UCLA STAT 13

Introduction to Statistical Methods for the Life and Health Sciences

•Instructor: Ivo Dinov,

Asst. Prof. of Statistics and Neurology

• Teaching Assistants: Chris Barr & Ming Zheng

University of California, Los Angeles, Fall 2004 http://www.stat.ucla.edu/~dinov/courses_students.html

STAT 13. UCLA. Ivo Dinov

Slide

Chapter 11: Tables of Counts

We discussed means and mean differences in Ch. 10 and developed a statistical toolbox for analyzing quantitative variables.

Now we want to develop a similar approach for analyzing qualitative variables.

Table-of-measurements \rightarrow tables-of-counts;

Means

→ proportions

T/F-tests for inference on qualitative variables →

Chi-square (χ^2) tests for <u>categorical</u> data.

CLA. Ivo Dinov

....

Chapter 11: Tables of Counts

- One-dimensional tables and goodness of fit
- ●Two-way tables of counts
 Chi-square test of homogeneity
 Chi-square test of independence
 2 by 2 tables
- •The perils of collapsing tables

T 13. UCLA, Ivo Dinov

1-dimensional tables cont.

expected cell count = total × specified cell probability

The T and F statistics are used for inference about quantitative variables. χ^2 statistics is used for analysis of categorical data.

- When H_0 gives the probabilities of landing in each cell completely (no parameters to be estimated), $P(\text{cell}_1)=p_1$, $P(\text{cell}_2)=p_2$, ..., $P(\text{cell}_1)=p_1$, and $\Sigma p_k=1$.
- Thus, having J-1 probabilities fixed determines the last probability.

df = number of categories - 1

Slide 5 STAT 13 UCLA Iva Dinas

Chi-Square Test - goodness of fit test

• The Chi-square test statistic (χ^2) has observed value

$$x_0^2 = \sum_{\text{all cells in the table}} \frac{\text{(observed - expected)}^2}{\text{expected}}$$

• The *P*-value for the test is

P – value = $pr(X^2 \ge x_0^2)$ where X^2 ~ Chi - square(df)

To test a null-hypothesis, H₀, we compare the observed counts in the table to the expected (theoretical) counts. For this reason this test is called a goodness-of-fit test – observed/expected count fit.

Slide 6 STAT 13, UCLA, Ivo Dinov

Example of 1D table - Three blood types

TABLE 11.1.1 Proportions of Three Blood Types

	A	AB	В	Total
No. Observed	39	70	42	151
Proportion Observed	0.258	0.464	0.278	1.000

Slide 7 STAT 13, UCLA, Ivo Dinov

Example of 1D table - rolling a single die TABLE 11.1.2 210 Rolls of a Die Outcome Total 37 26 43 38 26 40 210 Proportion 0.124 0.176 0.124 0.205 1.000 Why aren't these probabilities all equal?!? Are they supposed to? What are the expected probabilities (1/6)? χ^2 statistics is $x_0=7.54$, df=5, P-value=0.18

Exit poll – sampling voters as they leave polling booths. Exit polls of 10,000 voters.

(a) Table of exit-poll sample and population Age distributions

	Age group				
	18-29	30-44	45-59	60+	Total
Sample: (Percentages)	13	29	30	28	100
Population : (Percentages)	22	32	24	22	100

Are there differences between the population age groups and the exit-poll sample age groups? Younger voter <u>underrepresented</u> voters.

Younger voter <u>underrepresented</u> voters. Real differences or just due to sampling variation?

Slide 9 STAT 13, UCLA, Ivo Dinov

Exit poll - Bar-plot of population/sample groups

(c) Table of observed and expected counts

		Α	ge group		
	18-29	30-44	45-59	60+	Total
Observed count	1300	2900	3000	2800	10,000
Expected count	2200	3200	2400	2200	10,000

(Note: Counts approximate due to the rounding of percentages in the report.)

Figure 11.1.1 Comparing the age distributions for voters and the population.

$$H_0$$
: $p_{18-29} = 0.22$; $p_{30-34} = 0.32$; $p_{45-59} = 0.32$; $p_{60+} = 0.32$;

Slide 11 STAT 13 UCLA Ivo Dinov

Exit poll – Bar-plot of population/sample groups

$$x_0^2 = \sum_{\substack{\text{all cells in the table}}} \frac{\text{(observed-expected)}^2}{\text{expected}} = 709.94$$

df = number of groups -1 = 4 -1 = 3

P-value = 0.000, very small, indicating extremely strong evidence against the null-hypothesis. The 95% CI for each age groups are:

[12.3:13.7]; [28.1:30.0]; [29.1:30.9]; [27.1:28.9]

Slide 12 STAT 13, UCLA, Ivo Dinox

Lotto after 399 numbers have been drawn -

Do some numbers appear more frequently in LOTTO?

