STAT 35, Interactive and Computational Probability UCLA Statistics

http://www.stat.ucla.edu/~dinov/courses_students.html

SOLUTIONS TO HOMEWORK 3

Solutions

Question 3_1

If we are sampling 5 buses from 20, we may count the number of ways to do this using the 'choose' notation.

$$
C_{5,20}=20!/(5!15!)=15504
$$

For the more complex problems posed in this question, we should recall the product rule of counting. It is discussed in Chapter 2 of the lecture notes, starting on slide 18. One approach is to choose the given number of buses with visible cracks from the 8 buses there are of that description, and choose the rest of the buses from the other 12 buses.

Thus for example, if there are to be exactly 4 buses with visible cracks, these are chosen out of 8 such buses: $\mathrm{C}_{4,8}=8!/(4!4!)=70$. The other bus is free of cracks, and this is chosen out of 12 such buses $-\mathrm{C}_{1,12}=12$. Since the second choice is made without regard to the results of the first choice, we may apply the product rule: the number of ways to pick 5 buses out of the 20 such that exactly 4 have visible cracks is $70 \times 12=840$.

If buses are being chosen at random, this means that each of the 20 buses has an equal chance of being chosen as one of the 5 in our sample. Thus all of the 15504 choices are equally likely. Of these, 840 of the samples will have exactly 4 buses with visible cracks. Thus the probability of such a sample is $840 / 15504$ which is 0.05418 .

It is also possible for our sample to have all 5 buses with visible cracks. Since these will all be from the 8 buses that are like this, the number of ways this can happen is $\mathrm{C} 5,8=56$, and the probability of it happening is thus $56 / 15504=$ 0.003612 .

To find the probability of at least 4 buses in our sample having visible cracks:
$P($ at least 4$)=P($ exactly 4$)+P($ exactly 5$)=0.05418+0.003612=0.5779$.

Question 32

A problem similar to this is solved on page 42 of Chapter 2 in the lecture notes. Since there are three molecules of each type (and 12 altogether) the number.of different chain molecules is $12!/(3!3!3!3!)=369600$. Some of these will have all three molecules of each type next to one another, and if we count the different ways that this can happen, we find $4!=24$ permutations of the 4 types. Thus the probability of this happening is $24 / 369600=0.0000649$. It is thus an extremely rare event.

Question 3 3

We are given a table of joint probabilities, and may calculate from it various marginal and conditional probabilities. The marginal probabilities are the easiest to compute; one merely needs to add the probabilities for the corresponding row or column.
(a) $P(A) \quad=0.15+0.10+0.10+0.10=\mathbf{0 . 4 5}$

$$
P(B) \quad=0.10+0.15=\mathbf{0 . 2 5}
$$

A joint probability may simply be read off of the table:

```
\(P(A \cap B)=0.10\)
(b) \(P(A \mid B) \quad=P(A \cap B) / P(B)\)
    \(=(0.10) /(0.25)\)
    \(=0.4\)
```

This is the chance of a black car having an automatic transmission.

$$
\begin{aligned}
\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) & =\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) / \mathrm{P}(\mathrm{~A}) \\
& =(0.10) /(0.45) \\
& =\mathbf{0 . 2 2}
\end{aligned}
$$

This means that if we know that the car has an automatic transmission, there is a 22% chance that the car is black.
(c) $P(A \mid C)=P(A \cap C) / P(C)$

$$
=(0.15) /(0.15+0.15)
$$

$$
=0.50
$$

Likewise, half of all white cars have automatic transmissions, while they are slightly less common amongst the cars of other colors, as we see below:

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{~A} \mid \mathrm{C}^{\prime}\right) & =\mathrm{P}\left(\mathrm{~A} \cap \mathrm{C}^{\prime}\right) / \mathrm{P}\left(\mathrm{C}^{\prime}\right) \\
& =(0.1+0.1+0.1) /(0.1+0.1+0.1+0.05+0.15+0.2) \\
& =0.3 / 0.7 \\
& =0.43
\end{aligned}
$$

Question 3.4

These two formulas for conditional probability count the same thing, and will thus be equivalent, provided that one uses empirical probabilities throughout.

