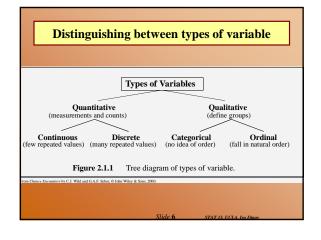


TABLE 2.1.1 Data on Male Heart Attack Patients

A subset of the data collected at a Hospital is summarized in this table. Each patient has measurements recorded for a number of variables – ID, Ejection factor (ventricular output), blood systolic/diastolic pressure, etc.

- Reading the table
- Which of the measured variables (age, ejection etc.) are useful in <u>predicting</u> how long the patient may live.
- Are there <u>relationships</u> between these predictors?
- variability & noise in the observations hide the message of the data.


Slide 3 STAT 13 UCL

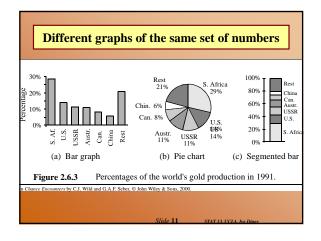
1D E 350	848- DIA JEC VOL VOI 72 36 131	OCCLU STEN	OUT- TIME COME A0 143 0 4		CHOL' SURG	
279 391 201	52 74 155	37 63	143 0 5	4 2 2	68 1	
201 202 69 310	TABL	E 2.1.1 E	Data on N	Iale He	art Atta	ck Patio
392 311 393			SYS-	DIA-		
70 203 394	ID	EJEC	VOL	VOL	OCCLU	STEN
204 280	390	72	36	131	0	0
55 79	279	52	74	155	37	63
205 206 312	391	62	52	137	33	47
80	201	50	165	329	33	30
207 282 396	202	50	47	95	0	100
396 208 209	69	27	124	170	77	23
283 210	310	60	86	215	7	50
397 211 398	392	72	37	132	40	10
284 399	311	60	65	163	0	40
285 71	288	59	39	94	0	0
286 212 400	407	67	39	117	0	73
262	NA = Not A	vailable (mis s	ing data code	e).		

Types of variable

- *Quantitative* variables are *measurements* and counts
 - Variables with *few repeated values* are treated as *continuous*.
 - Variables with *many repeated values* are treated as *discrete*
- *Qualitative* variables (a.k.a. factors or classvariables) describe *group membership*

STAT 13 UCLA IN

Questions ...


- What is the difference between quantitative and qualitative variables?
- What is the difference between a discrete variable and a continuous variable?
- Name two ways in which observations on qualitative variables can be stored on a computer. (strings/indexes)
- When would you treat a discrete random variable as though it were a continuous random variable?
 Can you give an example? (\$34.45, bill)

Storing and Reporting Numbers

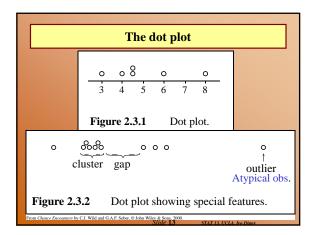
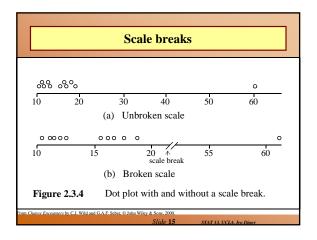
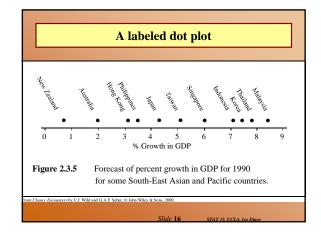
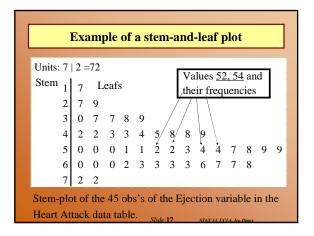
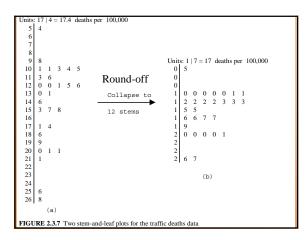

- Round numbers for presentation
- Maintain complete accuracy in numbers to be used in calculations. If you need to round-off, this should be the very last operation ...

