UCLA STAT 35

Applied Computational and Interactive Probability

-Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

- Teaching Assistant: Anwar Khan

University of California, Los Angeles, Winter 2005
http://wwww.stat.ucla.edu/~dinov/

Sample Space

The sample space of an experiment, denoted S, is the set of all possible outcomes of that experiment.

Events

An event is any collection (subset) of outcomes contained in the sample space S. An event is simple if it consists of exactly one outcome and compound if it consists of more than one outcome.

Relations from Set Theory

1. The union of two events A and B is the event consisting of all outcomes that are either in A or in B.

Notation: $A \cup B$
Read: A or B

Relations from Set Theory

2. The intersection of two events A and B is the event consisting of all outcomes that are in both A and B.

Notation: $A \cap B$
Read: A and B

Events

Ex. Rolling a die. $S=\{1,2,3,4,5,6\}$
Let $A=\{1,2,3\}$ and $B=\{1,3,5\}$
$A \cup B=\{1,2,3,5\}$
$A \cap B=\{1,3\}$
$A^{\prime}=\{4,5,6\}$

Relations from Set Theory

3. The complement of an event A is the set of all outcomes in S that are not contained in A.

Notation: A^{\prime}

Mutually Exclusive
When A and B have no outcomes in common, they are mutually exclusive or disjoint events

Mutually Exclusive

Ex. When rolling a die, if event $A=\{2,4,6\}$ (evens) and event $B=\{1,3,5\}$ (odds), then A and B are mutually exclusive.

Ex. When drawing a single card from a standard deck of cards, if event $A=\{$ heart, diamond (red) and event $B=\{$ spade, club $\}$ (black), then A and B are mutually exclusive.

Axioms of Probability
Axiom $1 \quad P(A) \geq 0$ for any event A
Axiom $2 \quad P(S)=1$
If all A_{i} 's are mutually exclusive, then
Axiom $3 \quad P\left(\underset{\text { (finite set) }}{A_{1}} A_{2} \cup \ldots \cup A_{k}\right)=\sum_{i=1}^{k} P\left(A_{i}\right)$ $\left.\begin{array}{c}P\left(A_{1} \cup A_{2} \cup \ldots\right) \\ \quad \text { (infinite set) }\end{array}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$

Properties of Probability
For any event $A, P(A)=1-P\left(A^{\prime}\right)$.
If A and B are mutually exclusive, then $P(A \cap B)=0$.

For any two events A and B, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Ex. A card is drawn from a well-shuffled deck of 52 playing cards. What is the probability that it is a queen or a heart?

$$
\begin{aligned}
& Q=\text { Queen and } H=\text { Heart } \\
& \begin{array}{l}
P(Q)=\frac{4}{52}, P(H)=\frac{13}{52}, P(Q \cap H)=\frac{1}{52} \\
P(Q \cup H)=P(Q)+P(H)-P(Q \cap H) \\
\quad=\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{16}{52}=\frac{4}{13}
\end{array}
\end{aligned}
$$

Product Rule

If the first element or object of an ordered pair can be used in n_{1} ways, and for each of these n_{1} ways the second can be selected n_{2} ways, then the number of pairs is $n_{1} n_{2}$.
** Note that this generalizes to k elements (k - tuples)

Permutations

Any ordered sequence of k objects taken from a set of n distinct objects is called a permutation of size k of the objects.

MatchExperiment.html
Notation: $P_{k, n}$

$$
P_{k, n}=n(n-1) \cdot \ldots \cdot(n-k+1)
$$

Ex. A boy has 4 beads - red, white, blue, and yellow. How different ways can three of the beads be strung together in a row?

This is a permutation since the beads will be in a row (order).

Combinations

Given a set of n distinct objects, any unordered subset of size k of the objects is called a combination.

Notation: $\binom{n}{k}$ or $C_{k, n}$
$\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Ex. Three balls are selected at random without replacement from the jar below. Find the probability that one ball is red and two are black.
UrnExperiment.html

$$
=\frac{\binom{2}{1} \cdot\binom{3}{2}}{\binom{8}{3}}=\frac{2 \cdot 3}{56}=\frac{3}{28}
$$

The Law of Total Probability

If the events $A_{1}, A_{2}, \ldots, A_{k}$ be mutually exclusive and exhaustive events. Then for any other event B :

$$
P(B)=\sum_{i=1}^{k} P\left(B \bigcap A_{i}\right)=\sum_{i=1}^{k} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

