

Slide 1 Stat 13. UCLA, Ivo D

Standard Error of $\overline{y}_1 - \overline{y}_2$				
Example : A study is conducted to quantify the benefits of a new cholesterol lowering medication. Two groups of subjects are compared, those who took the medication twice a day for 3 years, and those who took a placebo. Assume subjects were randomly assigned to either group and that both groups data are normally distributed. Results from the study are shown below:				
	Medication	Placebo		
\overline{y}	209.8	224.3		
n	10	10		
S	44.3	46.2		
SE	14.0	14.6		
	Slide 7	Stat 12 UCL 4 Jun Dimon		

CI for $\mu_1 - \mu_2$

- What's so great about this type of confidence interval?
- In the previous example our CI contained zero
 - This interval isn't telling us much because:
 I the true mean difference could be more than zero (in which case the mean of group 1 is larger than the mean of group 2)
 I or the true mean difference could be less than zero (in which case the mean of group 1 is smaller than the mean of group 2)
 I or the true mean difference could even be zero!
 - The ZERO RULE!
 - Suppose the CI came out to be (5.2, 28.1), would this indicate a true mean difference?

Slide 15 Stat 13, UCLA, Ive

 The idea of a hypothesis test is to formulate a hypothesis that nothing is going on and then to see if collected data is consistent with this hypothesis (or if the data shows something different)
 Like innocent until proven guilty

- There are four main parts to a hypothesis test:
 hypotheses
 - test statistic
 - p-value
 - conclusion

Slide 16 Stat 13, UCLA, Ivo D

Hypothesis Testing: #1 The Hypotheses

- There are two hypotheses:
 - Null hypothesis (aka the "status quo" hypothesis) □ denoted by H_o
 - Alternative hypothesis (aka the research hypothesis)
 denoted by H_a

17

Hypothesis Testing: #1 The Hypotheses

• If we are comparing two group means nothing going on would imply no difference

the means are "the same" $(\mu_1 - \mu_2) = 0$

• For the independent t-test the hypotheses are: H_{o} : $(\mu_1 - \mu_2) = 0$ (no statistical difference in the population means)

 $H_{a}: (\mu_{1} - \mu_{2}) \neq 0$

(a statistical difference in the population means)

Slide 18 Stat 13. UCLA. Ivo I

Example: Cholesterol medication (cont') Suppose we want to carry out a hypothesis test to see if the data show that there is enough evidence to support a difference in treatment means. Find the appropriate null and alternative hypotheses.

 $\begin{array}{ll} \mathsf{H}_{\mathrm{o}}: & \left(\mu_{1}-\mu_{2}\right)\!=\!0 \\ (\text{no statistical difference the true means of the medication and placebo groups)} \\ \mathsf{H}_{\mathrm{a}}: & \left(\mu_{1}-\mu_{2}\right)\!\neq 0 \\ (\text{a statistical difference in the true means of the medication and placebo groups, medication has an effect on cholesterol)} \end{array}$

Slide 19

Stat 13. UCLA. Ivo Dir

Hypothesis Testing: #3 P-value Example: Cholesterol medication (cont') Find the p-value that corresponds to the results of the cholesterol lowering medication experiment We know from the previous slides that t = -0.716 (which is close to 0) This means that the p-value is the area under the curve beyond ± 0.716 with 18 df.

Hypothesis Testing: #4 Conclusion

Example: Cholesterol medication (cont')

Suppose the researchers had set α = 0.05 Our decision would be to fail to reject Ho because p > 0.4 which is > 0.05

(#4) CONCLUSION: Based on this data there is <u>no</u> <u>statistically significant difference between true mean</u> <u>cholesterol</u> of <u>the medication and placebo groups</u> (p > 0.4).

□ In other words the cholesterol lowering medication does not seem to have a significant effect on cholesterol.

■ Keep in mind, we are saying that we couldn't provide sufficient evidence to show that there is a significant difference between the two *population* means.

Slide 29 Stat 13. UC

Hypothesis Testing Summary

- Important parts of Hypothesis test conclusions:
 - 1. Decision (significance or no significance)
 - 2. Parameter of interest
 - 3. Variable of interest
 - 4. Population under study
 - 5. (optional but preferred) P-value
 - ■6. Even if the book doesn't ask for it
 - ■7. A hypothesis test is a test with 4 parts
 - ■8. How can you identify a hypothesis test problem?