Number-range: [1:40]

Number of balls selected at each draw: 7

Number of samples: 57

Total number of balls selected: 57*7=399,

Expected value of each number: 399/40 = 9.975

Observed χ^2 statistics is $x_0=30.97$

df=40-1=39

P-value = 0.817

Conclusion: No evidence for departure from the null hypothesis.

Slide 15 STAT 13, UCLA, Ivo Dinov

Review

- 1. The test statistic for the Chi-square test compares observed and expected frequencies. In what sense are the *expected* frequencies expected? (Expected frequencies are the frequencies expected in H₀ were true.)
- 2. What shape does the Chi-square distribution generally have? What happens to its shape as the degrees of freedom increase? (Skewed unimodal, becomes symmetric and Normal approximates it well for large df.)
- 3. What values of the Chi-square test statistic (large or small) provide evidence against the null hypothesis? Why? (Large values, since P-value is small. See density curve.)

Slide 16 STAT 13 UCIA Ivo Dinov

Review

- 4. For one-dimensional tables, how do you compute the degrees of freedom *df*? (df=number of cells/groups-1.)
- 5. Do the expected counts have to be whole numbers? (No, expected counts = number of samples x cell-probability.)

Slide 17 STAT 13 UCLA Iva Dinav

Two-way tables

Suppose we have two (or more) qualitative variables, that we use to classify individuals/units/subjects into groups/classes.

Example, 400 patients with malignant melanoma (type of skin cancer) are cross-classified by TYPE (malignant-cell-type) and SITE (focal-location).

4x3 table (4-rows, types and 3 columns, sites).

Questions: What's the most common type of cancer?

What locations are mostly effected?

B UCLA Iva Dinav Slid

Melanoma by Site and Type, e.g., 4.6.2 TABLE 11.2.1 Four hundred Melanoma Patients by Type and Site SITE Head and Extremities Row totals Type neck Trunk Hutchinson's M elanomic Freckle 22 2 10 34 Superficial Spreading M elanoma 16 54 115 185 Nodular 19 33 73 125 Indeterminate 17 56 Column Totals 68 106 226 400 Source: Roberts et al. [1981]

	1	SITE			_		
Type	Head and	-	Extremities	Row totals	Pro	portion	s of
Hutchinson's Melanomic Freckle Superficial Spreading Melanoma	22 16	2 54	10 115	34 185		400 patiery = count/	
Nodular	19	33	73	125			
Indeterminate	11	17	28	56			
Column Totals	68	106	226	400			
					SITE		
				Head and	SILE		
	Туј	ne e		Head and neck	Trunk	Extremities	Row total
		e chinson	's			Extremities	Row total
	Hut					Extremities 0.025	Row total
	Hut Me	chinson lanomic		neck	Trunk		
	Hut M e Sup	chinson lanomic	Freckle	neck	Trunk		
	Hut Me Sup Me	chinson lanomic erficial	Freckle	neck 0.055	Trunk 0.005	0.025	0.085
	Hut Me Sup Me Noo	chinson lanomic erficial l lanoma	Freckle Spreading	0.055 0.040	Trunk 0.005 0.135	0.025 0.288	0.085
	Hut Me Sup Me Noo Ind	chinson lanomic erficial l lanoma lular	Freckle Spreading te	0.055 0.040 0.048	Trunk 0.005 0.135 0.083	0.025 0.288 0.183	0.085 0.463 0.313

TABLI	E11.2.3		ole - Bloo	• •			
			PHENOTYF	E			=
REGIO	N	A	В	0	AB	Total	
Nithsda	le	98	35	115	5	253	
Cree		38	9	79	6	132	
Rhinns		36	9	47	7	99	
Total		172	53	241	18	484	
TABLE 11.2	4 ABO	Distribution	s from Three	Areas (R	ow prop	ortions)	
			PHENOTYP	E			
REGION		A	В	О		AB	Total
Nithsdale		0.39	0.14	0.45		0.02	1.00
Cree		0.29	0.07	0.60		0.05	1.00
Rhinns		0.36	0.09	0.47		0.07	1.00
			Slide 25	OW.	T 13. UCLA		

Blood contains genetic info that can help determine if populations in some Geo-regions have different racial origins from those in other regions. This is blood donor data from SW Scotland, Mitchell, 1976. Data (obs. study) is classified using the ABO type system in a 3x4 table (region/phenotype). Q: Are there regional differences in the phenotype structure? Assume: random sample from real population, w.r.t. the ABO blood type.

