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Let'sMake a Deal Paradox — W
aka, M onty Hall 3-door problem SE
® This par isrelated to a popular television show
in the 1970's. In the show, a contestant was given a
choice of three doors/cards of which one contained a

prize (diamond). The other two doors contained gag
giftslike achicken or adonkey (clubs).
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Let's Make a Deal Paradox.

® Theintuition of most people tells them that each of
the doors, the chosen door and the unchosen door, are
equally likely to contain the prize so that thereisa
50-50 chance of winning with either selection? This,
however, isnot the case.

® The probability of winning by using the switching
technique is 2/3, while the odds of winning by not
switching is 1/3. The easiest way to explain thisisas
follows:

Probabilities, Bayesian Rule, Marginal and
Joint PM F/PDFs

Let'sMake a Deal Paradox.

® After the contestant chose an initial door, the host of
the show then revealed an empty door among the two
unchosen doors, and asks the contestant if he or she
would like to switch to the other unchosen door. The

question is should the contestant switch. Do the odds

of winning increase by switching to the remaining
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Let'sMake a Deal Paradox.

® The probability of picking the wrong door in the
initial stage of the gameis 2/3.

@ |f the contestant picks the wrong door initialy, the
host must reveal the remaining empty door in the
second stage of the game. Thus, if the contestant
switches after picking the wrong door initialy, the
contestant will win the prize.

® The probability of winning by switching then reduces
to the probability of picking the wrong door in the
initial stage which isclearly 2/3.




Let'sMake a Deal Paradox.

® Demo: Additional Aids.dir/StatGames.exe

® Uncertainty—>Pick a door

Definitions...

® Thelaw of averages about the behavior of coin tosses
—therelative proportion (relative frequency) of heads-to-tails
in a coin toss experiment becomes more and more stable as
the number of tosses increases. The law of averages applies to
relative frequencies not absolute counts of #H and #T.

® Two widely held misconceptions about what the |aw
of averages about coin tosses:

M Differences between the actual numbers of heads & tails
becomes more and more variable with increase of the
number of tosses — a seg. of 10 heads doesn’t increase the
chance of atail on the next trial.

M Coin toss results are fair, but behavior isstill unpredictable.

Sample spaces and events

® A sample space, S for arandom experiment is the set
of all possible outcomes of the experiment.

® An event isacollection of outcomes.

® An event occursif any outcome making up that event
occurs.

L ong run behavior of coin tossing

Number of tosses

Proportion of heads versus number of tosses
for John Kerrich's coin tossing experiment.

[From Ghance Encouriersby C.1 Wild nd G A F. Seber, © 0 Viiley & Sors, 2000

Figure4.1.1

Sample Spaces and Probabilities

® When the relative frequency of an event in the past is used to
estimate the probability that it will occur in the future, what
assumption is being made?
B The underlying processiis stable over time;
B Our relative frequencies must be taken from large numbers for us to
have confidence in them as probabilities.

® All statisticians agree about how probabilities are to be
combined and manipulated (in math terms), however, not all
agree what probabilities should be associated with for a
particular real-world event.

® When aweather forecaster says that there is a 70% chance of
rain tomorrow, what do you think this statement means? (Based
on our past knowledge, according to the barometric pressure, temperature,
etc. of the conditions we expect tomorrow, 70% of the time it did rain
under such conditions.)

The complement of an event

@ The complement of an event A, denoted A,
occursif and only if A does not occur.

o] o] [O]

@ Sample space con- (b) Event A shaded (c) Ashaded
taining event A

Figure4.4.1

Anevent A inthe sample space S.




Combining events — all satiticians agree on

® “ A or B” contains all outcomesin A or B (or both).

® “A and B” containsall outcomes which arein both A
and B.

A B A B A B A B
(a) EventsAandB (b) “Aor B" shaded (c) “Aand B” shaded (d) Mutualy exclusive
events

Figure4.4.2 Two events.

rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000,

Mutually exclusive events cannot occur at the same time,

Job lossesin the US

TABLE4.4.1 JobLossesin the US (in thousands)
for 1987 to 1991

Reason for Job Loss

Workplace Position Total

moved/closed Slack work abolished
Made 1,703 1,196 548 3,447
Femde 1,210 564 363 2,137

2,913 1,760

911

Review

® What is a sample space? What are the two essential
criteria that must be satisfied by a possible sample
space? (completeness— every outcome is represented; and uniqueness—
no outcome is represented more than once.

® What is an event? (collection of outcomes)

® If A isanevent, what do we mean by its
complement, A ? When does A occur?