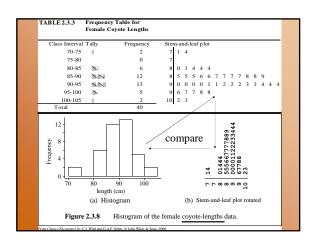
	Table I	before sin	nplificati	on	
TABLE 2.2.1	Gold Reserves	of Gold-Hol	ding IMF Co	untries	
Country	1970	1975	1980	1985	1990
Belgium	42.01	42.17	34.18	34.18	30.2
Canada	22.59	21.95	20.98	20.11	14.7
France	100.91	100.93	81.85	81.85	81.8
Italy	82.48	82.48	66.67	66.67	66.6
Japan	15.22	21.11	24.23	24.33	24.2
Netherlands	51.06	54.33	43.94	43.94	43.9
Switzerland	78.03	83.2	83.28	83.28	83.2
U.K.	38.52	21.03	18.84	19.03	18.9
U.S.A.	316.34	274.71	264.32	262.65	261.9

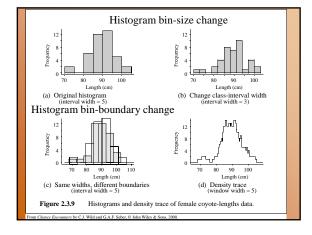

TABLE 2.2.2	2 Simplifie	d Table of	f Gold Res	erves of I	MF Co	untries
Country	1970	1975	1980	1985	1990	Avera
US	320	270	260	260	260	2
Switzerland	78	83	83	83	83	
France	100	100	82	82	82	
Italy	82	82	67	67	67	
Netherlands	51	54	44	44	44	
Belgium	42	42	34	34	30	
Japan	15	21	24	24	24	
UK	39	21	19	19	19	
Canada	23	22	21	20	15	
Average	83	78	71	71	70	
Average Units: millions of		78	71	71	70	

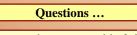


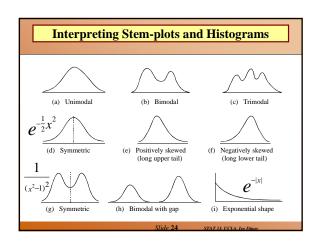

Questions	
• For what two purposes are tables of numbers presented? (convey information about trends in the data, detailed analysis)	
• When should you round numbers, and when should you preserve full accuracy?	
• How should you arrange the numbers you are most interested in comparing? (Arrange numbers you want to compare in columns, not rows. Provide written/verbal summaries/footnotes. Show row/column averages.)	
• Should a table be left to tell its own story?	
Slide 12 STAT 13. UCLA. Ivo Dinov	<u>'</u>

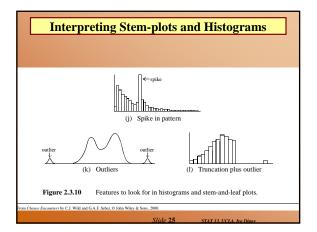

F		D	C- C	C+ B- B	B+ A.	- Δ Δ+
0	0	00		0 000	00	0
40	50	60	70	80	90	100
Figu	ıre 2.3.3	Gra	ding of a	universit	y cours	e.

