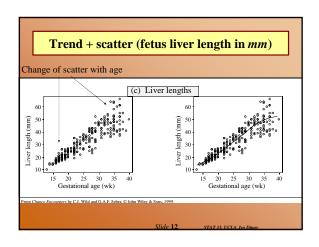
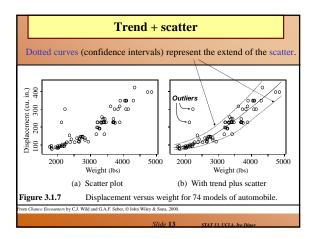
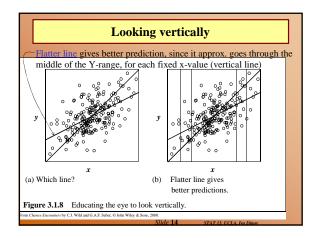
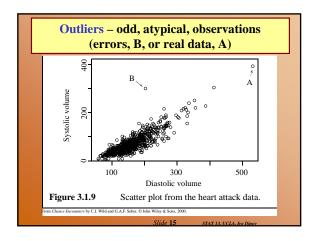
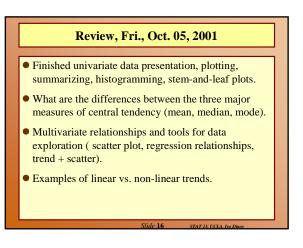

TABLE 3.1.: Gaseous 1				Emissions in Car Exhausts			(gram <u>r</u>				
Car	HC	CO	NOX	Car	HC	CO	NOX	Car	HC	CO	NOX
1	0.50	5.01	1.28	17	0.83	15.13	0.49	32	0.52	4.29	2.94
2	0.65	14.67	0.72	18	0.57	5.04	1.49	33	0.56	5.36	1.26
3	0.46	8.60	1.17	19	0.34	3.95	1.38	34	0.70	14.83	1.16
4	0.41	4.42	1.31	20	0.41	3.38	1.33	35	0.51	5.69	1.73
5	0.41	4.95	1.16	21	0.37	4.12	1.20	36	0.52	6.35	1.45
6	0.39	7.24	1.45	22	1.02	23.53	0.86	37	0.57	6.02	1.31
7	0.44	7.51	1.08	23	0.87	19.00	0.78	38	0.51	5.79	1.51
8	0.55	12.30	1.22	24	1.10	22.92	0.57	39	0.36	2.03	1.80
9	0.72	14.59	0.60	25	0.65	11.20	0.95	40	0.48	4.62	1.47
10	0.64	7.98	1.32	26	0.43	3.81	1.79	41	0.52	6.78	1.15
11	0.83	11.53	1.32	27	0.48	3.45	2.20	42	0.61	8.43	1.06
12	0.38	4.10	1.47	28	0.41	1.85	2.27	43	0.58	6.02	0.97
13	0.38	5.21	1.24	29	0.51	4.10	1.78	44	0.46	3.99	2.01
14	0.50	12.10	1.44	30	0.41	2.26	1.87	45	0.47	5.22	1.12
15	0.60	9.62	0.71	31	0.47	4.74	1.83	46	0.55	7.47	1.39
16	0.73	14.97	0.51								
Sour	rce T	orenzen	[198								
		ocarbo		0-00	abon	mono	vida	NOV		trogar	OV

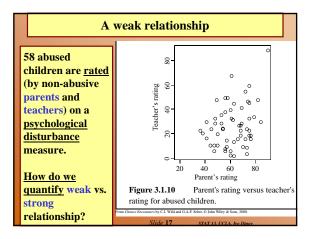


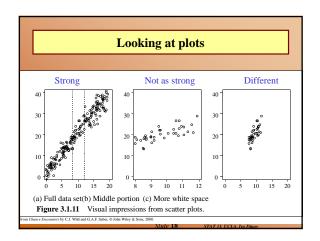












Strong and weak relationships

- Plotting a strong relationship only on a <u>small X-range</u> will make the relationship much weaker (So, be ware sample size and sample representativeness do matter).
- The x-range scale and y-range scale need to be taken into account when investigating strong/weak relationships (<u>extending</u> or <u>compressing</u> any of the axes could significantly change the relation trend).

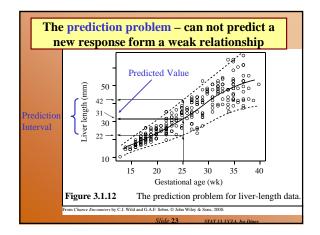
Questions ...

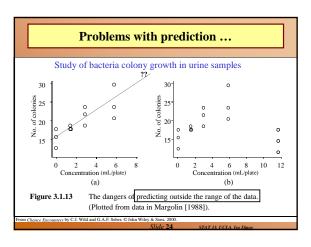
- When people talk about plotting *Y* versus *X*, which variable is conventionally represented on the <u>horizontal axis</u> and which on the <u>vertical axis</u>?
- What are the roles of the response variable and the explanatory variable in regression?
- On a scatter plot, which axis is conventionally used for the explanatory variable and which for the response?

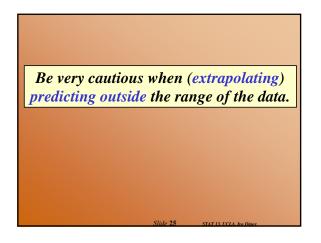
 Questions ...

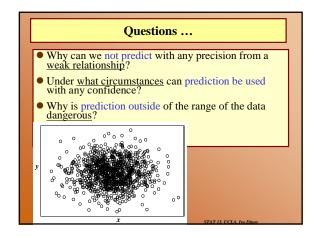
 • What are the two main components of a regression relationship?

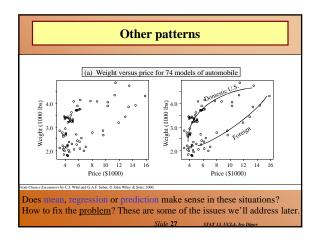
 • What do we call observations that are further from the trend curve than expected when compared with the usual level of scatter?


 • Should outliers simply be discarded when analyzing data?


STAT 13 UCLA IN


Questions ...


- What should you immediately do when you identify an outlier?
- What makes some relationships look weak and others look strong?
- Under what circumstances can a <u>strong relationship</u> <u>look weak</u> in a scatter plot?
- What do we mean by association between two variables? (scatter plot trend that can not be explained by chance alone, implies the two variables are associated) A positive association? (If y and x are associated and y increases with x). A negative association? (If y and x are associated and y decreases with x).


Slide 22 STAT 13. UCLA. Ivo