		Nota	tion				
TABLE 11.2.5 Gene		for a Two- Level of Fa			ì.		
Factor/Attribute A	1	2		j			Total
1	O 11	O 12		O_{1_j}		O_{1j}	R_I
2	O 21	O 22		O_{2_i}		O_{2J}	R_2
•							
i	O_{i1}	O_{i^2}		O_{ij}		O_{iJ}	R_{i}
•							
I	O_{I^1}	O_{I^2}		O_{I_i}		O_{IJ}	R_I
Total	C_1	C 2		C ,		С,	n

Chi-Square Test

(for either homogeneity or independence between attributes/factors A and B in a 2-way table)

• The Chi-square test statistic has observed value

$$x_0^2 = \sum_{\text{all cells in the table}} \frac{\text{(observed-expected)}^2}{\text{expected}} = \sum_{i,j} \frac{(O_{ij} - \hat{E}_{ij})^2}{\hat{E}_{ij}}$$

$$\hat{E}_{ij} = \frac{R_i C_j}{n} = \frac{i \text{ th row total} \times j \text{ th col total}}{\text{grand total}}$$

and
$$df = (I-1)(J-1)$$

• The *P*-value for the test is

P - value = $pr(X^2 \ge x_0^2)$ where X^2 ~ Chi - square(df)

	Chi-Squ	are Test			
	Expected	counts	are print	ed below ol	oserved counts
Hutchinson	1	ad & N 22 5.78	Trunk 2 9.01	Extremit 10 19.21	Total 34
Superficial	2	16 31.45	54 49.03	115 104.53	185
Nodular	3		33 33.13	73 70.62	125
Indetermina	ate 4	11 9.52	17 14.84	28 31.64	56
		45.517 7.590 0.238	+ 0.505 + 0.000 + 0.314	226 + 4.416 + + 1.050 + + 0.080 + + 0.419 =	400

Comments

- 5. Suppose that we are interested in comparing row distributions. In what way(s) can we sample to obtain our data? Express in words the null hypothesis tested by the Chi-square test. Repeat for column distributions.
- 6. If we do not want to think in terms of row distributions or column distributions but just want to see whether there is any relationship between the row an individual falls into and the column he or she falls into, express in words the null hypothesis tested by the Chi-square test.

Slide 34 STAT 13 UCLA. Ivo Dinov

Degrees of freedom – since there are n-1 free parameters, for columns and rows, row/column sums must equal 1 (or n)

Chi-square test for a 2 × 2 table: df = 1. In general for IxJ table df = (I-1)*(J-1)

Slide 36 STAT 13 UCIA Ivo Dinos

Dangers of collapsing tables -Simpson's paradox

Nonsmokers				Smokers		
	Not irradiated	Irradiated		Not irradiated	Irradiated	
No cancer	950	9000	No cancer	5000	5	
Cancer	50(5%)	1000(10%)	Cancer	5000(50%)	95(95%)	
	TO A DO T TO 4 4 4					

TABLE 11.3.3 The Collapsed Table

	Not irradiated	Irradiated
No cancer	5950	9005
Cancer	5050(46%)	1095(11%)

Collapsing the 3-way table (artificial, on top) to a 2-way table (bottom), w.r.t. smoking factor. Goal to investigate irradiation/cancer relation. It appears as though irradiation decreases the cancer rate ...

lide 37 STAT 13 UCLA Iva Dinav

Chapter 11 Summary

6

General Ideas about Chi-Square Tests

• The Chi-square test statistic has observed value

$$x_0^2 = \sum_{\text{all cells in the table}} \frac{\text{(observed - expected)}^2}{\text{expected}}$$

• The P-value for the test is

$$P$$
 - value = $pr(X^2 \ge x_0^2)$ where X^2 ~ Chi - square(df)

Slide 39 STAT 13 UCIA. Ivo Dinos

Chi-square tests cont.

