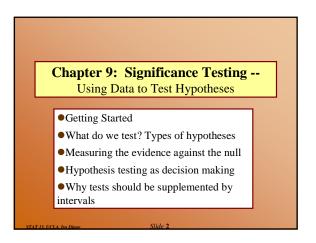
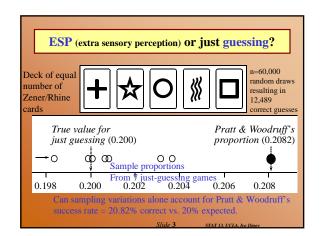
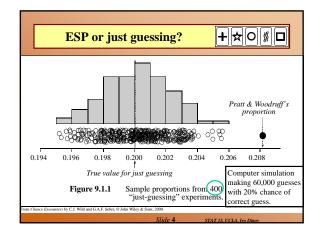
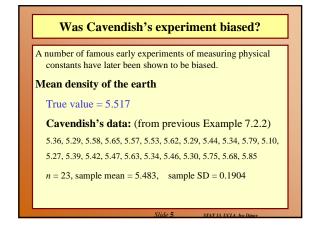
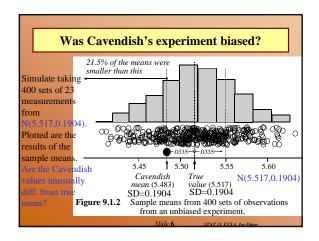
UCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences •Instructor: Ivo Dinov, Asst. Prof. of Statistics and Neurology •Teaching Assistants: Chris Barr & Ming Zheng University of California, Los Angeles, Fall 2004 http://www.stat.ucla.edu/~dinov/courses_students.html

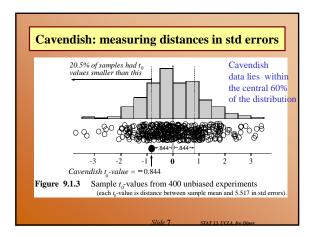


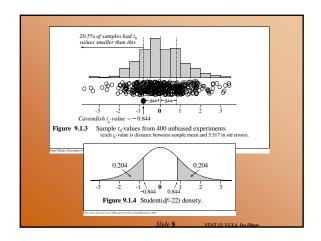












Measuring the <u>distance between</u> the <u>true-value</u> and the <u>estimate</u> in terms of the SE

- Intuitive criterion: Estimate is credible if it's not far away from its hypothesized true-value!
- But how far is far-away?
- Compute the distance in standard-terms: $T = \frac{\text{Estimator} \text{TrueParameterValue}}{\text{Estimator}}$
 - SE
- Reason is that the distribution of *T* is known in some cases (Student's t, or N(0,1)). The estimator (obs-value) is typical/atypical if it is close to the center/tail of the distribution.

Slide 9 STAT 13, UCLA, Ivo Dinov

Comparing CI's and significance tests

- These are <u>different methods</u> for coping with the uncertainty about the true value of a parameter caused by the sampling variation in estimates.
- Confidence interval: A fixed level of confidence is chosen. We determine a range of possible values for the parameter that are consistent with the data (at the chosen confidence level).
- Significance test: Only one possible value for the parameter, called the hypothesized value, is tested. We determine the strength of the evidence (confidence) provided by the data against the proposition that the hypothesized value is the true value.

Slide 10 STAT 13 UCLA Ivo Dinov

Review

- What intuitive criterion did we use to determine whether the hypothesized parameter value (p=0.2 in the ESP Example 9.1.1, and μ= 5.517 in Example 9.1.2) was credible in the light of the data? (Determine if the data-driven parameter estimate is consistent with the pattern of variation we'd expect get if hypothesis was true. If hypothesized value is correct, our estimate should not be far from its hypothesized true value.)
- Why was it that $\mu = 5.517$ was credible in Example 9.1.2, whereas p=0.2 was not credible in Example 9.1.1? (The first estimate is consistent, and the second one is not, with the pattern of variation of the hypothesized true process.)

