UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

-Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

- Teaching Assistants: Chris Barr \& Ming Zheng

University of California, Los Angeles, Fall 2004 http://www.stat.ucla.edu/~dinov/courses_students.htmI

Chapter 11: Tables of Counts

- One-dimensional tables and goodness of fit
- Two-way tables of counts

Chi-square test of homogeneity
Chi-square test of independence 2 by 2 tables

- The perils of collapsing tables

1-dimensional tables cont.

 quantitative variables. χ^{2} statistics is used for analysis of categorical data.- When H_{0} gives the probabilities of landing in each cell completely (no parameters to be estimated) , $\mathrm{P}\left(\operatorname{cell}_{1}\right)=\mathrm{p}_{1}, \mathrm{P}\left(\right.$ cell $\left._{2}\right)=\mathrm{p}_{2}, \ldots, \mathrm{P}\left(\right.$ cell $\left._{\mathrm{J}}\right)=\mathrm{p}_{\mathrm{J}}$, and $\Sigma \mathrm{p}_{\mathrm{k}}=1$.
- Thus, having J-1 probabilities fixed determines the last probability.
df $=$ number of categories -1

Chi-Square Test - goodness of fit test

- The Chi-square test statistic $\left(\chi^{2}\right)$ has observed value

$$
x_{0}^{2}=\sum_{\text {all cells in the table }} \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

Chapter 11: Tables of Counts

We discussed means and mean differences in Ch. 10 and developed a statistical toolbox for analyzing quantitative variables.
Now we want to develop a similar approach for analyzing qualitative variables.

Table-of-measurements \rightarrow tables-of-counts;
Means $\quad \rightarrow$ proportions

T/F-tests for inference on qualitative variables \rightarrow
Chi-square (χ^{2}) tests for categorical data.

- The P-value for the test is
$P-$ value $=\operatorname{pr}\left(X^{2} \geq x_{0}^{2}\right) \quad$ where $X^{2} \sim$ Chi - square ($d f$) Chi-square $(d f)$ density curve

To test a null-hypothesis, H_{0}, we compare the observed counts in the table to the expected (theoretical) counts. For this reason this test is called a goodness-of-fit test observed/expected count fit

Exit poll - sampling voters as they leave polling booths. Exit polls of $\mathbf{1 0 , 0 0 0}$ voters.
(a) Table of exit-poll sample and population Age distributions

	Age group				
	$18-29$	$30-44$	$45-59$	$60+$	Total
Sample :	(Percentages)	13	29	30	28
100					
Population :	(Percentages)	22	32	24	22

Are there differences between the population age groups and the exit-poll sample age groups? Younger voter underrepresented voters. Real differences or just due to sampling variation?

Exit poll - Bar-plot of population/sample groups					
(c) Table of observed and expected counts					
Age group					
	18-29	30-44	45-59	$60+$	Total
Observed count	1300	2900	3000	2800	10,000
Expected count	2200	3200	2400	2200	10,000

(Note: Counts approximate due to the rounding of percentages in the report.)
Figure 11.1.1 Comparing the age distributions for voters and the population.
$\mathrm{H}_{0}: \mathrm{p}_{18-29}=0.22 ; \mathrm{p}_{30-34}=0.32 ; \mathrm{p}_{45-59}=0.32 ; \mathrm{p}_{60+}=0.32 ;$

Exit poll - Bar-plot of population/sample groups

(b) Plot of exit-poll sample and population Age distributions

H_{0} : True proportions in the 4 age groups in the voter sample and the whole population are the same!

$$
x_{0}^{2}=\sum_{\substack{\text { all cells in } \\ \text { the table }}}
$$

$\mathrm{df}=$ number of groups $-1=4-1=3$
P-value $=0.000$, very small, indicating extremely strong evidence against the null-hypothesis. The 95% CI for each age groups are:
[12.3 : 13.7]; [28.1 : 30.0]; [29.1 : 30.9]; [27.1 : 28.9]

Figure 11.1.2 Chi-square($d f$) p.d.f. curves.