- Observed refers to the count observed in the cell (i.e. what the data says).
- Expected refers to the count that would be expected if H₀ was true.
- Large values of χ^2 provide evidence against H_0 . Such values occur when we get observed counts far from what H_0 would lead us to expect.
- The degrees of freedom (df) depend on the dimension(s) of the table and the hypothesis being tested.
- The individual terms in the sum (one for each cell) are called the components of Chi-square. When we have a statistically significant test result, inspecting the large components can lead to insight into how the hypothesis is failing to describe the data.

Slide 40 STAT 13 UCIA. Ivo Dinov

Warning about Chi-square

- Using the Chi-square distribution as the sampling distribution of X² when H₀ is true is a large sample approximation.
- Where expected counts are small, P-values from the Chisquare distribution begin to become unreliable.
- Our rule is that expected counts should be greater than 1 and 80% of the expected counts should be at least 5.
- If this rule is not satisfied, we can often amalgamate rare categories
 - (i.e. treat two or more similar classes as a single class) in order to increase the expected counts.
- For 2 x 2 tables we use the rule for comparing two proportions.

Slide 41 STAT 13 UCIA Ivo Dinov

One-Dimensional Tables

- A single sample of units or individuals being classified into groups by a single factor (with J levels).
 - We summarize the data using a (1-way) frequency table and plot it using a bar graph.
 - Chi-squared tests are useful when we have a hypothesis defining the values of the set of probabilities (or population proportions) that the data was sampled from.
 - The degrees of freedom is df = J-1
 □ this applies if the set of probabilities is completely specified
 □ if the probabilities are hypothesized to come from a distribution with parameter(s) that must estimated from the data then df = k 1 #estimated parameters

Slide 42 STAT 13 UCLA Ivo Dinov

One-dimensional tables cont.

- A common hypothesis is that all of the probabilities (respectively population proportions) are identical.
- If the above hypothesis is rejected, we can investigate the nature of the differences by looking at the differences between pairs of proportions.
- When constructing confidence intervals for differences between proportions, use standard errors for single sample and several response categories.

Slide 43 STAT 13 UCLA Ivo Dim

Two-Way Tables

Chi-Square test

 Whether H₀ specifies equality of row distributions, or equality of column distributions, or independence of row and column classifications, the Chi-square test uses

Expected count in cell(i,j):

$$\hat{E}_{ij} = \frac{R_i C_j}{n} = \frac{i \text{th row total} \times j \text{th col total}}{\text{grand total}}$$
and

df = (I-1)(J-1)

Slide 44 STAT 13, UCLA, Ivo Dinox

Warning

- Chi-square tests, as described in this book, are only appropriate when the data is collected as a single random sample or when rows (or columns) come from independent random samples.
- Social scientists have often used it on two-way tables constructed using data from complex surveys which employ devices such as cluster sampling.
- The Chi-square test is not appropriate under such circumstances.

Slide 45 STAT 13 UCLA. Ivo Dinos

Two-way tables cont.

Two Types of Table

- We distinguished between
 - Situation 1, Single sample cross-classified by two factors
 - and Situation (2), separate samples, each classified according to one response factor (see Fig.11.2.7).

lide 46 STAT 13 UCLA Ivo Dinos

Row distributions

- Row distributions tell us about the chances that an individual who belongs to a given row will fall into each of the column classes.
- They are estimated by the row proportions of the table (using row totals as denominators).
- They are not meaningful if columns are separate samples.
- When constructing confidence intervals for differences between proportions, proportions from different rows are statistically independent.

Slide 47 STAT 13, UCLA, Ivo Dinov

Column Distributions

- Column distributions tell us about the chances that an individual who belongs to a given column will fall into each of the row classes.
- They are estimated by the column proportions of the table (using column totals as denominators).
- They are not meaningful if rows are separate samples.
- When constructing confidence intervals for differences between proportions, proportions from different columns are statistically independent.

Slide 48 STAT I3 UCLA Ivo Dino

Whole-table Proportions

- Whole-table proportions are formed using the grand total of the table as the denominator.
- They tell us about the chances of an individual experiencing a given combination of the 2 factors.
- They are only meaningful when we have a single sample cross-classified by two factors.
 - They are not meaningful if rows are separate samples or if columns are separate samples.
- When constructing confidence intervals for differences between proportions, use standard errors for single sample, several response categories.

Slide 49 STAT 13. UCLA, Ivo Dinov