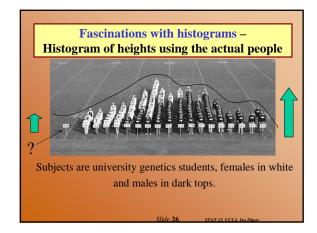


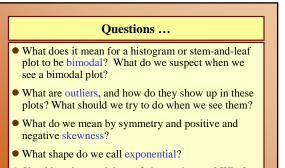



0.1 Czechosłovakia 13.0 Denmark 11.6 Finland 20.0 France 12.0 E. Germany 3.1 W. Germany 2.1.1 Greece 5.4 Hong Kong 17.1 Hungary 15.3 Ircland 0.3 Israel 10.4 Japan 26.8 Kuwait 11.3 Netherlands 20.1 New Zealand 0.5 Norway 14.6 Foland 25.6 Portugal 12.6 Singapore 9.8 Sweden	Traffic death-rates data								
7.4 Australia 20.1 Austria 19.9 Belgium 12.5 Bulgaria 15.8 Canada 0.1 Czechosłovakia 13.0 Denmark 11.6 Finland 20.0 France 12.0 E. Germany 3.1 W. Germany 21.1 Greece 5.4 Hong Kong 17.1 Hungary 15.3 Ircland 0.3 Israel 10.4 Japan 26.8 Kuwait 11.3 Netherlands 20.1 New Zealand 0.5 Norway 14.6 Poland 25.6 Portugal 12.0 Singapore 9.8 Sweden 5.7 Switzerland 18.6 United States 12.1 N. Ireland 10.1 England & Wales 14.6 F01804 504 or 1985 depending on the country (prior to comfaction of Germany) 10.1 England & Wales									
0.1 Czechosłovakia 13.0 Denmark 11.6 Finland 20.0 France 12.0 E. Germany 3.1 W. Germany 21.1 Greece 5.4 Hong Kong 17.1 Hungary 15.3 Ircland 0.3 Israel 10.4 Japan 26.8 Kuwait 11.3 Netherlands 20.1 New Zealand 0.5 Norway 14.6 Poland 25.6 Portugal 12.0 Singapore 9.8 Sweden 5.7 Switzerland 18.6 United States 12.1 N. Ireland 10.1 England & Wales tato from 189, 1994 or 1985 depending on the contrif (prior to confication of Germany)	TABLE 2.3.1 Traffi	c Death-Rates (per 100,0	00 Population) for 30	Countries					
3.1 W. Germany 21.1 Greece 5.4 Hong Kong 17.1 Hungary 15.3 Ireland 0.3 Israel 10.4 Japan 26.8 Kuwait 11.3 Netherlands 20.1 New Zealand 0.5 Norway 14.6 Poland 25.6 Portugal 12.6 Singapore 9.8 Sweden 7.5 Switzerland 18.0 United States 2.1. N. Ireland 12.0 Scotland 10.1 England & Wales bata for 1983, 1984 or 1985 depending on the country (prior to reunification of Germany) 10.1 England & Wales 10.1 England & Wales	17.4 Australia	20.1 Austria	19.9 Belgium	12.5 Bulgaria	15.8 Canada				
0.3 Israel 10.4 Japan 26.8 Kuwait 11.3 Netherlands 20.1 New Zealand 0.5 Norway 14.6 Poland 25.6 Portugal 12.6 Singapore 9.8 Sweden 5.7 Switzerland 18.6 United States 12.0 Stata 10.1 England & Wales at for 1983, 1984 or 1985 depending on the construction to comfication of Germany) 10.1 England & Wales	10.1 Czechoslovakia	13.0 Denmark	11.6 Finland	20.0 France	12.0 E. Germany				
0.5 Norway 14.6 Poland 25.6 Portugal 12.6 Singapore 9.8 Sweden 5.7 Swirefand 18.6 United States 12.1 N. Ireland 12.0 Scotland 10. England & Wales. tato fr 1983, 1994 or 1995 depending on the country (prior to remainfaction of Generamy)	13.1 W. Germany	21.1 Greece	5.4 Hong Kong	17.1 Hungary	15.3 Ireland				
5.7 Switzerland 18.6 United States 12.1 N. Incland 12.0 Scotland 10.1England & Wales bata for 1983, 1984 or 1985 depending on the country (prior to reunification of Germany)	10.3 Israel	10.4 Japan	26.8 Kuwait	11.3 Netherlands	20.1 New Zealand				
ata for 1983, 1984 or 1985 depending on the country (prior to reunification of Germany)	10.5 Norway	14.6 Poland	25.6 Portugal	12.6 Singapore	9.8 Sweden				
	15.7 Switzerland	18.6 United States	12.1 N. Ireland	12.0 Scotland	10.1England & Wales				
ource: Hutchinson [1987, page 3].	Data for 1983, 1984 or 198	35 depending on the country (p	rior to reunification of Gerr	nany)					
	Source: Hutchinson [1987,	page 3].							