® If A and B areevents, when does A or B occur?
When does A and B occur?

Probability distributions

® Probabilities always lie between 0 and 1 and they
sumup to 1 (across al simple events) .

® pr(A) can be obtained by adding up the probabilities
of al the outcomesin A.

pr(A) =z pr(E)

Job losses cont.

Workplace Position Total

moved/closed  Slack wock—atotrsked
Mde (€D 1,196 548 \ 3447
Femde 1,210 564 363 N 2137
Total 2913 1,760 o11  [( 5584 )

TABLE 4.4.2CProportionSof Job Losses from Table}f{-

Reason for Job),d(
Workplace Position Row
moved/cl Slack work  abolished totals

Made 305D 214 098 617

Femde 217 .101 .065 .383

Column totas .552 315 .163

Properties of probability distributions

® A sequence of number {p,, p,, ps, ..., pn} isaprobability
distribution for asample space S={s,, s, s;, ..., 5}, if
pr(s) = p. for each 1<=k<=n. The two essential
properties of aprobability distribution py, p,, ... , Py?

520 Zi =L
® How do we get the probability of an event from the
probabilities of outcomes that make up that event?

® |f all outcomes aredistinct & equally likely, how do we calculate

pr(A) ?1f A= {a, a, a, ..., agh and pr(ay)=pr(ay)=...=pr(ag)=p;
then

pr(A) =9 x pr(a;) = 9p.




Example of probability distributions

® Tossing acoin twice. Sample space S={HH, HT, TH,
TT}, for afair coin each outcomeis equaly likely, so
the probabilities of the 4 possible outcomes should be
identical, p. Since, p(HH)=p(HT)=p(TH)=p(TT)=p and
520 Zi =2

®p=Y=025

Review

®|f A and B are mutualy exclusive, what isthe
probability that both occur? o What is the probability
that at least one 0ccurs? (sumof probabilities)

® |f we have two or more mutually exclusive events,
how do we find the probability that at least one of them
OCCUIS? (sum of probabilities)

® Why isit sometimes easier to compute pr(A) from

pr(A) = 1-pr( A )? (Thecomplement of the even may be easer to find
or may have a known probability. E.g., arandom number between 1 and 10 is drawn.
Let A ={anumber less than or equal to 9 appears}. Find pr(A) = 1 —pr(A)).
probability of A is pr({10 appears}) = 1/10 = 0.1. Also Monty Hall 3 door example!

Conditional Probability

The conditional probability of A occurring given that
B occursis given by
pr(A and B)

A|B)=
prAIB) =

Suppose we select one out of the 400 patients in the study and we
want to find the probability that the cancer is on the extremities
given that it is of type nodular: P = 73/125 = P(C. on Extremities | Nodular)

Rulesfor manipulating
Probability Distributions

For mutually exclusive events,
pr(Aor B) = pr(A) +pr(B)

rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Melanoma — type of skin cancer —
an example of laws of conditional probabilities

TABLE4.6.1: 400 Melanoma Patients by Type and Site
Site

Head and Row
Type Neck Trunk Extremities Totals
Hutchinson's
melanomic freckle 22 2 10 k)
Superficial 16 54 115 185
Nodular 19 33 73 125
Indeterminant 11 17 28 56
Column Totals 68 106 400

0.0728

0\ 014

Figure4.6.1

M uItiIication rule- what’s the per centage of

Israat arepoor and Arabic?

Illustration of the multiplication rule.

pr(AadB) = pr(A|B)pI(B) = pr(BI Api(A |

- 14% of these are Arabic

. 52% of this 14% are poor

7.28% of |sraelis are both poor and Arabic
(0.52x .014 = 0.0728)

10

All peoplein Israel

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.




Multiplication rule- what's the per centage of
|sraelisthat are poor and Arabic?

pr(AandB) = pr(AIB)Dr(E) = pr(BI Apr(A |

First Second
Draw Draw

Path

PORIT = W, 4

Figure4.6.2 Tree diagram for a sampling problem.

I 2-way tablefor poverty in |srael

pr(Poor and Arabic) = r(Poor and Jewish) =
pr(Poor|Arabic) x pr(Arabic) . pr(Poor|Jewish) x pr(Jewish)
[ = 52% of 14%] Ethnicity [ = 11% of 86%]

Arabic  Jewish / Total

\ v
Poor 52x.14 11x.86| ?
Not poor ? ? ?
Total 14 .86 1.00

Poverty

pr(Arabic) = .14 —/ \ pr(Jewish) =.86

Figure4.6.4

Proportions by Ethnicity and Poverty.