Slide 11 STAT IS UCLA Ivo Dinos

Review

- What do t₀-values tell us? (Our estimate is typical/atypical, consistent or inconsistent with our hypothesis.)
- What is the essential difference between the information provided by a confidence interval (CI) and by a significance test (ST)? (Both are uncertainty quantifiers. CI's use a fixed level of confidence to determine possible range of values. ST's one possible value is fixed and level of confidence is determined.)

Slide 12 STAT 13. UCLA. Ivo Dinor

Hypotheses

Guiding principles

We <u>cannot</u> **rule in** a hypothesized value for a parameter, we *can only* determine whether there is evidence *to* **rule out** a hypothesized value.

The *null hypothesis* tested is typically a skeptical reaction to a *research hypothesis*

Slide 13 STAT 13, UCLA, Ivo Dino

Comments

- Why can't we (rule-in) prove that a hypothesized value of a parameter is exactly true? (Because when constructing estimates based on data, there's always sampling and may be non-sampling errors, which are normal, and will effect the resulting estimate. Even if we do 60,000 ESP tests, as we saw earlier, repeatedly we are likely to get estimates like 0.2 and 0.20001, and 0.199999, etc. non of which may be exactly the theoretically correct, 0.2.)
- Why use the rule-out principle? (Since, we can't use the rule-in method, we try to find compelling evidence against the observed/dataconstructed estimate – to reject it.)
- Why is the null hypothesis & significance testing typically used? (H_o: skeptical reaction to a research hypothesis; ST is used to check if differences or effects seen in the data can be explained simply in terms of sampling variation!)

Slide 14 STAT 13 UCLA. Ivo Dinov

Comments

- How can researchers try to demonstrate that effects or differences seen in their data are real? (Reject the hypothesis that there are no effects)
- How does the alternative hypothesis typically relate to a belief, hunch, or research hypothesis that initiates a study? (H_i=H_a: specifies the type of departure from the nullhypothesis, H_i (skeptical reaction), which we are expecting (research hypothesis itself).
- In the Cavendish's mean Earth density data, null hypothesis was H₀: μ =5.517. We suspected bias, but not bias in any specific direction, hence H_a:μ!=5.517.

Slide 15 STAT 13, UCLA, Ivo Dinov

Comments

- In the ESP Pratt & Woodruff data, (skeptical reaction) null hypothesis was $H_0: \mu = 0.2$ (pureguessing). We suspected bias, toward success rate being higher than that, hence the (research hypothesis) $H_a: \mu > 0.2$.
- Other commonly encountered situations are:
 - $\blacksquare H_0: \mu_1 \mu_2 = 0$
- $H_a: \mu_1 \mu_2 > 0$
- $\blacksquare H_0: \mu_{rest} \mu_{activation} = 0 \implies$
- $H_a: \mu_{rest} \mu_{activation} !=0$

Slide 16 STAT 13 UCIA Ivo Dinov

The t-test

Using $\hat{\boldsymbol{\theta}}$ to test \boldsymbol{H}_0 : $\boldsymbol{\theta} = \boldsymbol{\theta}_0$ versus some alternative \boldsymbol{H}_1 . STEP 1 Calculate the *test statistic*,

 $t_0 = \frac{\hat{\theta} - \theta_0}{se(\hat{\theta})} = \frac{\text{estimate - hypothesized value}}{\text{standard error}}$

[This tells us how many standard errors the estimate is above the hypothesized value (t_0 positive) or below the hypothesized value (t_0 negative).]

STEP 2 Calculate the P-value using the following table.

STEP 3 Interpret the *P*-value in the context of the data.