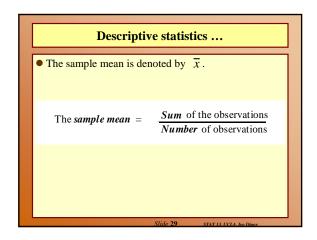

TABLE 2.3.2	2 Coy	ote Lengtl	ns Data (o	cm)															
Females																			
93.0	97.0	92.0	101.6	93.0	84.5	102	.5	97	.8	9	1.0		9	8.0		93.	.5		91.7
90.2	91.5	80.0	86.4	91.4	83.5	88	0.	71	0.	8	1.3		8	8.5		86.	5		90.0
84.0	89.5	84.0	85.0	87.0	88.0	86	.5	96	0.	8	7.0		9	3.5		93.	5		90.0
85.0	97.0	86.0	73.7																
Males																			
97.0	95.0	96.0	91.0	95.0	84.5	88	0.	96	0.	9	6.0		8	7.0		95.	0	1	00.0
101.0	96.0	93.0	92.5	95.0	98.5	88	0.	81	.3	9	1.4		8	8.9		86.	4	1	01.6
83.8	104.1	88.9	92.0	91.0	90.0	85	0.	93	.5	7	8.0		100).5	1	03.	0		91.0
105.0	86.0	95.5	86.5	90.5	80.0	80	.0												
TABLE 2.3		Frequency Female Co																	5
Class In	terval	Tally	Fi	requency		Stem-a	nd-le	eaf p	olot			P	4	P	ľ	_	K		-
	70-75	⊁		2		7 1	4							Ъ.		L 4			
Body	75-80			0		7													
	80-85 ·	™		6		8 0	1	4	4	4									
length	85-90 ·	\times		12		8 5	5	5	6	6	7	7	7	7	8	8	9		
	90-95 ·	$\mathbb{N}\mathbb{N}$		13		9 0	0	0	0	1	1	2	2	2	3	3	4	4	4
9.	5-100	M		5		9 6	7	7	8	8									
10	0-105			2	_	10 2	3												
Total				40															

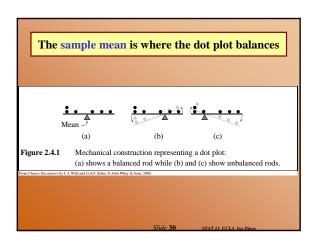


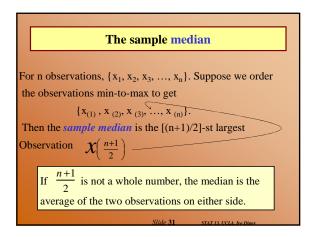


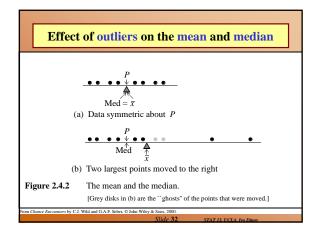


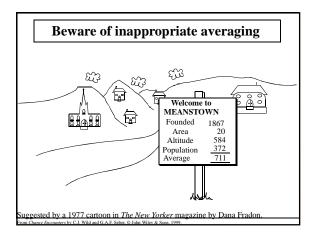
- What advantages does a stem-and-leaf plot have over a histogram? (S&L Plots return info on individual values, quick to produce by hand, provide data sorting mechanisms. But, Hist's are more attractive and more understandable).
- The shape of a histogram can be quite drastically altered by choosing different class-interval boundaries. What type of plot does not have this problem? (density trace) What other factor affects the shape of a histogram? (bin-size)
- What was another reason given for plotting data on a variable, apart from interest in how the data on that variable behaves? (shows features, cluster/gaps, outliers; as well as trends)

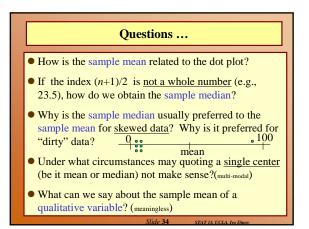


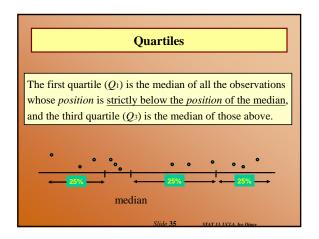

• Should we be suspicious of abrupt changes? Why?

