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Course Organization

Software:  SOCR resource, 

http://socr.stat.ucla.edu
Texts:  A New Kind of Science by Stephen Wolfram (2002)

Chance in Biology: Using Probability to Explore Nature

by Mark Denny and Steven Gaines (2002)

Course Description, Class homepage, online 
supplements, VOH’s, etc.

http://www.stat.ucla.edu/~dinov/courses_students.html
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The Nature of Chance 
Determinism versus Chance
Chaos vs. Order 
Experiments, Observations & Distributions 
Types & Causes of Variation, Entropy 
Discrete & Continuous Patterns of Disorder 
The Normal Distribution 
Central Limit Theory 
Randomness in Biology, Genetics, Eng. & Physics 
Random Walks (may be Dynamical Systems, Fractals)

Topics
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Duality Principles: The Uncertainty Principle 
(momentum vs. position) 
Balancing Quality and Volume of Information
Statistical vs. Practical Significance
Statistics of Extremes
Intra- vs. Extra-polation
Noise and Perception
Bayesian Theory

Topics (cont.)
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The Nature of Chance
The Nature of Chance extends far beyond the 
random events that shape human existence. Chance is 
ubiquitous, and its role in Life and the Universe is the 
subject of this Course.

Examples: mountain stream sound, arrival times, 
MPG mileage, wind patterns (vorticity), (thermal 
molecular) diffusion/movements/walks, material 
strength, the drift of genes in a population, longevity 
of phytoplankton, etc.

Is chance in life unavoidable?
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The Nature of Chance

(Classical) Traditional approach is to view chance 
as a necessary evil that can be tamed via application 
of clever techniques (filtering) or inferential statistics.

Alternatively, if chance is a given in life, why not 
use it to our advantage? In other words, if we know 
that a system will behave in a random (chaotic) 
fashion in the short term and at small scale (as with 
the random thermal motions of protein chains in 
spider silk), we can use this information to make 
accurate predictions as to how the system will behave 
in the long run and on a larger scale.
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The Nature of Chance

Probability theory was originally devised to predict 
the outcomes in games of chance, but its utility has 
been extended far beyond games. 

Life itself is a chancy proposition, a fact apparent in 
our daily lives. Some days you are lucky (every 
stoplight turns green as you approach) and other 
days, just by chance, you are stopped by every light.
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Determinism versus Chance 

Deterministic Processes: One of Sir Isaac Newton’s 
grand legacies is the idea that much about how the 
Universe works can be precisely described. I.e. given 
sufficient knowledge of the initial state of a system, its 
future can be determined exactly. 
Examples: If we know the exact masses of the Moon 
and Earth and their current speed relative to each other, 
Newtonian mechanics and the law of gravitation 
should be able to tell us the exact position of the Moon 
relative to Earth at any future time (e.g., predict solar 
and lunar eclipses, comet arrivals, etc.). 
Euclidean Geometry: Given 2 sides of a right-triangle 
we can determine exactly the length of the 3rd size.
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Determinism versus Chance 

Good examples of real-world deterministic processes 
are difficult to find. Many of the processes that seem 
simple when described abstractly are exceedingly 
complex in reality. Details inevitably intrude, bringing 
with them an element of unpredictability. 
Approximations: In some cases, the amount of 
variability associated with a process is sufficiently 
small that we are willing to view the system as being 
approximately deterministic, and accept as fact 
predictions regarding its behavior. 
The physics of a pendulum clock, for instance, is so 
straightforward that we are content to use these 
machines as an accurate means of measuring time.
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Determinism versus Chance 

In biology, few systems are so reliable, and 
deterministic behavior can be viewed at best as a 
wishful-thinking. 
Fidelity, Imprecision, Repetition and Uncertainty
is present in virtually all biological processes – read 
the online article by Miroslav Radman in Nature 413 
(Class notes online).  
Perfection of organisms and the accuracy of 
biological processes are still used in religious 
explanations of the origin of life. However, in real 
life it is survival, not fidelity, that is the ultimate 
virtue.
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Determinism versus Chance 

Because adaptability involves exploration of genetic 
possibilities to fit ecological niches, molecular 
infidelity and repetition are more likely to succeed 
than a precise, non-repetitive processes. 
Only a tiny fraction of antibodies produced will ever 
be useful; the rest can be considered as mistakes. 
At least half of all human embryos fail during 
development. 
During chromosome segregation from a mother cell 
into two daughters, the polymerizing fibers 
(microtubules) do not know the exact location of the 
chromosomal target (the centromere) — they shoot 
and miss until one hits.
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Determinism versus Chance 

A precise, single shot would often miss a target of 
uncertain position, whereas successive, imprecise 
firing will eventually lead to a hit. 

