Stat13 Homework 6
 http://www.stat.ucla.edu/~dinov/courses_students.html
 Suggested Solutions

HW_6_1 (25 points)
Let $\mathrm{X}=$ price of $100 \mathrm{~g} . \mathrm{X}$ is approximately Normal.
Plan 1: T1 = 6 X
Plan 1: $\mathrm{T} 2=\mathrm{Y} 1+\mathrm{Y} 2+\mathrm{Y} 3+\mathrm{Y} 4$, where each Y is 1.5 X
Since X is $\operatorname{Normal}($ mean $=1205, \mathrm{SD}=100)$, we have: $\operatorname{Var}(\mathrm{X})=10000$ $\mathrm{E}(\mathrm{Y})=1.5 * 1205=1807.5, \operatorname{Var}(\mathrm{Y})=1.5 * 1.5 * \operatorname{Var}(\mathrm{X})=22500, \mathrm{SD}(\mathrm{Y})=150$.
Y is $\operatorname{Normal}($ mean $=1807.5,150 \wedge 2)$
(a) $\mathrm{E}(\mathrm{T} 1)=6 * 1205=7230$. (2 points)
$\operatorname{Var}(\mathrm{T} 1)=36 * \operatorname{Var}(\mathrm{X})$, so $\mathrm{SD}(\mathrm{T} 1)=\operatorname{sqrt}(36 * 100 * 100)=600$. (2 points)
T 1 is $\operatorname{Normal}($ mean $=7230, \mathrm{SD} \wedge 2=600 \wedge 2$). (2point)
(b) $\mathrm{E}(\mathrm{T} 2)=4 * 1807.5=7230 .(2$ points $)$
$\operatorname{Var}(\mathrm{T} 2)=\operatorname{Var}(\mathrm{Y} 1+\mathrm{Y} 2+\mathrm{Y} 3+\mathrm{Y} 4)=4 * \operatorname{Var}(\mathrm{Y} 1)=4 * 22500, \mathrm{SD}(\mathrm{T} 1)=300$. $(2$ points)

Here we assume each Y's are independent.
T 2 is $\operatorname{Normal}\left(\right.$ mean $=7230, \mathrm{SD}^{\wedge} 2=300^{\wedge} 2$). $(2$ point $)$
(c) The variance of plan 1 is larger. (2 points)
(d) Plan 1:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~T} 1>5800)= \\
& \mathrm{P}(\mathrm{Z}>(5800-7230) / 600 \quad)=\mathrm{P}(\mathrm{Z}>-2.38333)=0.9914(3 \text { points })
\end{aligned}
$$

(e) Plan 2:
$\mathrm{P}(\mathrm{T} 2>5800)=$
$\mathrm{P}(\mathrm{Z}>(5800-7230) / 300)=\mathrm{P}(\mathrm{Z}>-4.77)=.999999$ (3 points)
(f) Plan 1:
$\mathrm{P}(\mathrm{T} 1<5900)=$
$\mathrm{P}(\mathrm{Z}<(5900-7230) / 600)=\mathrm{P}(\mathrm{Z}<-2.217)=0.0133$ (3 points)
(g) Either one of the following explanations is acceptable: (2 points)

Explanation 1: Probability in (e) > Probability in (d), so it is more likely to exceed $\$ 5800$ using plan 2. Therefore, plan 1 is safer.
Explanation 2: Smaller variance yields better prediction. Plan 2 has smaller variance so it is safer.

HW_6_2 (10 points)

