

Let's Make a Deal Paradox.

- The *intuition* of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a 50-50 chance of winning with either selection? This, however, is **not the case**.
- The probability of winning by using the switching technique is 2/3, while the odds of winning by not switching is 1/3. The easiest way to explain this is as follows:

Let's Make a Deal Paradox.

- The probability of picking the wrong door in the initial stage of the game is 2/3.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly 2/3.

- When the relative frequency of an event in the past is used to estimate the probability that it will occur in the future, what <u>assumption</u> is being made?
 - The underlying process is stable over time;
 Our relative frequencies must be taken from large numbers for us to have confidence in them as probabilities.
- All statisticians <u>agree</u> about how probabilities are to be combined and manipulated (in math terms), however, <u>not all</u> <u>agree</u> what probabilities should be associated with for a particular real-world event.
- When a weather forecaster says that there is a 70% chance of rain tomorrow, what do you think this statement means? (Based on our past knowledge, according to the barometric pressure, temperature, etc. of the conditions we expect tomorrow, 70% of the time it did rain under such conditions.)

Job losses in the US							
TABLE 4.4.1 Job Losses in the US (in thousands) Job Losses in the US (in thousands) for 1987 to 1991 Job Losses in the US (in thousands)							
	Reason for Job Loss						
	Workplace	Total					
	moved/closed	Slack work	abolished				
M ale	1,703	1,196	548	3,447			
Female	1,210	564	363	2,137			
Total	2,913	1,760	911	5,584			
		Slide 15	STAT 251, UCLA, Ivo Dir	10V			

Job losses cont.							
	Workplace moved/closed	Slack work	Position abolished	Total			
Male	1,703 -	1,196	548	3,447			
Female	1,210	564	363	2,137			
Total	2,913	1,760	911	5,584)		
TABLE4.4.2	Proportions of J	Job Losses from	n Table 4,4.1				
TABLE4.4.2	Proportions of J Reas	Job Losses from son for Job Los	n Table 4.4.1 s				
TABLE 4.4.2	Proportions of J Rea: Workplace moved/closed	Job Losses from son for Job Los Slack work	n Table 4,4.1 s Position abolished	I to	Ro ⁻ tal		
TABLE 4.4.2	Proportions of J Rea: Workplace moved/closed	Job Losses from son for Job Los Slack work .214	r Table 4.4.1 s Position abolished .098	H to	Ro tal		
TABLE 4.4.2 Male Female	Proportions of J Rear Workplace 	Slack work .214 .101	r Table 4.4.1 s Position abolished .098 .065	I to	Ro tal 61 38		
TABLE 4.4.2 Male Female Column totals	Proportions of J Rea: Workplace moved/closed .305 .217 .552	Job Losses from son for Job Los Slack work .214 .101 .315	Position abolished .098 .065 .163	H to	Ro tal 61 38		

- What is an event? (collection of outcomes)
- If A is an event, what do we mean by its complement, \overline{A} ? When does \overline{A} occur?
- If *A* and *B* are events, when does *A* or *B* occur? When does *A* and *B* occur?

• Tossing a coin twice. Sample space S={HH, HT, TH, TT}, for a fair coin each outcome is equally likely, so the probabilities of the 4 possible outcomes should be identical, *p*. Since, p(HH)=p(HT)=p(TH)=p(TT)=p and $p_{\pm} \ge 0$; $\Sigma p_{\pm} = 1$

STAT 251 UCLA

• $p = \frac{1}{4} = 0.25$.

<i>Melanoma</i> – type of skin cancer – an example of <u>laws of conditional probabilities</u>							
TABLE4.6.1: 400 N	Ielanoma Pa	tients by Ty	pe and Site	1			
	Head and	Si	te	. Pow			
Туре	Neck	Trunk	Extremities	Totals			
Hutchinson's							
melanomic freckle	22	2	10	34			
Superficial	16	54	115	185			
Nodular	19	33	73	125			
Indeterminant	11	17	28	56			
Column Totals	68	106	226	400			
Contingency table based on Melanoma <u>histological type</u> and its <u>location</u>							

