathrm{P}\{\mathrm{X}=2, \mathrm{Y}=3\}+\mathrm{P}\{\mathrm{X}=3, \mathrm{Y}=1$ $\}+\mathrm{P}\{\mathrm{X}=3, \mathrm{Y}=2\}+\mathrm{P}\{\mathrm{X}=3, \mathrm{Y}=3\}=$
$0.01+0.02+0.08+0.07+0.08+0.63=0.89$
$\left.p_{x}(2)=p(2,1)+p(2,2)+p 2,3\right)=0.01+0.02+0.08=0.11$
$p_{x}(2)=\operatorname{Sum}_{1}\{y: p(2, y)>0\}[p(2, y)]=p(2,1)+p(2,2)+p(2$
,3) $=0.01+0.02+0.08=0.11$

Marginal vs. Joint Bivariate Distributions

The joint density, $\mathrm{P}\{\boldsymbol{X}, \boldsymbol{Y}\}$, of the number of minutes waiting to catch the first fish, \boldsymbol{X}, and the number of minutes waiting to catch the second fish, \boldsymbol{Y}, is given below.
P $\{\boldsymbol{X}=\mathrm{i}, \boldsymbol{Y}=\mathrm{k}\}$

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Row $\operatorname{Sum} \mathbf{P}\{\boldsymbol{X}=\mathbf{i}\}$
	1	0.01	0.02	0.08	0.11
i	2	0.01	0.02	0.08	0.11
	3	0.07	0.08	0.63	0.78
Column Sum $\mathbf{P}\{\boldsymbol{Y}=\mathbf{k}\}$		$\mathbf{0 . 0 9}$	$\mathbf{0 . 1 2}$	$\mathbf{0 . 7 9}$	$\mathbf{1 . 0 0}$

The (joint) chance of waiting $\mathbf{3}$ minutes to catch the first fish and 3 minutes to catch the second fish is:
The (marginal) chance of waiting $\mathbf{3}$ minutes to catch the first fish is:
The (marginal) chance of waiting 2 minutes to catch the first fish is: \qquad

Marginal vs. Joint Bivariate Distributions			
$\mathrm{P}\{\boldsymbol{X}=\mathrm{i}, \boldsymbol{Y}=\mathrm{k}\}$			
1	2	3	Row Sum P $\{\boldsymbol{X}=\mathrm{i}\}$
0.01	0.02	0.08	0.11
20.01	0.02	0.08	0.11
$3 \quad 0.07$	0.08	0.63	0.78
Column Sum			
$\mathbf{P}\{\boldsymbol{Y}=\mathrm{k}$ \} 0.09	0.12	0.79	1.00
The chance of waiting at most two minutes to catch the first fish and at most two minutes to catch the second fish is			
$\mathrm{P}\{\mathrm{X}=2, \mathrm{Y}=2\}=0.06$			
$\begin{aligned} & \mathrm{P}\{\mathrm{X}=1, \mathrm{Y}=1\}+\mathrm{P}\{\mathrm{X}=1, \mathrm{Y}=2\}+\mathrm{P}\{\mathrm{X}=2, \mathrm{Y}=1\}+\mathrm{P}\{\mathrm{X}=2, \mathrm{Y} \\ & =2\}=0.01+0.02+0.01+0.02=0.06 \end{aligned}$			
$\mathrm{F}(2,2)=\mathrm{P}\{\mathrm{X}<=2, \mathrm{Y}<=2\}=0.06$			
$\mathrm{F}_{\mathrm{X}}(2)=\mathrm{F}(2,8)=\mathrm{F}(2,3)=0.22$			

Hints for Prob. 1 in Project I

- Suppose a scientific experiment (e.g., reading DNA sequences) has exactly 4 possible outcomes (encoded by: $\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{T}, \boldsymbol{G})$. Assume all 4 possible outcomes are independent and equally likely at each observation. A composite experiment is carried out until one of the following stopping criteria occurs:
- A maximum of 4 observations are made, or
- 3 T-bases occur in any order, or
- A TAA triplet (stop codon) appears in this order, or
- A \boldsymbol{G} occurs on position 2 or 3 .

Let \boldsymbol{X} be the random variable representing the total number of \boldsymbol{T}-bases observed in this composite experiment. Identify a meaningful probability distribution of the random variable \boldsymbol{X}. What are the mean and the standard deviation of \boldsymbol{X} ?

Hints for Prob. 1 in Project I

$\mathrm{X}=$ the total number of T-bases observed in the composite experiment. X is a discrete random variable which its values will take on $\{0,1,2,3\}$
Ignoring the stopping criteria, the entire sample space will be $\ldots .=256$ total possible permutations. It would be rather time consuming and tedious to list all 256 permutations. So we will create a new R.V., Y.
$\mathrm{Y}=$ the total number of bases observed until a stopping criterion is met. Y is a discrete R.V. which its values will take on $\{2,3,4\}$. Conditioning X on Y , now we can calculate their joint probabilities.
$\mathbf{Y}=\mathbf{2} X=0 \rightarrow \mathrm{P}(X=0 \mid Y=2)=\ldots$
$X=1 \rightarrow \mathrm{P}(X=1 \mid Y=2)=\ldots$
$\mathrm{P}(\mathrm{X}=0)=$ Sum_\{all y values $\} \mathrm{P}(X=0 \mid Y=\mathrm{y})$, etc.

