

Correlation Coefficient									
E	xample	e: R(2	(X,Y)	$=\frac{1}{N}$	$\frac{1}{k} = \frac{1}{k}$	$\sum_{x=1}^{N} \left(\frac{x}{2}\right)$	$\frac{1}{\sigma_{x}} - \mu_{x} \left(\frac{y}{\sigma_{x}} \right)$	$\left(\frac{1}{\sigma_{y}}-\mu_{z}\right)$	
	Student	Height '	Woight	¥-7	<u> У1 - 7</u>	(4 - x Y	(y₁-γ) ²	(× ₁ - x)(y ₁ - y)	
	1	X	Ŷ						
	4	167	60	6	4.67	36	21,6089	28.02	
	ż	170	64	9	8.67	81	75.1689	78.03	
	3	160	57	-1	1.67	1	2.7669	-1.67	
	4	152	46	-e	-9.33	81	67.0469	63.97	
	6	167	66	-4	-0.33	16	0.1089	1.32	
	6	160	50	-1	-5.33	1	28.4089	5.33	
	Total	966	332	Ö	≈0	216	215.3334	195.0	

Correlation Coefficient						
Example: $R(X,Y) = \frac{1}{N-1} \sum_{k=1}^{N} \left(\frac{x_{k} - \mu}{\sigma} \right) \left(\frac{y_{k} - \mu}{\sigma} \right)$						
$\mu_{x} = \frac{966}{6} = 161 \mathrm{cm}, \mu_{x} = \frac{332}{6} = 55 \mathrm{kg},$						
$\sigma_x = \sqrt{\frac{216}{5}} = 6.573, \sigma_y = \sqrt{\frac{215.3}{5}} = 6.563,$						
Corr(X,Y) = R(X,Y) = 0.904						

										_
	Trend and Scatter - Computer timing data									
	• The major components of a regression relationship are trend and scatter around the trend.									
	• To investigate a trend – fit a math function to data, or smooth the data.									
	 Computer timing data: a mainframe computer has X users, each running jobs taking Y min time. The main CPU swaps between all tasks. Y* is the total time to finish all tasks. Both Y and Y* increase with increase of tasks/users, but how? 									
		Number of terminals:	40	50	60	45	40	10	20	20
*	_	Total Time (mine):	40	14.0	18.4	4.5	40	10	55	20
,	-	Total Time (mins).	0.0	14.7	10.4	12.4	11.0	0.9	3.5	2.7
	=	Time Per Task (secs):	9.9	17.8	18.4	16.5	11.9	5.5	11	8.1
5	=	Number of terminals:	50	30	65	40	65	65		
*	=	Total Time (mins):	12.6	6.7	23.6	9.2	20.2	21.4		
r	=	Time Per Task (secs):	15.1	13.3	21.8	13.8	18.6	19.8		
				Slide 2	5	STAT 13	B. UCLA. Ivo	Dinov		

The least squares line							
	Least-squares line: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$						
β	$\mathbf{f}_{1} = \frac{\sum_{i=1}^{n} \left[(x_{i} - \bar{x})(y_{i} - \bar{y}) \right]}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}; \boldsymbol{\beta}_{\circ} = \bar{y} - \boldsymbol{\beta}_{i} \bar{x}$						
	Slide 41 STAT 13. UCLA. Ivo Dinov						

			Comp	uter timing	s data
TABLE	12.3.1 Predic	tion Errors	comp	ator tilling	5 aaaa
		3 + 0.25	δx	7 + 0.15x	
x	у	ŷ	$y - \hat{y}$	ŷ	$y - \hat{y}$
40	9.90	13.00	-3.10	13.00	-3.10
50	17.80	15.50	2.30	14.50	3.30
60	18.40	18.00	0.40	16.00	2.40
45	16.50	14.25	2.25	13.75	2.75
40	11.90	13.00	-1.10	13.00	-1.10
10	5.50	5.50	0.00	8.50	-3.00
30	11.00	10.50	0.50	11.50	-0.50
20	8.10	8.00	0.10	10.00	-1.90
50	15.10	15.50	-0.40	14.50	0.60
30	13.30	10.50	2.80	11.50	1.80
65	21.80	19.25	2.55	16.75	5.05
40	13.80	13.00	0.80	13.00	0.80
65	18.60	19.25	-0.65	16.75	1.85
65	19.80	19.25	0.55	16.75	3.05
s	um of squared	errors	37.46		90.36
			Slide 43	STAT 13, UCLA, Ivo I	Dinov

Hands – on worksheet !									
1. X={-1, 2, 3, 4}, Y={0, -1, 1, 2}, $\bar{x} = 2, \bar{y} = 0.5$									
	х	Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$(x - \overline{x}) \times (y - \overline{y})$		
	-1	0	-3	-0.5	9	0.25	1.5		
	2	-1	0	-1.5	0	2.25	0		
	3	1	1	0.5	1	0.25	0.5		
	4	2	2	1.5	4	2.25	3	$\frac{\beta_1 = 5/1}{\beta_0 = y^- \beta_1 * x}$	
	2	0.5			14	5	5	$\beta_0 = 0.5 - 10/$	
				S	lide 47	STAT	13. UCLA. IN	o Dinov	

Another Notation for	the Slope of the LS line
$\hat{\beta}_1^{N_{ew}} = Corr(X;Y) \times \frac{SD(Y)}{SD(X)} =$	
$\sum_{i=1}^{n} \left[(x_i - \overline{x})(y_i - \overline{y}) \right]$	$\sqrt{\left(\sum_{i=1}^{n} (y_i - \overline{y})^2\right)^{1/N-1}} -$
$\sqrt{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right)} \times \left(\sum_{i=1}^{n} (y_i - \bar{y})\right)$	$\binom{n}{2} \sqrt{\binom{n}{\sum\limits_{i=1}^{N} (x_i - \bar{x})^2}} \frac{1}{N-1}$
$\frac{\sum_{i=1}^{n} \left[(x_i - \overline{x})(y_i - \overline{y}) \right]}{\sum_{i=1}^{n} \left[(x_i - \overline{x})^2 \right]} = \hat{\beta}_1^{Old}$	
$\sum_{i=1}^{2} (x_i - x)$	
S	lide 58 STAT 13. UCLA. Ivo Dinov

Course Material Review – cont.

- 1. =====Part II=======
- 2. Central Limit Theorem sampling distribution of \overline{X}
- 3. Confidence intervals and parameter estimation
- 4. Hypothesis testing
- 5. Paired vs. Independent samples
- 6. Chi-Square (χ^2) Goodness-of-fit Test
- 7. Analysis Of Variance (1-way-ANOVA, one categorical var.)
- 8. Correlation and regression
- 9. Best-linear-fit, least squares method

Slide 60 STAT 13. UCLA, Iro Dinor