Bayes’ Theorem

Let $A_{1}, A_{2}, \ldots, A_{n}$ be a collection of k mutually exclusive and exhaustive events with $P\left(A_{i}\right)>0$ for $i=1,2, \ldots, k$. Then for any other events $B \& C$ for which $P(B)>0$
$P(C \mid B)=\frac{P(\mathbf{B} \mid C) \times P(C)}{\sum_{k=1}^{n} P\left(B \mid A_{k}\right) P\left(A_{k}\right)}$

$$
j=1,2 \ldots, k
$$

Ex. A store stocks light bulbs from three suppliers.
Suppliers A, B, and C supply $10 \%, 20 \%$, and 70% of the bulbs respectively. It has been determined that company A's bulbs are 1% defective while company B's are 3% defective and company C's are 4% defective. If a bulb is selected at random and found to be defective, what is the probability that it came from supplier B ?

Let $D=$ defective
$P(B \mid D)=\frac{P(B) P(D \mid B)}{P(A) P(D \mid A)+P(B) P(D \mid B)+P(C) P(D \mid C)}$
$=\frac{0.2(0.03)}{0.1(0.01)+0.2(0.03)+0.7(0.04)} \approx 0.1714$
So about 0.17
Slide 29

Bayesian Rule

- If $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ are a non-trivial partition of the sample space (mutually exclusive and $U A_{i}=S, P\left(A_{i}\right)>0$) then for any non-trivial event and $B(P(B)>0)$
$P\left(A_{i} \mid B\right)=P\left(A_{i} \cap B\right) / P(B)=\left[P\left(B \mid A_{i}\right) \times P\left(A_{i}\right)\right] / P(B)=$

$$
=\frac{P\left(B \mid A_{i}\right) \times P\left(A_{i}\right)}{\sum_{k=1}^{n} P\left(B \mid A_{k}\right) P\left(A_{k}\right)}
$$

Classes vs. Evidence Conditioning

- Classes: healthy(NC), cancer
- Evidence: positive mammogram (pos), negative mammogram (neg)
- If a woman has a positive mammogram result, what is the probability that she has breast cancer?
$P($ class \mid evidence $)=\frac{P(\text { evidence } \mid \text { class }) \times P(\text { class })}{\sum_{\text {classes }} P(\text { evidence } \mid \text { class }) \times P(\text { class })}$
$P($ cancer $)=0.01$
$P($ pos \mid cancer $)=0.8$

$P($ cancer \mid pos $)=? \quad \mathrm{P}(\mathrm{C} \mid \mathrm{P})=0.8 \times 0.01 /[0.8 \times 0.01+0.1 \times 0.99]=$?
$P($ cancer \mid pos $)=$?

Independent Events

Two event A and B are independent events if $P(A \mid B)=P(A)$.

Otherwise A and B are dependent.

Independent Events

Events A and B are independent events if and only if

$$
P(A \cap B)=P(A) P(B)
$$

** Note: this generalizes to more than two independent events.

Theory of Counting $=$ Combinatorial Analysis

Generalized Principle of Counting: If M (independent) experiments are performed and the first one has N_{m} possible outcomes, $1<=\mathrm{m}<=\mathrm{M}$, then the TOTAL number of outcomes of the combined experiment is

$$
\mathrm{N}_{1} \times \mathrm{N}_{2} \mathrm{X} \ldots \times \mathrm{N}_{\mathrm{M}}
$$

E.g., How many binary functions $[\mathrm{f}(\mathrm{i})=0$ or $\mathrm{f}(\mathrm{i})=1]$, defined on a grid $1,2,3, \ldots, n$, are there? How many numbers can be stored in 8 bits $=1$ byte?

$$
2 \times 2 \times \ldots \times 2=2^{n}
$$

Permutation \& Combination

Permutation: Number of ordered arrangements of $\underline{\mathbf{r}}$ objects chosen from \underline{n} distinctive objects

$$
P_{n}^{r}=n(n-1)(n-2) \ldots(n-r+1)
$$

$$
P_{n}^{n}=P_{n}^{n-r} \cdot P_{r}^{r}
$$

e.g. $\quad P_{6}{ }^{3}=6 \cdot 5 \cdot 4=120$.

Permutation \& Combination

Permutation \& Combination

Combinatorial Identity:

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}
$$

Analytic proof: (expand both hand sides)
Combinatorial argument: Given n object focus on one of them (obj. 1). There are ${ }_{n-1}^{n-1}$ groups of size r that contain obj. 1 (since each group cóntains $\mathrm{r}-1$ other elements out of $\mathrm{n}-1$). Also, there are ${ }^{n-1}$ groups of size r, that do not contain obj1. But the total of all r-size groups of n-objects is $\binom{n}{r}$!