Israelis that are poor and Arabic?					
pr(A and B) = pr(A B)pr(B) = pr(B A)pr(A)					
	Jews	Arabs	Total		
Poor	0.0772	0.0728	Assume 0.15		
Not-poor	0.7828	0.0672	0.85		
Total	0.86	0.14	1.0		

Having a Given Mean Absorbance Ratio (MAR) in the ELISA for HIV Antibodies						
MAR	Healthy Dono	r I	HV patie	ents		
<2	202	275	0	l - Fals		
2 - 2.99	₇₃ J	Test c	ut-off ²	∫ ² Neg		
				(β)		
3 - 3.99	15		7	Power		
4 - 4.99	3	False-	7	a test		
5 - 5.99	2	Positiv	es 15	(1 - R)		
6 -11.99	2	(α)	36	1-P(FN		
12+	0		21	1-P(Neg		
Total	297		88	~ 0.97		

pr(HIV and Positive) = pr(Not HIV and Negative) = pr(Positive HIV) × pr(HIV) [= 98% of 1%] Test result Positive Negative Total					
Disease status	HIV . Not HIV	98 × .01 ? .93	? .0 ? .0 ×.99 .9	$1 \longrightarrow pr(HIV)$ $1 \longrightarrow pr(Not Hold Hold Hold Hold Hold Hold Hold Hold$	= .01 IIV) = .99
Total ? 1.00 TABLE 4.6.6 Proportions by Disease Status					
	esult				
and Test R	court		Test Resu	ılt	
and Test R	court	Positiv	Test Resu e	ılt Negative	Total
Disease	HIV	Positiv .0098	Test Resi e	lt Negative .0002	Total .01
and Test R Disease Status	HIV Not HIV	Positiv .0098 .0693	Test Resu e	lt Negative .0002 .9207	Total .01 .99

Proportions of HIV infections by country							
TABLE 4.6.7 Proportions Infected with HIV							
Country	No. AIDS Cases	Population (millions)	pr(HIV)	Having Test pr(HIV Positive)			
United States	218,301	252.7	0.00864	0.109			
Canada	6,116	26.7	0.00229	0.031			
Australia	3,238	16.8	0.00193	0.026			
New Zealand	323	3.4	0.00095	0.013			
United Kingdom	5,451	57.3	0.00095	0.013			
Ireland	142	3.6	0.00039	0.005			

People vs. Collins							
TABLE 4.7.2 Frequencies Assumed by the Prosecution							
Yellow car	$\frac{1}{10}$	Girl with blond hair	$\frac{1}{3}$				
M an with mustache	$\frac{1}{4}$	Black man with beard	$\frac{1}{10}$				
Girl with ponytail	$\frac{1}{10}$	Interracial couple in car	$\frac{1}{1000}$				
 Ciri with ponytail <u>10</u> Interracial couple in car <u>1000</u> The first occasion where a conviction was made in an American court of law, largely on statistical evidence, 1964. A woman was mugged and the offender was described as a wearing dark cloths, with blond hair in a pony tail who got into a yellow car driven by a black made accomplice with mustache and beard. The suspect brought to trial were picked out in a line-up and fit all of the descriptions. Using the <i>product rule for probabilities</i> an expert witness computed the chance that a random couple meets these characteristics, as 1:12.000.000. 							

$$pr(A) = \frac{\text{number of outcomes in } A}{\text{total number of outcomes}}$$

Summary of ideas cont.

- The *complement* of an event A, denoted \overline{A} , occurs if A does not occur
- It is useful to represent events diagrammatically using *Venn diagrams*
- A union of events, A or B contains all outcomes in A or B (including those in both). It occurs if at least one of A or B occurs
- An intersection of events, A and B contains all outcomes which are in both A and B. It occurs only if both A and B occur
- Mutually exclusive events cannot occur at the same time

Summary of ideas cont.

