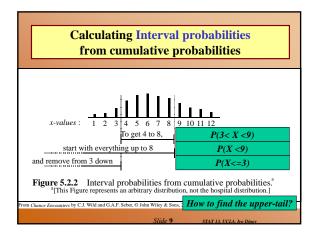
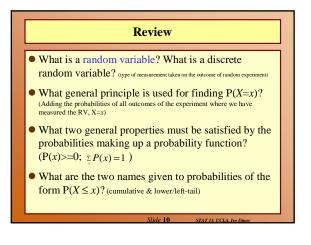
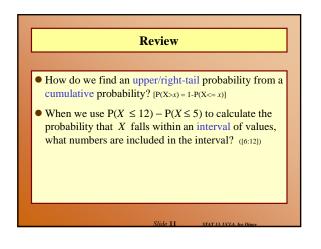


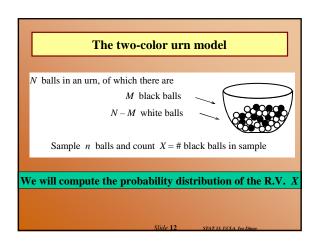


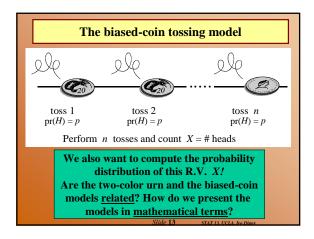
Hospital stays									
Days stayed	x	4	5	6	7	8	9	10	Total
Freque	ncy	10	30	113	79	21	8	2	263
Proportion	pr(X = x)	0.038	0.114	0.430	0.300	0.080	0.030	0.008	1000
Cumulative	$pr(X \leq x)$	0.038	0.152	0.582	0.882	0.962	0.992	1.000	
Proportion									
Chance Encounters b	C I Wild and G	A F Seber @) John Wiley	& Sons 200	0				

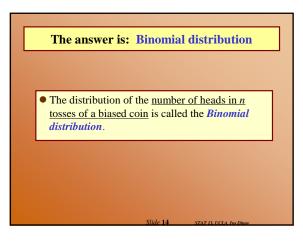




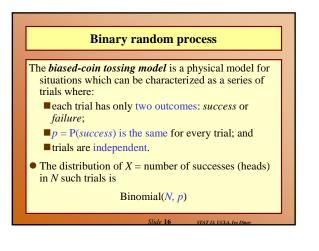








	Binomial(of the num experimen occurring	lber of t, whe in eacl	Head re the	s in ar proba is p.	n N-tos ability	s coin		
	x	0	1	2	(3	4	5	6
Individua	al $\mathbf{pr}(X = x)$	0.001	0.010	0.060	0.185	0.324	0.303	0.118
Cumulati	ive pr(X≤x)	0.001	0.011,	0.070	,0.256	0.580	0.882	1.000
For example $P(X=0) = P(all \ 6 \ tosses \ are \ Tails) =$ $(1-0.7)^6 = 0.3^6 = 0.001$								

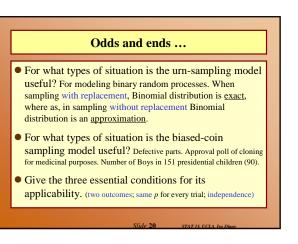


Sampling from a finite population – Binomial Approximation

If we take a sample of size *n*

- from a much larger population (of size N)
- in which a proportion *p* have a characteristic of interest, then the distribution of *X*, the number in the sample with that characteristic,
- is approximately Binomial(n, p).
 Qperating Rule: Approximation is adequate if n / N< 0.1.)
- Example, polling the US population to see what proportion is/has-been married.

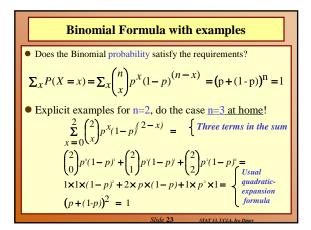
Slide 19 STAT 13. UCLA, Ivo Dino



Odds and ends ...

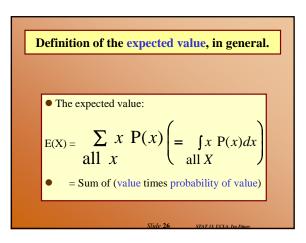
- What is the distribution of the number of heads in *n* tosses of a biased coin?
- Under what conditions does the Binomial distribution apply to samples taken without replacement from a finite population? When interested in assessing the distribution of a R.V., *X*, the number of observations in the sample (of *n*) with one specific characteristic, where *n*/*N*< 0.1 and a proportion *p* have the characteristic of interest in the beginning of the experiment.