Examples

1. Suppose car plates are 7-digit, like AB

If all the letters can be used in the first 2 places, and all numbers can be used in the last 4 , how many different plates can be made? How many plates are there with no repeating digits?

Solution: a) $26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10$

$$
\text { b) } \mathrm{P}_{26}{ }^{2} \cdot \mathrm{P}_{10}{ }^{3}=26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 7
$$

Examples

2. How many different letter arrangement can be made from the 11 letters of MISSISSIPPI?

Solution: There are: 1 M, 4 I, 4 S, 2 P letters.
Method 1: consider different permutations:

$$
11!/(1!4!4!2!)=34650
$$

Method 2: consider combinations:
$\binom{11}{1}\binom{10}{4}\binom{6}{4}\binom{2}{2}=\ldots=\binom{11}{2}\binom{9}{4}\binom{5}{4}\binom{1}{1}$

Examples

3. There are N telephones, and any 2 phones are connected by 1 line. Then how many lines are needed all together?

Solution: $C^{2}{ }_{N}=N(N-1) / 2$
If, $\mathrm{N}=5$, complete graph with 5 nodes has $\mathrm{C}_{5}^{2}=10$ edges.

Examples

How about they are arranged in a circle?
Answer: $\mathrm{N}!\binom{N}{M} \mathrm{M}$!

$$
\text { E.g., } \mathrm{N}=3, \mathrm{M}=2
$$

N boys (9) and M girls (()$, \mathrm{M}<=\mathrm{N}+1$, stand in 1 line. How many arrangements are there so that no 2 girls stand next to each other?
Solution: $\mathrm{N}!\cdot\binom{N+1}{M} \cdot \mathrm{M}$!
There are $\mathbf{N}+\mathbf{1}$ slots for the girls to fill between the boys And there are \mathbf{M} girls to position in these slots, hence the coefficient in the middle.

Binomial theorem \& multinomial theorem

Binomial theorem $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$
Deriving from this, we can get such useful formula $(a=b=1)$

$$
\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}=2^{n}=(1+1)^{n}
$$

Also from $(1+\mathrm{x})^{\mathrm{m}+\mathrm{n}}=(1+\mathrm{x})^{\mathrm{m}}(1+\mathrm{x})^{\mathrm{n}}$ we obtain:

$$
\begin{aligned}
& \qquad\binom{m+n}{k}=\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i} \\
& \text { On the left is the coeff of } 1^{k} x^{(m+n-k)} \text {. On the right is the same coeff in the product } \\
& \text { of }\left(\ldots+\text { coeff } * x^{(m-i)}+\ldots\right) *\left(\ldots+\text { coeff } * x^{(n-k+1)}+\ldots\right) \text {. }
\end{aligned}
$$

Examples

5a. How would this change if there are N functional (ρ) and M defective chips (()$, \mathrm{M}<=\mathrm{N}+1$, in an assembly line?

Solution: $\quad\binom{N+1}{M}$
There are $\mathbf{N}+\mathbf{1}$ slots for the girls to fill between the boys And there are \mathbf{M} girls to position in these slots, hence the coefficient in the middle.

Examples

4. \mathbf{N} distinct balls with \mathbf{M} of them white. Randomly choose \mathbf{n} of the \mathbf{N} balls. What is the probability that the sample contains exactly m white balls (suppose every ball is equally likely to be selected)?

Solution: a) For the event to occur, m out of \mathbf{M} white balls are chosen, and $\mathbf{n - m}$ out of $\mathbf{N}-\mathbf{M}$ non-white
balls are chosen. And we get
b) Then the probability is

These Probabilities
Are associated with the name
HyperGeometric($\mathrm{N}, \mathrm{n}, \mathrm{M}$) distrid. Slide 44

$$
\binom{M}{m}\binom{N-M}{n-m}
$$

Multinomial theorem

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Generalization: Divide n distinctive objects into k groups, with the size of every group $\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{k}$, and $\boldsymbol{n}_{1}+\boldsymbol{n}_{\mathbf{2}}+\ldots+\boldsymbol{n}_{\boldsymbol{k}}=\boldsymbol{n}$ $\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}=\sum\left(n_{n_{1}, n_{2}, \ldots, n_{k}}\right)_{x_{1}}{ }^{n_{1}} x_{2}{ }^{n_{2}} \ldots x_{k}{ }^{n_{k}}$ where $\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}} \ldots\binom{n-n_{1} \ldots \ldots-n_{k-1}}{n_{k}}=\frac{n!}{n_{1}!n_{2}!\ldots . n_{k}!}$
$\underset{\text { Probabilities }}{\text { Multinomial }} p\left(n_{1}, \ldots, n_{k}\right)=\frac{n!}{n_{1}!\cdots n_{k}!} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$

$$
p\left(n_{1}, \ldots, n_{k}\right)=\frac{n!}{n_{1}!\cdots n_{k}!} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}
$$

