Rejection sampling algorithm.

- **Step 1**: Generate T with the density m, where $f(t) < l \cdot m(t) = M(t)$, $l = \text{const}$.

 Sampling from $f(x)$ distribution is hard. Sampling from distribution $m(x)$ is easy.

- **Step 2**: Generate U, uniform on $[0, 1]$ and independent of T.

 \[
 \text{If } M(T) \times U \leq f(T) \quad \rightarrow \quad \text{accept, then set } X = T.
 \]

 Otherwise \quad \rightarrow \quad \text{reject, go back to step 1}

\[
\begin{array}{c}
\text{ACCEPT} \\
\text{REJECT}
\end{array}
\]

\[
\begin{array}{c}
al \\
T \\
b
\end{array}
\]

\[
x
\]
Why does this work?

Let A be a subset of $[a : b]=\text{support}(f(.))$, a and/or b may be infinite. To show that:

$$P(X \in A) = \int_A f(t) \, dt,$$

we expand the left hand side

$$P(X \in A) = P(T \in A \mid \text{Accept}) = \frac{P(T \in A \text{ and Accept})}{P(\text{Accept})}$$

Condition on $T = t$ ($I = \int_a^b M(t) \, dt$, since $m(t)$ is a density and $l_x m(t) = M(t)$)

$$P(T \in A \text{ and Accept}) = \int_a^b P(T \in A \text{ and Accept} \mid T = t) m(t) \, dt$$

$$= \int_a^b P(U \leq f(t)/M(t) \text{ and } t \in A) m(t) \, dt$$

$$= \int_A \frac{f(t)}{M(t)} m(t) \, dt = \frac{1}{I} \int_A f(t) \, dt$$

Similarly

$$P(\text{Accept}) = \int_a^b P(\text{Accept} \mid T = t) m(t) \, dt = \int_a^b \frac{f(t)}{M(t)} m(t) \, dt = \frac{1}{I}.$$
Remark: High efficiency if algorithm accepts with high probability, i.e. M close to f.
Suppose we want to sample from a density whose graph is shown below.

Figure 1: Density function
In this case we let $M(T)$ be the maximum of f over the interval $[0, 1]$, namely

$$M(x) = \max(f), \quad 0 \leq x \leq 1$$

so that m is the uniform density over the interval $[0, 1]$.
Implementation

R : Copyright 2000, The R Development Core Team
Version 1.0.1 (April 14, 2000)

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type "?license" or "?licence" for distribution details.

R is a collaborative project with many contributors. Type "?contributors" for a list.

Type "demo()" for some demos, "help()" for on-line help, or "help.start()" for a HTML browser interface to help. Type "q()" to quit R.

x <- 0:100
M <- max(knownDensity(x))
Routine for sampling once from the density f

OK <- 0
while(OK<1)
{
 # Generate T
 T <- runif(1, min = 0, max = 1)
 # Generate U
 U <- runif(1, min = 0, max = 1)
 if(M*U <= knownDensity(T))
 {
 OK <- 1
 RN <- T
 }
}
This routine will sample n iid samples from the density f

RejectionSampling <- function(n)
{
 RN <- NULL
 for(i in 1:n)
 {
 OK <- 0
 while(OK<1)
 {
 T <- runif(1,min = 0, max = 1)
 U <- runif(1,min = 0, max = 1)
 if(U <= knownDensity(T))
 {
 OK <- 1
 RN <- c(RN,T)
 }
 }
 }
 return(RN) # Demo:: R-File: R_scriptHelp.txt
} # C:\Documents and Settings\ivo\Desktop\Applications\R
Visualization of the results

Figure 2: Histogram of the Sampled Data
1. Define a density of interest that will be approximated by "REJECTION SAMPLING"
minRgDensity <- 0
maxRgDensity <- 10
maxDensityValue <- 1
sampleSize <- 3000

knownDensity <- function(x)
{
 minRgDensity <- 0
 maxRgDensity <- 20
 maxDensityValue <- 1
 return(dbeta(x, 3, 10))
}

rawDensity <- rbeta(sampleSize, 3, 10)

2. Rejection sampling method
RejectionSampling <- function(n)
{
 RN <- NULL
 for(i in 1:n)
 {
 OK <- 0
 while(OK<1)
 {
 T <- runif(1,min = minRgDensity, max = maxRgDensity)
 U <- runif(1,min = 0, max = 1)
 if(U*maxDensityValue <= knownDensity(T))
 {
 OK <- 1
 RN <- c(RN,T)
 }
 }
 }
 return(RN)
}

3. Generate n=sampleSize samples from the model-simulation density
(simulatedDensity <- RejectionSampling(sampleSize))

4. Calculate the two histograms
histoRaw <- hist(rawDensity)
histoSimulated <- hist(simulatedDensity)

5. Q-Q plot raw vs simulated densities
plot(rawDensity)
plot(simulatedDensity, rawDensity)
qqplot(simulatedDensity, rawDensity)
qqline(simulatedDensity, col = 2)

6. for comparison Q-Q plot of simulated Beta is quite diff from N(0,1)
#qqplot(simulatedDensity, rnorm(1:sampleSize, 0, 1))