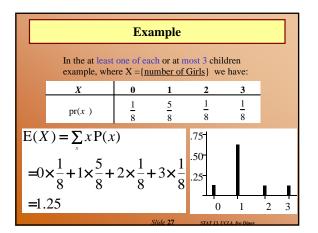
Binomial Probabilities – the moment we all have been waiting for! • Suppose X ~ Binomial(n, p), then the probability $P(X = x) = \binom{n}{x} p^x (1-p)^{(n-x)}, \quad 0 \le x \le n$ • Where the binomial coefficients are defined by $\binom{n}{x} = \underbrace{n!}{(n-x)! x!}, \quad n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n$ *n*-factorial

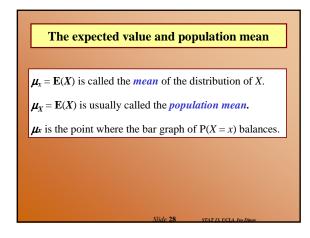


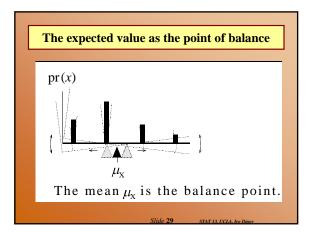
Expected values							
 The game of chance: cost to play:\$1.50; Prices {\$1, \$2, \$3}, probabilities of winning each price are {0.6, 0.3, 0.1}, respectively. Should we play the game? What are our chances of winning/loosing? 							
Prize (\$)	x	1	2	3			
Probability	pr(x)	0.6	0.3	0.1			
What we would ''expect Number of games won	Vhat we would "expect" from 100 games add across row Number of games won 0.6 × 100 0.3 × 100 0.1 × 100 /						
\$ won		$1 \times 0.6 \times 100$	$2 \times 0.3 \times 100$	$3 \times 0.1 \times 100$	Sum		
blal prize money = Sum; Average prize money = Sum/100 = $1 \times 0.6 + 2 \times 0.3 + 3 \times 0.1$ = 1.5							
Theoretically	<u>Theoretically</u> Fair Game: price to play EQ the expected return!						
		Slide	24 STA	T 13. UCLA, Ivo Dino	v		

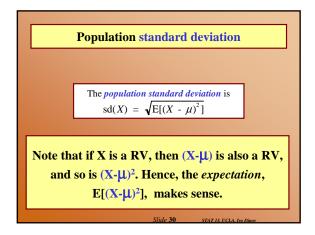
Number	Prize	won in dol	lars(x)		
of games	1	2	3	Average winnin	p
played		frequencies	5	p er game	
(N)	(Rela	ative freque	ncies)	(\overline{x})	So far we looked
100	64	25	11		at the theoretica
	(.64)	(.25)	(.11)	1.7	expectation of th
1,000	573	316	111		game. Now we
	(.573)	(.316)	(.111)	1.538	simulate the gan
10,000	5995	3015	990		on a computer
	(.5995)	(.3015)	(.099)	1.4995	to obtain rando
20,000	11917	6080	2000		samples from
	(.5959)	(.3040)	(.1001)	1.5042	-
30,000	17946	9049	3005		our distribution
	(.5982)	(.3016)	(.1002)	1.5020	according to the
∞	(.6)	(.3)	(.1)	1.5	probabilities
					$\{0.6, 0.3, 0.1\}.$

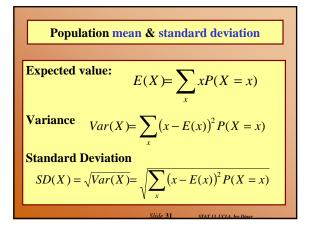


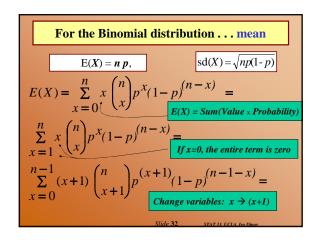












Linear Scaling (affine transformations)
$$aX + b$$

For any constants *a* and *b*, the expectation of the RV $aX + b$
is equal to the sum of the product of a and the expectation of
the RV *X* and the constant *b*.
 $E(aX + b) = a E(X) + b$
And similarly for the standard deviation (*b*, an additive
factor, does not affect the SD).

SD(aX+b) = |a| SD(X)

Linear Scaling (affine transformations) $aX + b$
Why is that so?
E(aX + b) = a E(X) + b $SD(aX + b) = a SD(X)$
$E(aX + b) = \sum_{x=0}^{n} (ax + b) P(X = x) =$
$\sum_{x=0}^{n} a x P(X = x) + \sum_{x=0}^{n} b P(X = x) =$
$a \sum_{x=0}^{n} x P(X = x) + b \sum_{x=0}^{n} P(X = x) =$
$aE(X) + b \times 1 = aE(X) + b.$ Slide 39 STAT 13 UCLA by Diver