Slide 17 STAT 13 UCLA Iva Dinav

The t-test

Alternative	Evidence against H_0 : $\theta > \theta_0$	
hypothesis	provided by	P-value
$H_1: \theta > \theta_0$	$\hat{\theta}$ too much bigger than θ_0 (i.e., $\hat{\theta} - \theta_0$ too large)	$P = \operatorname{pr}(T \geq t_0)$
H_1 : $\theta < \theta_0$	$\hat{\boldsymbol{\theta}}$ too much smaller than $\boldsymbol{\theta}_0$ (i.e., $\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0$ too negative)	$P = \operatorname{pr}(T \leq t_0)$
$H_1: \theta \neq \theta_0$	$\hat{\boldsymbol{\theta}}$ too far from $\boldsymbol{\theta}_0$ (i.e., $ \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 $ too large)	$P = 2 \operatorname{pr}(T \ge t_0)$
'	'	where $T \sim \text{Student}(d)$

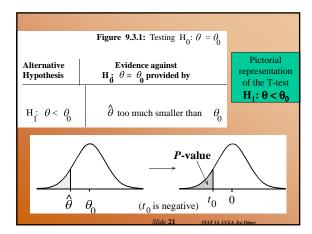
Slide 18 STAT 13. UCLA. Ivo Dinov

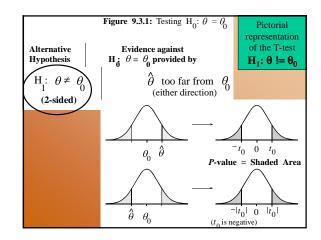
Interpretation of the p-value

ΓABLE 9.3.2 Interpreting the Size of a P-Value

Approximate siz of <i>P</i> -Value	e Translation
> 0.12 (12%)	No evidence against H ₀
0.10 (10%)	Weak evidence against H ₀
0.05 (5%)	Some evidence against H ₀
0.01 (1%)	Strong evidence against H ₀
0.001 (0.1%)	Very Strong evidence against H
	Slide 19 STAT 13 UCLA Ivo Dinov

Altern Hypot		Evidence against $\mathbf{H}_{0} = \mathbf{\theta}_{0}$ provided by	Pictorial representation of the T-test
Η: <i>θ</i>	> \theta_0	$\hat{ heta}$ too much bigger than $ heta$	$H_0: \theta = \theta_0$ $H_1: \theta > \theta_0$
	Ö		cale l errors)
		θ_0 $\hat{\theta}$	P-value 0 t ₀





P-values from t-tests

- The *P-value* is the probability that, if the hypothesis was true, sampling variation would produce an estimate that is further away from the hypothesized value than our data-estimate.
- The *P-value* measures the strength of the evidence against H_0 .
- The *smaller* the *P-value*, the *stronger* the evidence

(The second and third points are true for significance tests generally, and not just for t-tests.)

Review

• What does the *t*-statistic tell us?

The T-statistics, $t_0 = \frac{\hat{\theta} - \theta_0}{s \cdot d\hat{\theta}}$ tells us (in std. units) if the observed value/estimate is typical/consistent and can be explained by the variation in the sampling distribution.

• When do we use a 2-tailed rather than a 1-tailed test?

We use two-sided/two-tailed test, unless there is a prior (knowledge available before data was collected) or a strong reason to believe that the result should go in one particular direction ($\leftarrow \mu \rightarrow$).

Review

- What were the 3 types of alternative hypothesis involving the parameter θ and the hypothesized value θ_0 ? Write them down!
- Let's go through and construct our own t-Test Table.

 - Then write down the corresponding P-values in terms of t_0 and represent these P-values on hand-drawn curves (cf. Fig. 9.3.1). [P=Pr(T>= t_0), P=Pr(T<= t_0), P=Pr(T>= t_0) .]

Slide 26 STAT 13, UCLA, Ivo Dinov

Review

- What does the P-value measure? (If H₀ was true, sampling variation alone would produce an estimate farther then the hypothesized value.)
- What do very small P-values tell us? What do large P-values tell us? (strength of evidence against H₀.)
- Pair the phrases: "the $\uparrow \downarrow \downarrow$ the P-value, the $\uparrow \downarrow \downarrow$ the evidence for/against the null hypothesis."
- Do large values of t₀ correspond to large or small P-values? Why?
- What is the relationship between the Student (df) distribution and Normal(0,1) distribution? (identical as →).