Selection at the level of molecules, cells and 
organisms may give the impression of designed 
perfection, but life's structures do not emerge by a 
fully deterministic design.
Errors, infidelity & wastefulness, can cause individual failure,
but also provide innovation and robustness, ensuring the 
perpetuation of life. Nature does not exhaust itself for the sake 
of fidelity and perfectionism. Rather, errors are made, often 
repaired or discarded, but always tested as the source of blind 
innovation during the continuous adaptation to unpredictable 
environmental changes and challenges. 
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Efficiency vs. Precision 

What about the fidelity of enzymatic reactions? In 
the very precise process of DNA replication, 
accuracy is achieved by using a proofreading system 
to remove erroneously inserted nucleotides, and then 
by quality-checking the synthesized DNA using a 
mismatch-repair system that removes virtually all 
remaining mistakes. 
It would take too long to get it exactly right in the 
first place. DNA replication is efficient and therefore 
relatively imprecise, leaving mistakes to error-
correction enzymes which are themselves efficient 
because their substrates are specific mistakes made 
by other enzymes.
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Determinism versus Chance 

If a system or process is not deterministic, it is by 
definition stochastic. Even if we know exactly the 
state of a stochastic system at one time, we can never 
predict exactly what its state will be in the future. 

Stochasticity can manifest itself to a variable degree 
(wind speed could easily double in 1 second in a 
turbulent environment, whereas random washer-
thickness variations in a precise engineering design 
could often be within 10-10 m).
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Determinism versus Chance 

Many stochastic processes are approximately predictable 
with just a minor overlay of random behavior. 

Example: The light intensity reflected from a mountain 
stream is chaotic. Yes, there are minor random short-
term light fluctuations. However, if we were to take 5-
minute averages of the light level (long-time picture 
exposure) this intensity could be predicted fairly 
accurately. Note the word average above, this is a key 
concept we’ll discuss later in stochastic process 
modeling.

In other cases, the predictability of a system is negligible, 
and chance alone governs its behavior (the movement of 
molecules in a gas at room-temperature).
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Determinism versus Chance

Minor random fluctuations. 
Demo of 2 micrometer diameter particles 
in pure water. As can be seen, each particle is 
constantly moving, and its motion is uncorrelated 
with the other particles.

Chance alone governs its behavior
A bead-labeled RecBCD molecule translocating along a single DNA 
molecule. Initially, the free diffusion of beads in solution is seen.
After a few seconds, one of the bead-labeled enzyme molecules attaches 
to the end of a DNA molecule at the center of the field (arrows); attachment is 

detected as the cessation of free diffusion and the commencement of 
characteristic tethered-particle Brownian motion in the vicinity of a single 
point on the microscope slide. Subsequent translocation of the enzyme 
along the DNA molecule is visualized as a gradual decrease in the spatial 
range of the Brownian motion; this decrease continues until the beads 
ceases visible movement altogether. The video is real time; the frame size 
is 6.5 µm wide by 6.6 µm tall. 
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Determinism versus Chance

Practically, the dividing line between deterministic & 
stochastic is open to interpretation. 

Example, usually (both in games and texts on 
probability theory) we accept the P(Coin = Head) as a 
chance proposition, a stochastic process. But if you 
know enough about the height above the ground at 
which the coin is flipped, the angular velocity initially 
imparted to the coin, and the effects of air resistance, it 
may be possible to decide in advance whether the coin 
will land heads up.

Indeed, much of what we accept as stochastic may well 
be deterministic given sufficient understanding of the 
experiment design.
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Determinism versus Chance

So, the line between deterministic & stochastic is 
often drawn as a matter of convenience. 

If the precise predictions that are possible in theory 
are too difficult to carry out in practice, we shift the 
line a bit and think of the process as being stochastic. 

This is not to imply that all processes are 
deterministic, however. As far as physicists have 
been able to divine, there are aspects of nature, 
encountered at very small scales of time and space, 
that are unpredictable even in theory (will talk about 
the Uncertainty Principle, Heisenberg’s inequality, 
later). 
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Determinism versus Chance

There are limits to the precision with which you can 
know both the velocity and the location of an object.
If you could know exactly where an electron is at 
some point in time, you couldn’t know what its 
velocity is. 
Conversely, if you know exactly what its velocity is, 
you can’t know exactly its position. 
This is the strange realm of quantum/statistical 
mechanics, where chance reigns and human intuition 
is of little use. 