- The *conditional probability* of A occurring *given* that B occurs is given by $pr(A | B) = \frac{pr(A \text{ and } B)}{pr(B)}$
- Events A and B are *statistically independent* if knowing whether B has occurred gives no new information about the chances of A occurring, i.e. if P(A / B) = P(A) → P(B|A)=P(B).
- If events are physically independent, then, under any sensible probability model, they are also statistically independent
- Assuming that events are independent when in reality they are not can often lead to answers that are grossly too big or grossly too small

Examples – Birthday Paradox
• The Birthday Paradox: In a random group of N people, what is the change that at least two people have the same birthday?
• E.x., if N=23, P>0.5. Main confusion arises from the fact that in real life we rarely meet people having the same birthday as us, and we meet more than 23 people.
The reason for such high probability is that any of the 23 people can compare their birthday with any other one, not just you comparing your birthday to anybody else's.
There are N-Choose-2 = 20*19/2 ways to select a pair or people. Assume there are 365 days in a year, P(one-particular-pair-same- B-day)=1/365, and
P(one-particular-pair-failure)=1-1/365 ~ 0.99726.
▶ For N=20, 20-Choose-2 = 190. E={No 2 people have the same birthday is the event all 190 pairs fail (have different birthdays)}, then P(E) = P(failure) ¹⁹⁰ = 0.99726 ¹⁹⁰ = 0.59.
Hence, P(at-least-one-success)=1-0.59=0.41, quite high.

● Note: for N=42 → P>0.9 ...

	Ma	rginal vs.	Joint B	Bivaria	te Distributions		
	 The joi catch the second second	nt density, P he first fish, 2 ond fish, Y , i	{X,Y}, of X, and the s given be	the numb number low.	er of minutes waiting to of minutes waiting to catch		
	P { $X = i, Y$	$Z = \mathbf{k}$	k				
		1	2	3	Row Sum P{ $X = i$ }		
3	1	0.01	0.02	0.08	0.11		
3	i 2	0.01	0.02	0.08	0.11		
	3	0.07	0.08	0.63	0.78		
	Column S	lum					
	$P \{Y = k\}$	0.09	0.12	0.79	1.00		
	The (joint) chance of waiting 3 minutes to catch the first fish and 3 minutes to catch the second fish is:						
	The (mar is:	ginal) chance	e of waitir	ng 3 minu	ites to catch the first fish		
	The (mar is:	ginal) chance	e of waitir	ng 2 minu	ites to catch the first fish		

	Ma	argin	al vs.	Joint B	ivaria	te Distributions		
ſ	$P \{X = i$, Y = k	}	k				
			1	2	3	Row Sum P{ $X = i$ }		
	1		0.01	0.02	0.08	0.11		
	i 2		0.01	0.02	0.08	0.11		
	3		0.07	0.08	0.63	0.78		
	Column	Sum						
	P { <i>Y</i> =k	}	0.09	0.12	0.79	1.00		
	The cha	nce of	waiting	g at least tw	vo minu	tes to catch the first fish is		
	P {X =2	} = 0	.11 +0 .	78 =0 .89				
	$P \{X = 2\}$,Y = 1	$+P\{X$	X = 2, Y = 2	$+ P\{X \}$	$=2, Y = 3 \} + P\{X = 3, Y = 1\}$		
	$+ P\{X=3, Y=2\} + P\{X=3, Y=3\} =$							
	0.01 + 0.02 + 0.08 + 0.07 + 0.08 + 0.63 = 0.89							
	$p_X(2) =$	p(2,1)	+ p(2)	(2) + p 2, (3)	= 0.01	+0.02+0.08 = 0.11 $\pi(2.1) + \pi(2.2) + \pi(2.1)$		
	$p_{X}(2) = ,3) =$	0.01	{y :p (2 +0.02	y >0 [p + 0 .08 = 0	.11	= p(2,1) + p(2,2) + p(2)		