Slide 27 STAT 13 UCLA, Ivo Dinov

Is a second child gender influenced by the gender of the first child, in families with >1 kid?

| Second Child | Second Births by Sex | | Second Child | Male | Female | Total | Second Child | Male | 3,202 | 2,776 | 5,978 | Female | 2,620 | 2,792 | 5,412 | Total | 5,822 | 5,568 | 11,390 |

- Research hypothesis needs to be formulated first before collecting/looking/interpreting the data that will be used to address it. Mothers whose 1st child is a girl are more likely to have a girl, as a second child, compared to mothers with boys as 1st children.
- Data: 20 yrs of birth records of 1 Hospital in Auckland, NZ.

Slide 29 STAT 13, UCLA, Ivo Dinov

Analysis of the birth-gender data – data summary

	Second Child	
Group	Number of births	Number of girls
1 (Previous child was girl)	5412	2792 (approx. 51.6%)
2 (Previous child was boy)	5978	2776 (approx. 46.4%)

- Let p_1 =true proportion of girls in mothers with girl as first child, p_2 =true proportion of girls in mothers with boy as first child. Parameter of interest is p_1 p_2 .
- H_0 : p_1 p_2 =0 (skeptical reaction). H_a : p_1 p_2 >0 (research hypothesis)

Slide 30 STAT 13 UCLA Ivo Dinov

Hypothesis testing as decision making

TABLE 9.4.1 Decision Making

	Actual situation	
Decision made	H ₀ is true	H ₀ is false
Accept H ₀ as true	OK	Type II error
Reject H ₀ as false	Type I error	OK

- Sample sizes: n_1 =5412, n_2 =5978, Sample proportions (estimates) \hat{p}_1 = 2792/5412 ≈ 0.5159, \hat{p}_2 = 2776/5978 ≈ 0.4644,
- H_0 : p_1 p_2 =0 (skeptical reaction). H_a : p_1 p_2 >0 (research hypothesis)

Slide 31 STAT 13 UCLA Iva Dinas

Analysis of the birth-gender data

Samples are large enough to use Normal-approx.
 Since the two proportions come from totally diff.
 mothers they are independent → use formula 8.5.5.a

$$t_0 = \frac{\text{Estimate - HypothesizedValue}}{\text{SE}} = 5.49986 =$$

$$\frac{p_1 - p_2 - 0}{SE(\hat{p}_1 - \hat{p}_2)} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_2)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_2)}{n_2}}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_2)}{n_2}}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_2)}{n_2}}} = \frac{p_1 - p_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_2)}{$$

 $P - value = Pr(T \ge t_0) = 1.9 \times 10^{-8}$

Slide 32 STAT 13, UCLA, Ivo Dinov

Analysis of the birth-gender data

- We have strong evidence to reject the H₀, and hence conclude mothers with first child a girl a more likely to have a girl as a second child.
- How much more likely? A 95% CI:

CI
$$(p_1 - p_2) = [0.033; 0.070]$$
. And computed by: estimate $\pm z \times SE = \hat{p}_1 - \hat{p}_2 \pm 1.96 \times SE \left(\hat{p}_1 - \hat{p}_2 \right) =$

$$\hat{p}_1 - \hat{p}_2 \pm 1.96 \times \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{2}} =$$

$$0.0515 \pm 1.96 \times 0.0093677 = [3\%; 7\%]$$

Clide 33 STAT 12 UCLA Inc Dinor

Review

- If 120 researchers each independently investigated a
 it true/ hypothesis, how many researchers would you
 expect to obtain a result that was significant at the
 5% level (just by chance)? (Type I, false-positive; 120*5%=6)
- What was the other type of error described? What was it called? When is the idea useful? (Type II, falsenegative)
- Power of statistical test = 1- β , where $\beta = P(Type \; II \; error) = P_{(Accepting \; Ho \; as \; true, \; when \; its \; truly \; false)}$

Slide 36 STAT 13 UCLA Ivo Dinov

Sensitivity vs. Specificity of a Test

An ELISA is developed to diagnose HIV infections. Serum from 10,000 patients that
were positive by Western Blot (the gold standard assay) were tested and 9990 were
found to be positive by the new ELISA. The manufacturers then used the ELISA to test
serum from 10,000 nuns who denied risk factors for HIV infection. 9990 were negative
and the 10 positive results were pegative by Western Blot fection.