Stat 19, UCLA, Ivo DinovSlide 20

Determinism versus Chance

Returning to Einstein's nagging doubts about 
quantum mechanics, Nobel laureate Gerard 't Hooft
of Utrecht University (NL) has begun to outline a 
way in which its apparent play of chance might be 
underpinned by precise physical laws that describe 
the way the world works.

The physicists' most fundamental theory of the 
properties of matter and energy, quantum mechanics 
holds that there are things we just cannot know. For 
example, it forbids us from knowing everything 
about a subatomic particle: its exact speed, position, 
mass and energy. 

Nature, Jan. 08, 2003, by Philip Ball
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Determinism versus Chance

Einstein did not like this idea, and suspected that 
another theory - another layer of reality - might 
underlie quantum mechanics, in which everything is 
spelled out precisely. These deeper properties of 
objects became known as hidden variables. 
According to this view, our ignorance about the 
nature of a quantum object is illusory; we just haven't 
found the right theory to describe it yet.

Today, most physicists adhere to a different reading 
of quantum theory, called the Copenhagen 
Interpretation, as advocated by the Danish nuclear 
physicist of the 1940s, Niels Bohr. 
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Determinism versus Chance

This says that there is no deeper reality, that hidden 
variables don't exist and that the world is simply 
probabilistic. It holds that we are not ignorant about 
quantum objects, it's just that there is nothing further to 
be known.
Indeed, in the 1980s, the Copenhagen Interpretation was 
put to an experimental test based on a theorem devised 
by the Irish physicist John Bell - and it stood up. Hidden 
variables had to go.
The key is information loss. At the smallest conceivable 
size scale - the Planck (h=6.6×10-34 kg·m2·s-1) Scale, 
many trillions of times smaller than the nucleus of an 
atom - there exists complete information about the world. 
This information gets lost very quickly, however.
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Example – Stochastic Gene Expression?
Stochastic Gene Expression in a Single Cell by M Elowitz, A Levine, E 
Siggia, P Swain, Science, 297(5584), 2002, pp. 1183-1186

Living cells possess very low copy numbers of many 
components, including DNA and important regulatory 
molecules. Thus, stochastic effects in gene expression 
may account for the large amounts of cell-cell variation
observed in isogenic populations. Such effects can play 
crucial roles in biological processes, such as 
development, by establishing initial asymmetries that, 
amplified by feedback mechanisms, determine cell fates. 
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Example – Stochastic Gene Expression?
Stochastic Gene Expression in a Single Cell by M Elowitz, A Levine, E 
Siggia, P Swain, Science, 297(5584), 2002, pp. 1183-1186

For any particular gene, it remains unknown whether 
cell-cell variation in the abundance of its product is set 
by noise in expression of the gene itself or by 
fluctuations in the amounts of other cellular components. 

The difficulty of experimentally distinguishing between 
these two possibilities has thus far precluded detection of 
intrinsic noise in living cells. The magnitude of the noise
intrinsic to gene expression, and its relative importance 
compared with other sources of cell-cell variability, are 
fundamental characteristics of the cell that require 
measurement.
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Example – Stochastic Gene Expression?

In general, the amount of protein produced by a 
particular gene varies from cell to cell. The noise (σ/µ) in 
this distribution is labeled ηtot and can be divided into 
two components. Because expression-rates of each gene 
is controlled by the concentrations, states, and locations
of molecules such as regulatory proteins and 
polymerases, fluctuations in the amount or activity of 
these molecules cause corresponding fluctuations in the 
output of the gene. Therefore, they represent sources of 
extrinsic noise (ηext) that are global to a single cell, but 
vary from one cell to another.
On the other hand, consider a population of cells 
identical not just genetically but also in the 
concentrations and states of their cellular components. 

Stat 19, UCLA, Ivo DinovSlide 26

Example – Stochastic Gene Expression?

Even in such a (hypothetical) population, the rate of 
expression of a particular gene would still vary from cell 
to cell because of the random microscopic events that 
govern which reactions occur and in what order. 

This inherent stochasticity, or intrinsic noise, ηint, is that 
remaining part of the total noise arising from the discrete 
nature of the biochemical process of gene expression. 

No matter how accurately the levels of regulatory 
proteins are controlled, intrinsic noise fundamentally
limits the precision of gene regulation.