A treediagram for computing
conditional probabilities

Suppose we draw 2 balls at random one at atime
without replacement from an urn containing 4 black
and 3 white balls, otherwise identical. What is the
probability that the second ball is black? Sample Spc?
Mutually
P({2-nd ball isblack}) = ] exusive
P({2-nd isblack} &{1-stisblack})/+
P({2-nd isblack} &{1-stiswhite}) =
4/7x 3/6 + 4/6x 37 =4/7.

Treediagram for poverty in Israel

S Poverty | Product

Group Leve Equals
Arabic pr(Poor\ A )= 052 Poor  pr(Poor and Arabic
s
Not  pr(Not and Arabic)

H=oll

Jewish v (Poorl Poor  pr(Poor and Jewishj
0.8 0) <
N pr(Not and Jewish)

ot

pr(Poor and Arabic) = r(Poor and Jewish) =
pr(Poor|Arabic) x pr(Arabic) L /Sr(Poorpewim) X pr(Jewish)
[ = 52% of 14%] Ethnicity [ = 11% of 86%]
Arabic  Jewish /| Total
Poor .SEx.l4 11x .86 ?
Not poor ? ? ?
Total 14 .86 1.00
N
pr(Arabic) = .14 _/ S pr(Jewish) = .86
TABLE 4.6.3 Proportions by Ethnicity
and Poverty

Poverty

Ethnicity
Arabic_ Jewish Total
Poverty  Poor .0728 .0946 1674
Not Poor _|.0672 .7654 .8326
Total 14 .86




Conditional probabilities and 2-way tables

©® Many problems involving conditional probabilities
can be solved by constructing two-way tables

® Thisincludes reversing the order of conditioning

HIV cont.

TABLE 4.6.5 Number of Individuals
Having a Given Mean Absorbance Ratio
(MAR) inthe ELISA for HIV Antibodies
MAR Healthy Donor HIV patients
<2 202 } 275 0 False:
2-299 73 Test cut-off 2 Negativey
(B)
3 - 399 15 Pow R
4 - 499 3 False- 7
5 - 5.99 2 Positives 15
6 -11.99 2 (a) 36
12+ 0 21
Total 297 88

Adapted from Weiss et al.[1985]

pr(HIV and Positive) = pr(Not HIV and Negative) =
pr(PositiveHIV) x pr(HIV) pr(Negative]Not HIV) x pr(Not HIV)
[ = 98% of 1%] [ = 93% of 99%)]
Test result
Positive Negative [/ Total
K]
Dissase HIV  |@8x.01 2/ | 01— p(Hiv)=o1
satus  Not HIV ? 93x.99 | .99 ~— pr(Not HIV) =.99
Total ? ? 1.00
Figure4.6.6 Putting HIV information into the table.
f-rom Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Proportions of HIV infections by country

TABLE 4.6.7 Proportions Infected wi v
No. AIDS  Population Having | Test

Country Cases (millions) pr(HIV) pr(HIV | Positive)
United States 218,301 252.7 0.00864 0.109
Canada 6,116 26.7 0.00229 0.031
Australia 3,238 16.8 0.00193 0.026

New Zealand 323 34 0.00095 0.013
United Kingdom 5451 57.3 0.00095 0.013
Ireland 142 3.6 0.00039 0.005

HIV —reconstructing the contingency table
pr(HIV and Positive) = pr(Not HIV and Negative) =
pr(PositivelHIV) x pr(HIV) pr(Negative]Not HIV) x pr(Not HIV)

[ = 98% of 1%] [ = 93% of 99%]
Test result
itive Negative / Tota
Disease HIV .98 x .01 ? .01 — pr(HIV) = .01
status  Not HIV ? .93x.99 | .99 — pr(Not HIV) = .99
Total ? ? 1.00
TABLE 4.6.6 Proportions by Disease Status
and Test Result
Test Result
Positive Negative Total
Disease HIV .0098 .0002 .01
Status Not HIV .0693 .9207 .99
Total .0791 .9209 1.00

Statistical independence

® Events A and B are statistically independent if
knowing whether B has occurred gives no new
information about the chances of A occurring,

pr(A|B)=pr(A)

® Similarly, P(B | A) = P(B), since
P(BIA)=P(B & A)/IP(A) =

® |f A and B are statistically independent, then

pr( Aand B) = pr(A) x pr(B)

ie if

P(ME)P(B)/B(A) = P(B)