and the 10 positive results were negative by Western Blot.			
	HIV Infected (True Cas		(True Case)
		+	-
ELISA	+	9990 (TP)	10 (FP, α)
Test	-	10 (FN, β)	9990 (TN)
		10,000 (TP+FN)	10,000 (FP+TN)
		Sensitivity =	Specificity=
		TP/(TP+FN)	TN/(FP+TN)
		9990/(9990+10) = 0.999	9990/(9990+10) = 0.999
Cl: J. 27 Comman vice v Di			

4 Factors affecting the power

- Larger:
- **→**
- **Causes:**
- Sample size (positive)
- Sample variance (negative)
- Effect size (positive)
- The chosen level for α (positive)

Slide 38 STAT 13 UCIA Ivo Dinov

Review

 With a sensitivity of 99.9% and a specificity of 99.9%, the ELISA appears to be an excellent test. Let's apply this test to a million people where 1%are infected with HIV. Of the million people, 10,000 would be infected with HIV. Since our ELISA is 99.9% sensitive, the test will detect 9,990 (true positives -- TP) people who are actually infected and miss 10 (false negative -- FN). Looking at those numbers, we would think that our test is very good because we have detected 9990 out of 10,000 HIV infected people. But there is another side to the test. Of our original one million, 990,000 are not infected. If we look at the test results on the HIV negative population (remember the specificity of the assay is 99.9%), we find that 989,010 are found to be not infected by the ELISA (true negatives -- TN), but we have 990 individuals who are found to be positive by the ELISA (false positives -- FN). If you released these test results without confirmatory tests (our gold standard Western Blot), you would have told 990 people or approximately 0.1% of the population that they are HIV infected when in reality, they are not.

Slide 39 STAT 13, UCLA, Ivo Dinov

Review

- Why is the expression "accept the null hypothesis" dangerous? (Data can not really provide all the evidence that a hypothesis is true, however, it can provide support that it is false. That's why better lingo is "we can't reject H₀")
- What is meant by the word non-significant in many research literatures? (P-value > fixed-level of significance)
- In fixed-level testing, what is a Type I error? What is a Type II error? (Type I, false-positive, reject H₀ as false, when it's true in reality; Type II, false-negative, accepting H₀ as true, when its truly false)

Slide 40 STAT 13. UCLA. Ivo Dinor

Tests and confidence intervals

A *two-sided* test of H_0 : $\theta = \theta_0$ is *significant* at the 5% level <u>if and only if</u> θ_0 lies *outside* a 95% confidence interval for θ .

A *two-sided* test of H_0 : $\theta = \theta_0$ gives a result that is significant at the 5% level $\underline{\mathbf{if}}$ the P-value=2Pr(T >=|t_0|) < 0.05. Where t_0 =(estimate-Hypoth'dValue)/SE(θ) \Rightarrow t_0 =(θ ' $-\theta_0$)/SE(θ). Let \mathbf{t} be a **threshold** chosen so that Pr(T>= \mathbf{t}) = 0.025. Now |t_0| tells us now many SE's θ ' and θ are apart (without direction in their diff.) If |t_0|> \mathbf{t} , then θ_0 is more than \mathbf{t} SE's away from θ ' and hence lies outside the 95% CI for θ .

Slide 41 STAT 13 UCIA. Ivo Dinos

"Significance"

- Statistical significance relates to the strength of the evidence of existence of an effect.
- The *practical significance* of an effect depends on its size how large is the effect.
- A small P-value provides evidence that the effect exists but says nothing at all about the size of the effect.
- To estimate the size of an effect (its practical significance), compute a confidence interval.

Slide 42 STAT 13 UCLA, Ivo Dino

"Significance" cont.

A non-significant test does not imply that the null hypothesis is true (or that we accept H_0).

It simply means we do not have (this data does not provide) the evidence to reject the skeptical reaction, \mathbf{H}_0 .