ηtot= ηextr+ ηint
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In practice, intrinsic noise for a given gene may be 
defined as the extent to which the activities of two 
identical copies of that gene, in the same intracellular 
environment, fail to correlate. 

Example – Stochastic Gene Expression?

Escherichia coli stains incorporate 
the distinguishable cyan (cfp) and 
yellow (yfp) alleles of green fluorescent
protein in the chromosome. In the absence 
of intrinsic noise, the two fluorescent
proteins fluctuate in a correlated fashion
over time in a single cell. Expression of
the two genes may become uncorrelated
In individual cells because of intrinsic noise. 
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Chaos

The deterministic/stochastic dividing line may become 
even fuzzier. 

Lately, a wide variety of physical systems that should 
behave deterministically were found in fact to behave 
unpredictably. These systems are said to exhibit 
deterministic chaos, or just chaos, for short. But if 
they are deterministic, how can they be unpredictable? 

This apparent conflict is solved by the fact that chaotic 
systems are very sensitive to the state in which they are 
started (initial conditions).

Ex. A Contractive Fractal Dynamical System is 
independent of the initial conditions (mriFracDecSeqA1.pdf).
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Chaos – Contractive Fractal Systems

Ex. A Contractive Fractal Dynamical System is 
independent of the initial conditions (mriFracDecSeqA1.pdf).
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Chaos – Contractive Fractal Systems

Ex. A Contractive Fractal Dynamical System is 
independent of the initial conditions (mriFracDecSeqA1.pdf).

Native Data Fractal Representation –
Fixed Point
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Chaos – Contractive Fractal Systems

Ex. Barnsley’s Fern & von Koch’s curve

E:\Ivo.dir\Research\talks\IPAM_BrainMapping04\images\fernAll.pdf
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Chaos
Example, the flight path of a baseball through still 
air. In this case, if we know the initial speed of the ball 
(20 m/s), its initial location, and its direction of motion 
(45o to the horizontal), we may predict where the ball 
will land. 
A small error in the measurement of any of these 
initial conditions (say, the ball is moving at 20.001 
rather than 20.000 m/s), the error in predicting the 
ball’s landing is concomitantly small. 
If the motion of a baseball were chaotic, however, its 
flight would be quite different. Every time a 
deterministic ball were launched at exactly 20 m/s and 
an angle of exactly 45o from the center of home plate, 
it would land in the same spot near second base; 
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Chaos

If, however, a chaotic ball were launched with even a 
slight error in any of these initial conditions, its 
eventual landing spot would be drastically different. A 
shift from 20.000 to 20.001 m/s might cause it to land 
outside the stadium. 
Granted, every time the ball is launched at exactly 
20.001 m/s, it ends up in the same place, so the system 
is still deterministic, but it is extremely sensitive to the 
initial conditions.
This is related to the three types of randomness which 
we’ll discuss later on.
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Chaos

The primary disadvantage of treating a chaotic system 
as if it were just stochastic is a loss of insight. Once a 
process is stamped with the title random – it is easy to 
stop looking for a mechanistic cause for its behavior. 
It is interesting to note that the motion of the planets, 
which has long been cited as the classical example of 
deterministic mechanics, is in fact chaotic. Because 
each planet is subject to a gravitational pull from all 
other planets and other external forces (e.g., comets!), 
there is the possibility that at some time in the future 
the alignment of the solar system may be such that one 
of the planets could be thrown substantially off its 
present orbit, and this potential makes it virtually 
impossible to predict accurately where the planets will 
be at a given date in the future.
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Order vs. Chaos

A classical rotor, subject to deterministic and 
random forces, shows a broad spectrum of 
motion including deterministic, deterministic 
chaos, random and, erratic behavior. 

One of the main achievements of twentieth-
century physics has established that 
deterministic and random phenomena 
complement rather than contradict each other.
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Ordered vs. Chaotic motion

Deterministic motion. If θ is the particle position 
and t is the time, there are PDE’s that describe 
the motion in terms of the time. If the initial 
condition θ0 = θ(t = 0) uniquely determines the 
values of θ for all t , i.e. the motion is fully 
deterministic.

Random motion. If one adds a random force to 
the equation, a rotor is capable of overcoming 
barriers at θ = mπ, and the motion becomes 
random (noise-induced instability). 

Deterministic chaos. Initial conditions play a major 
role.
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Matter vs. Patterns

What is the Universe?
A pool of particles (stuff)?