Slide 30 Stat 13. UCLA, Ivo Di

Slide 37 Stat 13 UCLA, Iva I

	Comments	
•]	How can researchers try to demonstrate that effects or differences seen in their data are real? (Reject the hypothesis that there are no effects)	
•] 1 1 1 1	How does the alternative hypothesis typically relate to a belief, hunch, or research hypothesis that initiates a study? $(H_1=H_a:$ specifies the type of departure from the null- hypothesis, H_0 (skeptical reaction), which we are expecting (research hypothesis itself).	
• : 1	In the Cavendish's mean Earth density data, null hypothesis was H_0 : μ =5.517. We suspected bias, but not bias in any specific direction, hence H_a : μ !=5.517.	

The t-test		
Alternative	Evidence against H ₀ : θ > θ ₀	
hypothesis	provided by	P-value
$H_1: \mathbf{\Theta} > \mathbf{\Theta}_0$	$\hat{\theta}$ too much bigger than θ_0 (i.e., $\hat{\theta} - \theta_0$ too large)	$P = \operatorname{pr}(l \ge t_0)$
$H_1: \boldsymbol{\theta} < \boldsymbol{\theta}_0$	$\hat{\boldsymbol{\theta}}$ too much smaller than $\boldsymbol{\theta}_0$ (i.e., $\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0$ too negative)	$P = \operatorname{pr}(T \leq t_0)$
$H_1: \theta \neq \theta_0$	$\hat{\boldsymbol{\theta}} \text{ too far from } \boldsymbol{\theta}_0$ (i.e., $ \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 \text{ too large})$	$P = 2 \operatorname{pr}(1 \ge t_0)$
	•	where $T \sim \text{Student}(df)$

Interpretation of the p-value			
FABLE 9.3.2 Interpreting the Size of a <i>P</i> -Value			
Approx	imate size		
of P	P-Value	Translation	
> 0.12	(12%)	No evidence against H_0	
0.10	(10%)	Weak evidence against H_0	
0.05	(5%)	Some evidence against H_0	
0.01	(1%)	S trong evidence against H_0	
0.001	(0.1%)	Very Strong evidence against H ₀	
		Slide 45 Stat 13, UCL4, Ivo Dinov	

Is a second child gender influenced by the gender of the first child, in families with >1 kid?				he kid?
S	First and S	Second Child Male	Female	Total
Plist Child	Male F <u>emale</u> Total	3,202 2,620 5,822	2,776 2,792 5,568	5,978 5,412 11,390
 Research hypothesis needs to be formulated first before collecting/looking/interpreting the data that will be used to address it. Mothers whose 1st child is a girl are more likely to have a girl, as a second child, compared to mothers with boys as 1st children. 				at ld is child,
• Data: 20 yrs of	birth records	s of 1 Hospita Slide 46	I in Auckland,] Stat 13, UCLA, Ivo Dinov	NZ.

Analysis of the birth-gender data – data summary			
Second Child			
Group	Number of births	Number of girls	
1 (Previous child was girl)	5412	2792 (approx. 51.6%)	
2 (Previous child was boy)	5978	2776 (approx. 46.4%)	
 Let p₁=true proportion of girls in mothers with girl as first child, p₂=true proportion of girls in mothers with boy as first child. <u>Parameter of interest is p₁- p₂</u>. H₀: p₁- p₂=0 (skeptical reaction). H_a: p₁- p₂>0 (research hypothesis) 			

Hypothesis testing as decision making Decision Making			
Decision made	H ₀ is true	H ₀ is false	
Accept H ₀ as true	OK	Type II error	
Reject H ₀ as false	Type I error	OK	
 Sample sizes: n₁=2 (estimates) p₁=27 H₀: p₁-p₂=0 (skep (research hypothes) 	$5412, n_2 = 5978, Sa$ $92/5412 \approx 0.5159, \hat{p}_2 = 100000000000000000000000000000000000$	mple proportions = 2776/5978 \approx 0.4644 : p_1 - p_2 >0	
	Slide 48 Sta	t 13, UCLA, Ivo Dinov	

