## UCLA STAT 13

## Introduction to Statistical Methods for the Life and Health Sciences

## -Instructor: IVO Dinov,

Asst. Prof. of Statistics and Neurology

- Teaching Assistants: Chris Barr \& Ming Zheng

University of California, Los Angeles, Fall 2004 http://www.stat.ucla.edu/~dinov/courses_students.html


## Correlation Coefficient

Correlation coefficient ( $-1<=R<=1$ ): a measure of linear association, or clustering around a line of multivariate data.
Relationship between two variables ( $\mathrm{X}, \mathrm{Y}$ ) can be summarized by: $\left(\mu_{\mathrm{X}}, \sigma_{\mathrm{X}}\right),\left(\mu_{\mathrm{Y}}, \sigma_{\mathrm{Y}}\right)$ and the correlation coefficient, $R$. $R=1$, perfect positive correlation (straight line relationship), $R=0$, no correlation (random cloud scatter), $R=-1$, perfect negative correlation.
Computing $R(\mathrm{X}, \mathrm{Y})$ : (standardize, multiply, average)



## Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y
$R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x k-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y_{k}-\mu_{y}}{\sigma_{y}}\right)=$
$R(a X+b, c Y+d)$, since
$\left(\frac{a x_{k}+b-\mu_{a x}+b}{\sigma_{a x}+b}\right)=\left(\frac{a x_{k}+b-\left(a \mu_{x}+b\right)}{|a| \times \sigma_{x}}\right)=$
$\left(\frac{a(x k-\mu)+b-b}{a \times \sigma_{x}}\right)=\left(\frac{x k-\mu_{x}}{\sigma_{x}}\right)$

## Correlation Coefficient - Properties

Correlation is Associative
$R(X, Y)=\frac{1}{N} \sum_{k=1}^{N}\left(\frac{x_{k}-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y_{k}-\mu_{v}}{\sigma_{v}}\right)=R(Y, X)$
Correlation measures linear association, NOT an association in general!!! So, Corr( $\mathrm{X}, \mathrm{Y}$ ) could be misleading for X \& Y related in a non-linear fashion.
$\operatorname{Corr}(X, Y)=R(X, Y)=0.904$
a non-linear fashion.




Trend and Scatter - Computer timing data

- The major components of a regression relationship are trend and scatter around the trend.
- To investigate a trend - fit a math function to data, or smooth the data.
- Computer timing data: a mainframe computer has X users, each running jobs taking Y min time. The main CPU swaps between all tasks. $\mathrm{Y}^{*}$ is the total time to finish all tasks. Both Y and $\mathrm{Y}^{*}$ increase with increase of tasks/users, but how?

| X | $=$ Number of terminals: | 40 | 50 | 60 | 45 | 40 | 10 | 30 | 20 |
| :--- | :--- | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Y}^{*}$ | $=$ Total Time (mins): | 6.6 | 14.9 | 18.4 | 12.4 | 7.9 | 0.9 | 5.5 | 2.7 |
| Y | $=$ Time Per Task (secs): | 9.9 | 17.8 | 18.4 | 16.5 | 11.9 | 5.5 | 11 | 8.1 |
| X | $=$ Number of terminals: | 50 | 30 | 65 | 40 | 65 | 65 |  |  |
| $\mathrm{Y}^{*}$ | $=$ Total Time (mins): | 12.6 | 6.7 | 23.6 | 9.2 | 20.2 | 21.4 |  |  |
| Y | $=$ Time Per Task (secs): | 15.1 | 13.3 | 21.8 | 13.8 | 18.6 | 19.8 |  |  |



## Least squares criterion

Least squares criterion: Choose the values of the parameters to minimize the sum of squared prediction errors (or sum of squared residuals),

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$



Figure 12.3.3 Computer-timings data with least-squares line.

## Review, Fri., Oct. 19, 2001

1. The least-squares line $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$ passes through the points ( $x=0, \hat{y}=$ ?) and ( $x=\bar{x}, \hat{y}=$ ?). Supply the missing values.

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} ; \quad \hat{\boldsymbol{\beta}}_{0}=\bar{y}-\hat{\boldsymbol{\beta}}_{1} \bar{x}
$$




Another Notation for the Slope of the LS line

1. Note that there is a slight difference in the formula for the slope of the Least-Squares Best-Linear Fit line:


| Another Notation for the Slope of the LS line |  |
| :---: | :---: |
| $\hat{\beta}_{1}^{\text {New }}=\operatorname{Corr}(X ; Y) \times \frac{\operatorname{SD}(Y)}{\operatorname{SD}(X)}=$ |  |
| $\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]$ | $\sqrt{\left(\sum_{i=1}^{n}\left(y_{i}-y\right)^{2}\right) 1 / N-1}$ |
| $\sqrt{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) \times\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right.}$ | $\sqrt{\left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) 1 / N-1}$ |
| $\frac{\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\hat{\beta}_{1}^{\text {old }}$ |  |


| Course Material Review |
| :--- | :--- |
| 1. ============Part I================== <br> 2. Data collection, surveys. <br> 3. Experimental vs. observational studies <br> 4. Numerical Summaries (5-\#-summary) <br> 5. Binomial distribution (prob's, mean, variance) <br> 6. Probabilities \& proportions, independence of events and <br> conditional probabilities  <br> 7. Normal Distribution and normal approximation |

## Course Material Review - cont.

1. $===============$ Part II $=================$
2. Central Limit Theorem - sampling distribution of $\bar{X}$
3. Confidence intervals and parameter estimation
4. Hypothesis testing
5. Paired vs. Independent samples
6. Chi-Square ( $\chi^{2}$ ) Goodness-of-fit Test
7. Analysis Of Variance (1-way-ANOVA, one categorical var.)
8. Correlation and regression
9. Best-linear-fit, least squares method