Review

1. The test statistic for the Chi-square test compares observed and expected frequencies. In what sense are the expected frequencies expected? (Expected frequencies are the frequencies expected in H_{0} were true.)
2. What shape does the Chi-square distribution generally have? What happens to its shape as the degrees of freedom increase? (Skewed unimodal, becomes symmetric and Normal approximates it well for large df.)
3. What values of the Chi-square test statistic (large or small) provide evidence against the null hypothesis? Why? (Large values, since P-value is small. See density curve.)

Review

Two-way tables

Suppose we have two (or more) qualitative variables, that we use to classify individuals/units/subjects into groups/classes.
Example, 400 patients with malignant melanoma (type of skin cancer) are cross-classified by TYPE (malignant-cell-type) and SITE (focal-location).
4x3 table (4-rows, types and 3 columns, sites).
Questions: What's the most common type of cancer? What locations are mostly effected?

Example - Blood types

Blood contains genetic info that can help determine if populations in some Geo-regions have different racial origins from those in other regions.
This is blood donor data from SW Scotland, Mitchell, 1976. Data (obs. study) is classified using the ABO type system in a $3 x 4$ table (region/phenotype).

Q: Are there regional differences in the phenotype structure?
Assume: random sample from real population, w.r.t. the ABO blood type.

Chi-square test output - Cancer Type/Site

Degrees of freedom - since there are n-1 free parameters, for columns and rows, row/column sums must equal 1 (or n)

Chi-square test for a 2×2 table: $\boldsymbol{d} \boldsymbol{f}=\mathbf{1}$.
In general for $I x J$ table $d f=(I-1)^{*}(J-1)$

General Ideas about Chi-Square Tests

- The Chi-square test statistic has observed value

$$
x_{0}^{2}=\sum_{\text {all cells in the table }} \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

- The P-value for the test is
$P-$ value $=\operatorname{pr}\left(X^{2} \geq x_{0}^{2}\right) \quad$ where $X^{2} \sim$ Chi - square $(d f)$

Slide 39
STAT 13, UCLA, Ivo Dinov

Warning about Chi-square

- Using the Chi-square distribution as the sampling distribution of X^{2} when H_{0} is true is a large sample approximation.
- Where expected counts are small, P-values from the Chisquare distribution begin to become unreliable.
- Our rule is that expected counts should be greater than 1 and 80% of the expected counts should be at least 5 .
- If this rule is not satisfied, we can often amalgamate rare categories
■ (i.e. treat two or more similar classes as a single class) in order to increase the expected counts.
- For 2×2 tables we use the rule for comparing two proportions.

Slide 41
STAT 13, UCLA, Ivo Dinov

Chi-square tests cont.

- Observed refers to the count observed in the cell (i.e. what the data says).
- Expected refers to the count that would be expected if H_{0} was true.
- Large values of x^{2} provide evidence against H_{0}. Such values occur when we get X^{2} bserved counts far from what H_{0} would lead us to expect.
- The degrees of freedom (df) depend on the dimension(s) of the table and the hypothesis being tested.
- The individual terms in the sum (one for each cell) are called the components of Chi-square. When we have a statistically significant test result, inspecting the large components can lead to insight into how the hypothesis is failing to describe the data.

Two-Way Tables

Chi-Square test

- Whether H_{0} specifies equality of row distributions, or equality of column distributions, or independence of row and column classifications, the Chi-square test uses
Expected count in cell((i, j) :

Row distributions

- Row distributions tell us about the chances that an individual who belongs to a given row will fall into each of the column classes.
- They are estimated by the row proportions of the table (using row totals as denominators).
- They are not meaningful if columns are separate samples.
- When constructing confidence intervals for differences between proportions, proportions from different rows are statistically independent.

Column Distributions

- Column distributions tell us about the chances that an individual who belongs to a given column will fall into each of the row classes.
- They are estimated by the column proportions of the table (using column totals as denominators).
- They are not meaningful if rows are separate samples.
- When constructing confidence intervals for differences between proportions, proportions from different columns are statistically independent.

Whole-table Proportions

- Whole-table proportions are formed using the grand total of the table as the denominator.
- They tell us about the chances of an individual experiencing a given combination of the 2 factors.
- They are only meaningful when we have a single sample cross-classified by two factors.
■ They are not meaningful if rows are separate samples or if columns are separate samples.
- When constructing confidence intervals for differences between proportions, use standard errors for single sample, several response categories.