Peoplevs. Collins

TABLE4.7.2 Frequencies Assumed by the Prosecution

Yellow car 1 Girl with blond hair 1
10 3

M an with mustache E Black man with beard i
4 10

Girl with ponytail i Interracia couplein car L
10 1000

® Thefirst occasion where a conviction was made in an American court of law,
largely on statistical evidence, 1964. A woman was mugged and the offender
was described as awearing dark cloths, with blond hair in a pony tail who
got into a yellow car driven by a black male accomplice with mustache and
beard. The suspect brought to trial were picked out in aline-up and fit all of
the descriptions. Using the product rule for probabilities an expert witness

computed the chance that arandom couple meets these characteristics, as

1:12,000,000.

Summary of ideas cont.

An event is acollection of outcomes

® An event occurs if any outcome making up that event
occurs

@ The probability of event A can be obtained by adding
up the probabilities of al the outcomesin A

® If all outcomes are equally likely,

_ number of outcomesin A

pr(A)

" total number of outcomes

Summary of ideas cont.

® The conditional probability of A occurring given that B occursis

given by r(Aand B
pr(a|B) = PLAIE)
()

® Events A and B are statistically independent if knowing whether
B has occurred gives no new information about the chances of A
occurring, i.e. if P(A|B)=P(A) >  P(BJA)=P(B).

® |f events are physically independent, then, under any sensible
probability model, they are also statistically independent

® Assuming that events are independent when in reality they are
not can often lead to answers that are grossly too big or grossly
too small

Summary

® What does it mean for two events A and B to be
statistically independent?

® Why is the working rule under independence,
P(Aand B) = P(A) P(B), just a special case of the
multiplication rule P(A & B) = P(A| B) P(B) ?

® Mutual independence of events A, A,, A,, ..., A, if and
onlyif P(A, & A, & ... & A) = P(A)P(Ay)...P(A,)

® What do we mean when we say two human
characteristics are positively associated? negatively
associ ated? (blond hair —blue eyes, pos:; black hair — blue eyes, neg.assoc.)

Summary of ideas cont.

® The complement of an event A, denoted Z\ occursif A does
not occur

® |tisuseful to represent events diagrammatically using Venn
diagrams

® A union of events, A or B containsall outcomesin Aor B
(including those in both). It occursif at least one of A or B
occurs

® An intersection of events, A and B contains all outcomes
which arein both A and B. It occursonly if both Aand B
occur

® Mutually exclusive events cannot occur at the sametime

Formula summary cont.

opr(9=1
®pr(A)=1-pr(A)

® |f Aand B are mutually exclusive events, then
pr(A or B) = pr(A) + pr(B)

(here “or” isused in theinclusive sense)

e If A, A, .. A aemutualy exclusive events, then

pr(A,or Aor ... or A) = pr(A)+pr(A)+...+pr(A)




Formula summary cont.

Conditional probability

® Definition:
pr(AandB)

prAlg) = S

® Multiplication formula:

pr(A and B) = pr(BJA)pr(A) = pr(AlB)pr(B)

Examples — Birthday Paradox |

® The Birthday Paradox: In arandom group of N people, what isthe
change that at least two people have the same birthday?

® E.x., if N=23, P>0.5. Main confusion arises from the fact that in
real life we rarely meet people having the same birthday as us, and
we meet more than 23 people.

® The reason for such high probability is that any of the 23 people
can compare their birthday with an other one not just you
comparing your birthday to anybody el

® There are N-Choose-2 = 20*19/2 ways to select apair or people.
Assume there are 365 days in a year, P(one-particul ar-pair-same-
B-day)=1/365, and

® P(one-particular-pair-failure)=1-1/365 ~ 0.99726.

® For N=20, 20-Choose-2 = 190. E={No 2 people have the same
birthday is the event all 190 pairsfail (have different birthdays)},
then P(E) = P(failure)1% = 0.99726'% = 0.59.

® Hence, P(at-least-one-success)=1-0.59=0.41, quite high.

® Note: for N=42 = P>0.9 ...

M arginal vs. Joint Bivariate Distributions |
P{X=iY=k} k

1 2 3 RowSumP{X=i}
1 001 002 008 o011
P2 001 002 008 011
3 007 008 063 078

Column Sum

P{Y=k} 0.09 012 0.79 1.00

The chance of waiting at least two minutesto catch thefirst fishis
P{X=2}=0.11+0.78=0.89

P{X=2,Y =1} +P[X =2.Y 2}+P{X—2Y—3}+P{X—3Y =1
+P[X =3,y =2} +P{X =3,y =3} =

0.01+0.02+0.08+0.07+0 .08 +0 .63 = 0.89
P2 =p2,1) +p(2,2)+p2,3) =0.01+0.02+0.08 = 0.11

px(2; Sum {y:p(2,y)>0} [p(2,y)] =p2,1)+p(2,2) +p(2
3) =0.01+0.02+0.08 =

Formula summary cont.