Each die: Let $\mathrm{X}=$ possible outcomes, so X could take on $1,2,3,4,5,6,7$, and 8 . $\mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\mathrm{X}=2)=\ldots .=1 / 8$.
$\mathrm{E}(\mathrm{X})=(1+2+3+\ldots+8) / 8=36 / 8=4.5(1$ point $)$
$\operatorname{Var}(X)=\left((1-4.5)^{2}+(2-4.5)^{2}+\ldots+(8-4.5)^{2}\right) / 8=5.25$. (1 point)
Five dice is rolled twice --
Let $\mathrm{X}_{\mathrm{i}, \mathrm{j}}=$ the outcome of the ith die, at the jth time, $\mathrm{i}=1,2,3,4,5$, and $\mathrm{j}=1,2,3$. (This is just one way to assign subscripts.)
Then $\mathrm{Y}=\mathrm{X}_{1,1}+\mathrm{X}_{1,2}+\ldots .+\mathrm{X}_{5,2}+\mathrm{X}_{5,3}$ (there are 15 terms here.)
Note each $\mathrm{X}_{\mathrm{i}, \mathrm{j}}$ is independent from another, so variance of the sum is the sum of the variance.
$\mathrm{m}_{\mathrm{Y}}=\mathrm{E}(\mathrm{Y})=3 * 5 * 4.5=67.5$. (2 points)
$\operatorname{Var}(\mathrm{Y})=\operatorname{Var}\left(\mathrm{X}_{1,1}+\mathrm{X}_{1,2}+\ldots+\mathrm{X}_{5,2}+\mathrm{X}_{5,3}\right)=3 * 5 * 5.25=78.75$.
So $\operatorname{SD}(\mathrm{Y})=\operatorname{sqrt}(78.75)=8.87412$ (2 points)
Now we carry out the experiment 11 times:
Let $\bar{Y}=$ sample mean of five dice being rolled twice. Sample size $=11$.
The by CLT, \bar{Y} is Normal. To estimate the mean and SD of \bar{Y} :
$\operatorname{Mean}(\bar{Y})=67.5$ (2 points)
$\mathrm{SD}(\bar{Y})=\operatorname{sqrt}(\operatorname{Var}(\mathrm{Y}) / 11)=2.675648$ (2 points)

HW_6_3 (15 points)

Let $\mathrm{X}=$ number of correctly remembered words of a mnemonics group subject.
(like "treatment")
Let $\mathrm{Y}=$ number of correctly remembered words of a normal group subject.
(like "control")
These two groups of samples are independent.
(a) For the sampled data:
mean $(X)=14.1, S D(X)=2.468752$
$\operatorname{mean}(\mathrm{Y})=9.631579, \mathrm{SD}(\mathrm{Y})=3.33684$ (1 point for each number)
(b) Let $\bar{X}=$ sample mean of the normal group.

Let \bar{Y} = sample mean of the normal group
An estimate of the "difference in the mean" is $\mathrm{D}=\bar{X}-\bar{Y}=4.468421$ (1point)
Sample variance of $\bar{X}, \mathrm{~S}_{\mathrm{x}}{ }^{2}=11.13450$
Sample variance of $\bar{Y}, \mathrm{~S}_{\mathrm{y}}{ }^{2}=6.094737$
$\mathrm{SD}(\mathrm{D})=\operatorname{sqrt}\left(\mathrm{S}_{\mathrm{x}}{ }^{2} / 19+\mathrm{S}_{\mathrm{y}}{ }^{2} / 20\right)=0.9438026(1$ point $)$
And D follows a t -distribution of $\mathrm{DF}=\min (20-1,19-1)=18$.
$\mathrm{t}_{0.975}=2.101$ (1 point)
$95 \% \mathrm{CI}=4.468 \pm 2.101 * 0.944=(2.485492,6.45135)(1$ point $)$
Plain English sentence: The 95\%CI does not cover zero, and this suggests that the difference, D, is significantly different from zero. (2 points)
(c) Approximate twice as much as old sample size.

We have: $\mathrm{n} 1=20$ and $\mathrm{n} 2=19$ are about the same. So, use $\mathrm{n} 1 \approx \mathrm{n} 2$.
To find the new CI, plug in:
New n1 = 4 n1,
New n2 $=4 n 2 \approx 4 n 1$
Sample variance $\mathrm{S}_{\mathrm{x}}{ }^{2}$ and $\mathrm{S}_{\mathrm{y}}{ }^{2}$ are approximately the same as they were before plugging using 4 n 1 .

Then, the new $\mathrm{CI}=0.5$ old CI.
Note that $\mathrm{t}_{0.975}$ does not change much (still about 2).
So the new sample should be four times of the old one. ($4 * 39=156$) (2 points)
(d) We don't know. It is possible that the 95\% CI covers / doesn't cover the true mean. But if we do such experiment again and again, then ABOUT 95\% of the CI's we construct will cover the true mean. (3 points)