To prevent people from misinterpreting your report: *Never quote a P-value* about the existence of an effect *without* also *providing a confidence interval* estimating the size of the effect.

Slide 43 STAT 13, UCLA, Ivo Dinov

Review

- If you read, "research says that ""... makes no difference to ""....", what is a likely explanation? (the data does not have the evidence to reject the skeptical reaction, H₀, or no ofference.

Slide 44 STAT 13. UCLA, Ivo Dinov

Review

- Is a "significant difference" necessarily large or practically important? Why? (No, significant difference indicates the existence of an effect, practical importance depends on the effect-size.)
- What is the difference between statistical significance and practical significance? (stat-significance relates to the strength of the evidence that a real effect exists (e.g., that true difference is not exact; 0); practical significance indicates how important the observed difference is in practice, how large is the effect.)
- What does a P-value tell us about the size of an
 effect? (P-value says whether the effect is significant, but says nothing about its size.)
- What tool do we use to gauge the size of an effect? (Ct(parameter) provides clues to the size of the effect.)

Slide 45 STAT 13 UCLA Iva Dinas

Review

- If we read that a difference between two proportions is *non-significant*, what does this tell us? What does it not tells us? (Do not have evidence proportions are different, based on this data. Doesn't mean accept H₀).
- What is the closest you can get to showing that a hypothesized value is true and how could you go about it? (Suppose, $\underline{H}_0: \theta = \underline{\theta}_0$, and our test is not-significant. To show $\underline{\theta} = \underline{\theta}_0$ we need to show that all values in the CI($\underline{\theta}_0$) are essentially equal to $\underline{\theta}_0$, this is a practical subjective matter decision, not a statistical one.)

Slide 46 STAT 13. UCLA, Ivo Dinov

General ideas of "test statistic" and "p-value"

A *test statistic* is a <u>measure of discrepancy</u> between what we <u>see in data</u> and what we would <u>expect to see</u> if H_0 was true.

The *P-value* is the <u>probability</u>, calculated assuming that the null hypothesis is true, that <u>sampling variation</u> alone would produce data which is <u>more discrepant than our</u> data set.

Slide 47 STAT 13 UCLA Ivo Dinov

Chapter 9 Summary

Significance Tests vs. Confidence Intervals

- The main use of significance testing is to check whether apparent differences or effects seen in data can be explained away simply in terms of <u>sampling variation</u>. The essential difference between confidence intervals and significance tests is as follows:
 - Confidence interval: A range of possible values for the parameter are determined that are consistent with the data at a specified confidence level.
 - Significance test: Only one possible value for the parameter, called the hypothesized value, is tested. We determine the strength of the evidence provided by the data against the proposition that the hypothesized value is the true value.

Slide 49 STAT 13 UCLA. Ivo Dinov

Hypotheses

- The *null hypothesis*, denoted by H₀, is the (skeptical reaction) hypothesis tested by the statistical test.
- Principle guiding the formulation of null hypotheses:
 We cannot rule a hypothesized value in; we can only determine whether there is enough evidence to rule it out. Why is that?
- Research (alternative) hypotheses lay out the conjectures that the research is designed to investigate and, if the researchers hunches prove correct, establish as being true.

Slide 50 STAT 13 UCLA Ivo Dinov

<u>Example</u>: Is there racial profiling or are there confounding explanatory effects?!?

• The book by Best (Damned Lies and Statistics: Untangling Numbers from the Media, Politicians and Activists, Joel Best) shows how we can test for racial bias in police arrests. Suppose we find that among 100 white and 100 black youths, 10 and 17, respectively, have experienced arrest. This may look plainly discriminatory. But suppose we then find that of the 80 middle class white youths 4 have been arrested, and of the 50 middle-class black youths 2 arrested, whereas the corresponding numbers of lower-class white and black youths arrested are, respectively, 6 of 20 and 15 of 50. These arrest rates correspond to 5 per 100 for white and 4 per 100 for black middle-class youths, and 30 per 100 for both white and black lower-class youths. Now, better analyzed, the data suggest effects of social class, not race as such.