Or a collection of patterns (of particles)?
If I ask the question, Who am I? I could conclude 
that, perhaps I am this stuff here, i.e., the ordered 
and chaotic collection of atoms & molecules
(particles) that comprise my body.

However, the specific set of particles that 
comprise my body are completely different from 
the atoms and molecules than comprised me only 
a few weeks ago.
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Matter vs. Patterns
So, I am a completely different set of stuff than I was 
a month ago. All that persists is the pattern of 
organization of that stuff. The pattern changes also, 
but slowly and in a continuum from my past self. 

From this perspective I am rather like the pattern that 
water makes in a stream as it rushes past the rocks in 
its path. The actual molecules (of water) change 
every millisecond, but the pattern persists for hours or 
even years. Even atomic structures are rearranged 
with time.

It is patterns (e.g., people, ideas, objects, not 
elementary particles) that persist, and constitute the 
foundation of what fundamentally exists. The view of 
the Universe ultimately is a pattern of information. 
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Matter vs. Patterns

The information is not just embedded as 
properties of some other substrate (as in the case 
of conventional computer memory) but rather 
information is the ultimate reality. 

What we perceive as matter and energy are 
simply abstractions, i.e., properties of patterns. As 
a further motivation for this perspective, it is 
useful to consider that the vast majority of 
processes underlying human intelligence are 
based on the recognition of patterns.

AI !?! 
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Three Types of Randomness (S. Wolfram)

Randomness from environment (continuous 
random feedback from the ambient environment) –
this is like considering the random movement of a 
boat in the ocean. The randomness of boat 
movement is apparent from the randomness of sea 
surface movement at each time point.

Randomness from initial condition – which is like 
rolling a pair of dice in a controlled environment, 
where only the random momentum and direction of 
the force (initial conditions) determine the outcome.

Intrinsic Randomness – which is acclaimed as the 
only pure random phenomenon. Example – Geiger 
counter in vacuum.
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Types of Randomness
Wolfram considered that intrinsic randomness could emerge 
from very simple rules and very simple initial conditions. Still 
there should be something at the start.
Something should come from something else & every 
outcome should have input beforehand.

Wolfram’s Rule 110
110(10) = 
01101110(2)

Random Outcomes 

Wolfram 1983, 2002 
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Artificial Intelligence – past century
1st Generation Robots – like instinct-ruled reptiles, 
will handle only those contingencies explicitly 
covered in their programs.
2nd Generation – like mouse 300,000 MIPS, which 
could be available within about 30 years, will be 
able to adapt, and even be trainable. 
3rd Generation – a monkeylike 106 MIPS will be 
available within about 40 years, learn quickly from 
mental rehearsals in simulations modeling 
physical, cultural, and psychological factors. 
4th Generation – a humanlike 300-million MIPS, 
within 50 years, able to abstract and generalize. 
Hans Moravec, Comm. of the ACM Volume 46, Number 10 (2003), Pp. 90-97
http://www.acm.org/cacm

MIPS=Millions of Instr’s per Sec.
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Artificial Intelligence – past century

MIPS (Millions of Instructions Per Second)
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Information & Entropy

A sequence of N coin tosses (of a fair coin) has 2N

possible outcomes: there is an uncertainty in the outcome 
that we measure by the entropy, which is the logarithm 
of the number of possible equally likely outcomes:

S = log2 2N = N log2 2 = N
We could use the sequences e.g. {H, H, T, …, H} to send 
a message, and we could send 2N different messages. The 
information capacity of this scheme is again measured 
by the logarithm of the number of possible messages

I = log2 2N = N log2 2 = N
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Information & Entropy
In this context we would often use base 2 for the log and 
say there are N bits of information. 
An alternative point of view is that the measurement of a 
particular result i.e., sequence of heads and tails has told 
us something about the system and we have learned        
N log2 2 bits of information. 
Uncertainty of the outcomes (entropy) and what has been 
learned from a measurement (information) are 
complementary. 
Generalizing these ideas to a system of N possible results 
with different independent probabilities pi gives the 
expression for the entropy of the system S or the 
information learned by finding a particular result.
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Kolmogorov Complexity   – Entropy

In Shannon's information theory, the degree of 
randomness of a finite sequence of discrete 
values can be quantified by calculating the 
entropy (amount of information) as 

where  pk is the probability of occurrences of 
value  i. Using this criterion, the higher the 
entropy, the more the randomness. For 
instance, the sequence 00100010 (entropy= –
0.25*log(0.25) – 0.75*log(0.75) = 0.81) is less 
random than 01010101 (entropy = – 0.5*log(0.5) 
– 0.5*log(0.5) = 1).