Multiplication Rule under independence:
® |f A and B areindependent events, then
pr(Aand B) = pr(A) pr(B)

o If A, A, ..., A, aremutually independent,

pr(A; and A, and ... and A) = pr(A) pr(Ay) ... pr(A)

M arginal vs. Joint Bivariate Distributions |

® Thejoint density, P{X,Y}, of the number of minutes waiting to
thefirst fish, X , and the number of minutes waiting to catch
the second fish, Y, is given below.

P{X=iY=k} k
1 2 3 Row SumP{X =i}
1 0.01 0.02 0.08 0.11
i 2 0.01 0.02 0.08 0.11
3 0.07 0.08 0.63 0.78
Column Sum

P{y=k} 0.09 0.12 0.79 1.00

The (joint) chance of waiting 3 minutesto catch thefirst fish and
3 minutesto catch the second fish is:

The (marginal) chance of waiting 3 minutesto catch thefirst fish
is:

The (marginal) chance of waiting 2 minutesto catch thefirst fish
is:

M arginal vs. Joint Bivariate Distributions |

{X=iY=k} k
1 2 3 Row SumP{ X =i}
1 0.01 0.02 0.08 0.11
i 2 0.01 0.02 0.08 0.11
3 0.07 0.08 0.63 0.78
Column Sum

P{y=k} 0.09 0.12 0.79 1.00

The chance of waiting at most two minutesto catch thefirst fish
and at most two minutesto catch the second fish is

P{X=2)Y=2}=0.06
P{X}lY =1} +P{X =1,Y =2} +P(X 2Y =1} +P{X=2.Y
0.06

0.01+0.02+0.01+0.02 =

F(2,2) = P{X<=2,Y<=2} = 0.06
F(2 = F2,8=F2,3 = 0.22




| Law of Total Probability & Bayesian Rule |

A useful identity (sometimes called the |aw of total
probability) is
P(E) = P(E |F) P(F) + P(E |F¢) P(F°)
[ | A version of Bayes Formulais
P(F|E) =P(E |F) P(F)/ P(E) €« =
P(F|E) = P(E | F) P(F) / [ P(E | F) P(F) +P(E | F°) P(F) ]

Example: Given that probability of survival given genetic
pre-disposureis 0.3, what is the probability that someone
has the genetic disorder given that the subject died from
the disease? Assume this genetic disorder occursin 1%
of population and P(dying | no genetic disorder) = 0.1%.

P(GIS’) = P(S7IG) P(G)[ASIG)P(G) + A(SIG)P(GY)] =

0.7%0.01/[0.7*¥0.01 + 0.1*0.99] = 0.07

| Hintsfor Prob. 1in Project | |

X =the total number of T-bases observed in the composite
experiment. X is adiscrete random variable which its
values will takeon {0, 1, 2, 3}

| | Ignoring the stopping criteria, the entire sample space will

|| be.... =256 total possible permutations. It would be

rather time consuming and tedious to list all 256

permutations. So we will createanew R.V., Y.

Y =thetotal number of bases observed until a stopping
criterionismet. Y isadiscrete R.V. which its values will
takeon {2, 3, 4}. Conditioning X on 'Y, now we can
calculate their joint probabilities.

Y=2X=0 2PX=0]Y=2)=...
X=1 2PX=1|Y=2)=..
P(X=0) = Sum_{all y values} P(X=0] Y =Yy), etc.

| Hintsfor Prob. 1in Project | |

® Suppose a scientific experiment (e.g., reading DNA
sequences) has exactly 4 possible outcomes (encoded by:
A, C, T, G). Assumeall 4 possible outcomes are
independent and equally likely at each observation. A
composite experiment is carried out until one of the
following stopping criteria occurs:

® A maximum of 4 observations are made, or

® 3 T-bases occur in any order, or

® A TAA triplet (stop codon) appearsin this order, or
® A G occurs on position 2 or 3.

Let X be the random variabl e representing the total number
of T-bases observed in this composite experiment.
Identify a meaningful probability distribution of the
random variable X . What are the mean and the standard
deviation of X ?