Slide 51 STAT 13 UCLA Ivo Dino

Hypotheses cont.

- The null hypothesis tested is typically a skeptical reaction to the research hypothesis.
- The most commonly tested null hypotheses are of the "it makes no difference" variety.
- Researchers try to demonstrate the existence of real treatment or group differences by showing that the idea that there are no real differences is implausible.
- The alternative hypothesis, denoted by H₁, specifies the type of departure from the null hypothesis, H₀, that we expect to detect.

Slide 52 STAT 13. UCLA. Ivo Dinov

Hypotheses cont.

- The *alternative hypothesis*, typically corresponds to the research hypothesis.
- We use *one-sided alternatives* (using either: H_1 : $\theta > \theta_0$ or H_1 : $\theta < \theta_0$) when the research hypothesis specifies the <u>direction of the effect</u>, or more generally, when the investigators had good grounds for believing the true value of θ was on one particular side of θ_0 before the study began. Otherwise a *two-sided alternative*, H_1 : $\theta \neq \theta_0$, is used.

Slide 53 STAT 13 UCLA Ivo Dinor

P-values

- Differences or effects seen in data that are easily explainable in terms of sampling variation do not provide convincing evidence that real differences or effects exist.
- The P-value is the probability that, if the hypothesis was true, sampling variation would produce an estimate that is further away from the hypothesized value than the estimate we got from our data.
- The *P*-value measures the strength of the evidence against H_0 .

Slide 54 STAT 13 UCLA Ivo Dinov

P-values cont.

- The *smaller* the *P*-value, the stronger the evidence against H_0 .
- A large P-value provides no evidence against the null hypothesis.
- A large *P*-value does *not* imply that the null hypothesis is true.
- A small *P*-value provides evidence that the effect exists but says *nothing* at all about the *size* of the effect.
- To estimate the size of an effect, compute a confidence interval

Slide 55 STAT 13 UCIA Ivo Dinov

P-values cont.

- Never quote a P-value about the existence of an effect without also providing a confidence interval estimating the size of the effect
- Suggestions for *verbal translation of P-values* are given in Table 9.3.2.
- Computation of P-values: Computation of P-values for situations in which the sampling distribution of (θ̂ θ₀)/se(θ̂), is well approximated by a Student(df) distribution or a Normal(0,1) distribution is laid out in Table 9.3.1.
- The t-test statistic tells us how many standard errors the estimate is from the hypothesized value.

Slide 56 STAT 13, UCLA, Ivo Dinov

P-values

- Examples given in this chapter concerned means and differences between means, proportions and differences between proportions.
- In general, a test statistic is a measure of discrepancy between what we see in the data and what we would have expected to see if H₀ was true.

Slide 57 STAT 13 UCLA Ivo Dine

Significance

- If, whenever we obtain a P-value less than or equal to 5%, we make a decision to reject the null hypothesis, this procedure is called testing at the 5% level of significance.
 - The significance level of such a test is 5%.
- If the *P*-value $\leq \alpha$, the effect is said to be significant at the α -level.
- If you always test at the 5% level, you will reject one true null hypothesis in 20 over the long run.

Slide 58 STAT 13. UCLA, Ivo Dinor

Significance cont.

- A two-sided test of $H_0: \theta = \theta_0$ is significant at the 5% level if and only if θ_0 lies outside a 95% confidence interval for θ .
- In reports on research, the word "significant" used alone often means "significant at the 5% level" (i.e. P-value ≤ 0.05). "Non-significant", "does not differ significantly" and even "is no different" often mean *P*-value > 0.05.
- ullet A non-significant result does not imply that H_0 is true

Slide 59 STAT 13, UCLA, Ivo Dinov

Significance cont.

- A Type I error (false-positive) is made when one concludes that a true null hypothesis is false.
- The significance level is the probability of making a Type I error.
- Statistical significance relates to having evidence of the existence of an effect.
- The *practical significance* of an effect depends on its *size*.

Slide 60 STAT 13 UCLA, Ivo Dinov