	Marg	inal vs.	Joint B	ivaria	te Distributions			
P	{ <i>X</i> = i, <i>Y</i> =	= k }	k					
		1	2	3	Row Sum P{ $X = i$ }			
	1	0.01	0.02	0.08	0.11			
i	2	0.01	0.02	0.08	0.11			
	3	0.07	0.08	0.63	0.78			
C	olumn Sur	n						
P	{ <i>Y</i> =k }	0.09	0.12	0.79	1.00			
T	The chance of waiting at most two minutes to catch the first fish and at most two minutes to catch the second fish is							
Р	$P \{X = 2, Y = 2\} = 0.06$							
P	$\begin{array}{l} P \{X=1,Y=1 \} + P\{X=1,Y=2 \} + P\{X=2,Y=1 \} + P\{X=2,Y=1 \} + P\{X=2,Y=2 \} = 0.01 + 0.02 + 0.01 + 0.02 = 0.06 \end{array}$							
F	$F(2,2) = P\{X \le 2, Y \le 2\} = 0.06$							
F	$_{\rm X}(2) = \mathrm{F}(2)$	(2, 8) = F(2)	(,3) = 0.	22				

Law of Total Probability & Bayesian Rule
A useful identity (sometimes called the <u>law of total</u> <u>probability</u>) is
$\mathbf{P}(\mathbf{E}) = \mathbf{P}(\mathbf{E} \mathbf{F}) \mathbf{P}(\mathbf{F}) + \mathbf{P}(\mathbf{E} \mathbf{F}^{c}) \mathbf{P}(\mathbf{F}^{c})$
A version of <u>Bayes Formula</u> is
$\mathbf{P}(\mathbf{F} \mid \mathbf{E}) = \mathbf{P}(\mathbf{E} \mid \mathbf{F}) \mathbf{P}(\mathbf{F}) / \mathbf{P}(\mathbf{E}) \iff \mathbf{P}(\mathbf{F}) \mathbf{P}(\mathbf{F})$
$\mathbf{P}(\mathbf{F} \mid \mathbf{E}) = \mathbf{P}(\mathbf{E} \mid \mathbf{F}) \mathbf{P}(\mathbf{F}) / [\mathbf{P}(\mathbf{E} \mid \mathbf{F}) \mathbf{P}(\mathbf{F}) + \mathbf{P}(\mathbf{E} \mid \mathbf{F}^{c}) \mathbf{P}(\mathbf{F}^{c})]$
Example: Given that probability of survival given genetic
pre-disposure is 0.3, what is the probability that someone
the disease? Assume this genetic disorder occurs in 1%
of population and P(dying no genetic disorder) = 0.1% .
$P(G S^{c}) = P(S^{c} G) P(G) / [P(S^{c} G)P(G) + P(S^{c} G^{c})P(G^{c})] =$
0.7*0.01 / [0.7*0.01 + 0.1*0.99] = 0.07
Slide 49 STAT 251, UCLA, Ivo Dinov

Hints for Prob. 1 in Project I

- X = the total number of T-bases observed in the composite experiment. X is a discrete random variable which its values will take on {0, 1, 2, 3}
- Ignoring the stopping criteria, the entire sample space will be = 256 total possible permutations. It would be rather time consuming and tedious to list all 256 permutations. So we will create a new R.V., Y.
- Y = the total number of bases observed until a stopping criterion is met. Y is a discrete R.V. which its values will take on {2, 3, 4}. Conditioning X on Y, now we can calculate their joint probabilities.

0.51

 $\mathbf{Y} = \mathbf{2} X = 0 \quad \Rightarrow \mathbf{P}(X = 0 \mid Y = 2) = \dots$ $X = 1 \quad \Rightarrow \mathbf{P}(X = 1 \mid Y = 2) = \dots$

 $P(X=0) = Sum_{all y values} P(X = 0 / Y = y), etc.$

Hints for Prob. 1 in Project I
• Suppose a scientific experiment (e.g., reading DNA sequences) has exactly 4 possible outcomes (encoded by: <i>A</i> , <i>C</i> , <i>T</i> , <i>G</i>). Assume all 4 possible outcomes are independent and equally likely at each observation. A composite experiment is carried out until one of the following stopping criteria occurs:
• A maximum of 4 observations are made, or
• 3 <i>T</i> -bases occur in any order, or
• A <i>TAA</i> triplet (<i>stop codon</i>) appears in this order, or
• A G occurs on position 2 or 3.
Let X be the random variable representing the total number of T -bases observed in this composite experiment. Identify a meaningful <u>probability distribution</u> of the random variable X . What are the <i>mean</i> and the <i>standard</i> <i>deviation</i> of X ?

Slide 50

STAT 251 UCLA