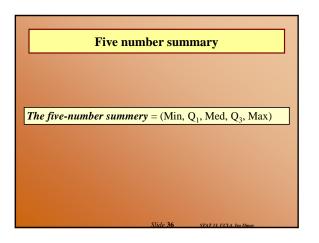

Yes! Try to establish the reason, the jump may have to be rectified!

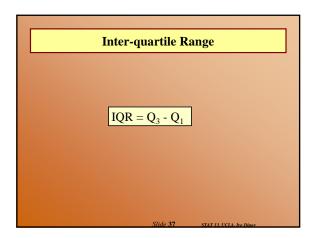

STAT 13. UCLA. h

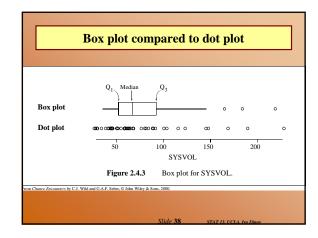

D	escripti	ive stati	stics fro	om con	iputei	r		
programs like STATA								
	P-	ogi um						
		CT AT A	Outrust					
		STATE	Output	Standa	rd deviatio	.#7		
Descriptiv	e Statistic	e		Stantati		<i>n</i>		
Variable	N N	o Mean	Median	TrMean	StDev	SE Mean		
age	45	50.133	51.000			0.908		
Variable	Minimum	Maximum	Q1	Q3				
age	36.000	59.000	46.500	56.000				
			Lower qu	artile Up	per quarti	ile		
.s	umma	rize						
			Slide 28	STAT 13.	UCLA. Ivo Dino	v		

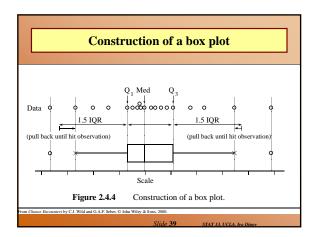


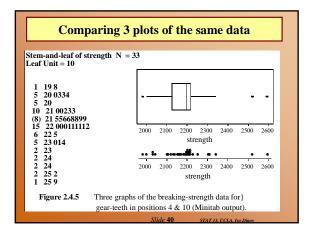


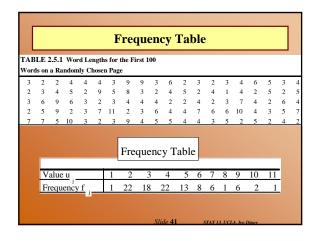


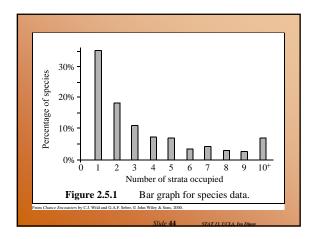


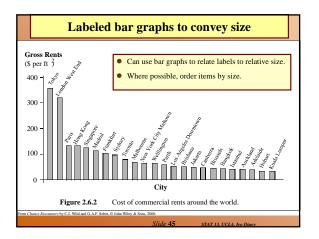












	Mean from a frequency table								
1 n		of (value × frequend all observatio ns)	cy of occurrence) = Example: {2, 4, 2, 4, 2} Mean = 14/5						
<u> </u>	/alue	Frequency	Value x Frequency						
	2	3	6						
	4	_2	_8						
		5	14						
		Slide 42	STAT 13. UCLA. Ivo Dinov						

Frequency (No. of species)	Percentage of species	Cumulative
(f_j)	$\left(\frac{f_i}{n} \times 100\right)$	Percentage
117	35.5	35.5
61	18.5	53.9
37	11.2	65.2
24	7.3	72.4
23	7.0	79.4
12	3.6	83.0
14	4.2	87.3
10	3.0	90.3
9	2.7	93.0
23	7.0	100.0
n = 330	100	
	(No. of species) (f _j) 117 61 37 24 23 12 14 10 9 23	(No. of species) of species (f_1) $(\frac{f_1}{n} \times 100)$ 117 35.5 61 18.5 37 11.2 24 7.3 23 7.0 12 3.6 14 4.2 10 3.0 9 2.7 23 7.0