∑
≠

−=
0

2 )(log )(
kp

kk ppHentropy
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Information Theory - Frequentist
A frequentist version of probability: In this version, we assume 
we have a set of possible events, each of which we assume 
occurs some number of times.  Thus, if there are N

distinct possible events (x1, x2, … , xN), no two of which can 
occur simultaneously, and 

The events occur with frequencies (n1, n2, … , nN), we say 
that the probability of event xi is given by 

P(xi) =                            

This definition has the nice property that:

.
∑ =

N
1j jn
in

11 )( =∑ =
N
i ixP
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Information Theory - Bayesian

An observer relative (Bayesian) version of probability: 
In this version, we take a statement of probability to be 
an assertion about the belief that a specific observer 
has of the occurrence of a specific event. 

Note that in this version of probability, it is possible 
that two different observers may assign different 
probabilities to the same event. Furthermore, the 
probability of an event is likely to change as we learn 
more about the event, or the context of the event.

P(B)
P(A) A) | P(B  B) |P(A 

P(A), A) | P(B  P(B)B)|P(A 
×=

×=×
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Axioms of Information Theory

• The following represent a set of reasonable axioms for an 
information measure I(p):

• Information is a non-negative quantity:  I(p) >= 0.
• If an event has probability 1, we get no information from the 
occurrence of the event:  I(1)=0.
• If two independent events occur (whose joint probability is the 
product of their individual probabilities), then the information we 
get from observing the events is the sum of the two informations:  

I(p1*p2) = I(p1) + I(p2). 
• We also want our information measure to be a continuous
(and, in fact, monotonic) function of the probability (slight changes 
in probability should result in slight changes in information).
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Information Theory

• From these, we can derive the nice property of information
measure:

I(p) = -logb(p) = logb(1/p)

Thus, using different bases for the logarithm results in information 
measures which are just constant multiples of each other, 
corresponding with measurements in different units:

• log2 units are bits (from binary)
• log3 units are trits (from trinary)
• loge units are nats (from natural logarithm) (We commonly 

use ln(x)=loge(x))
• log10 units are Hartleys, after R.V.L. Hartleys, 1942.
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Information Theory
• Suppose now that we have n symbols {a1, a2, …, an}, and some 
source is providing us with a stream of these symbols.  
• Suppose further that the source emits the symbols with 
probabilities {p1, p2, … , pn}, respectively. 
• For now, we also assume that the symbols are emitted 
independently (successive symbols do not depend in any way on 
past symbols).
• What is the average amount of information we get from each 
symbol we see in the stream? What we really want here is a 
weighted average.  If we observe the symbol ai, we will be getting 
log(1/pi) information from that particular observation. 

•In a long run of (say N) observations, we will see (approximately) 
N * pi occurrences of the symbol ai (in the frequentist sense, that's 
what it means to say that the probability of seeing ai is pi). 
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Information Theory

• Thus, in the N (independent) observations, we will get total 
information

And therefore, the average information we get per symbol 
observed will be

Note that pi*log(1/ pi) 0, as pi 0, so we can, for our purposes, 
define    pi*log(1/ pi) to be 0, when pi = 0. This brings us to a 
fundamental definition.  This definition is essentially due to 
Shannon in 1948, in the seminal papers in the field of information 
theory. As we have observed, we have defined information strictly 
in terms of the probabilities of events.  Therefore, let us suppose 
that we have a set of probabilities (a probability distribution P = 
{p1, p2, … , pn}).
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Information Theory

• Suppose that we have a set of probabilities (a probability 
distribution P = {p1, p2, … , pn}).

Definition: We define the (Shannon-Wiener) entropy of the 
distribution P by:

There is an obvious generalization of the entropy for continuous, 
rather than discrete, probability distribution P(x): 
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Information Theory
• With this definition, we have that: H(P) = E(I(p)). 

• In other words, the entropy of a probability distribution is just 
the expected value of the information measure of that distribution. 
For more discussion the following important points:

•What properties does the function H(P) have?  For example, does 
it have extrema, and if so where?
•Is entropy a reasonable name for this?  In particular, the name 
entropy is already in use in physics/thermodynamics.  
•How are these uses of the term related to each other?
•What can we do with this new tool?

•See my Spring 2004 Class notes on Medical Imaging Online
•http://www.stat.ucla.edu/~dinov/courses_students.html