Multinomial theorem

- N independent trials with results falling in one of k possible categories labeled $1, \ldots$, k. Let $\mathrm{p}_{\mathrm{i}}=$ the probability of a trial resulting in the $i^{\text {th }}$ category, where $p_{1}+\ldots+p_{k}=1$
- $\mathrm{N}_{\mathrm{i}}=$ number of trials resulting in the $\mathrm{i}^{\text {th }}$ category, where $\mathrm{N}_{1}+\ldots+\mathrm{N}_{\mathrm{k}}=\mathrm{N}$
-Ex: Suppose we have 9 people arriving at a meeting.
$P($ by Air $)=0.4, P($ by Bus $)=0.2$
$P($ by Automobile $)=0.3, P($ by Train $)=0.1$
$P(3$ by Air, 3 by Bus, 1 by Auto, 2 by Train $)=$?
$P(2$ by air $)=$?
Slide 49
Stat 35, UCLA, Ivo Dinov

Application - Number of integer solutions to linear equ's

1) There are $\binom{n-1}{r-1}$ distinct positive integer-valued vectors $\left(\mathrm{x}_{1}, \mathrm{x}_{2} \ldots, \mathrm{x}_{\mathrm{r}}\right)$ satisfying

$$
x_{1}+x_{2}+\ldots+x_{r}=n, \& x_{i}>0,1<=i<=r
$$

2) There are $\binom{n+r-1}{r-1}$ distinct positive integer-valued vectors $\left(y_{1}, y_{2} \ldots, y_{r}\right)$ satisfying

$$
\mathrm{y}_{1}+\mathrm{y}_{2}+\ldots+\mathrm{y}_{\mathrm{r}}=\mathrm{n}, \& \mathrm{y}_{\mathrm{i}}>=0,1<=\mathrm{i}<=\mathrm{r}
$$

Since there are $n+r-1$ possible positions for the dividing splitters (or by letting $y_{i}=x_{i}-1, R H S=n+r$).

Examples

8. Randomly give n pairs of distinctive shoes to n people, with 2 shoes to everyone. How many arrangements can be made? How many arrangements are there, so that everyone gets an original pair? What is the the probability of the latter event, \boldsymbol{E} ?
Solution: a) according to Note: $\underline{\mathbf{r}=\mathbf{n}=\text { \# of pairs! }}$ total arrangements is
$\mathrm{N}=(2 \mathrm{n})!/(2!)^{\mathrm{r}}=(2 \mathrm{n})!/ 2^{\mathrm{r}}$
b) Regard every shoe pair
$\binom{2 n}{n_{1}, n_{2}, \ldots, n_{r}}=$
$\binom{2 n}{n_{1}}\binom{2 n-n_{1}}{n_{2}} . .\binom{2 n-n_{1}-n_{2}-\ldots-n_{r-1}}{n_{r}}=$
$\frac{(2 n)!}{n_{1}!n_{2}!\ldots n_{r}!}=\frac{(2 n)!}{(2!)^{r}}$
as one object, and give them to people, there are $M=n$! arrangements. c) $P(E)=M / N=n!/\left[(2 n)!/ 2^{n}\right]=1 /(2 n-1)!!\quad$ (Do $n=6$, case by hand!) *note: $n!!=n(n-2)(n-4) \ldots$

Slide 53
Stac35. UCLA, two Dinov

Examples

7. There are \mathbf{n} balls randomly positioned in \mathbf{r} distinguishable urns. Assume $n>=r$. What is the number of possible combinations? $\quad \mathrm{n}=9, \mathrm{r}=3$
1) If the balls are distinguishable (labeled) : r^{n} possible outcomes, where empty urns are permitted. Since each of the $\underline{\boldsymbol{n}}$ balls can be placed in any of the $\underline{\boldsymbol{r}}$ urns.
2) If the balls are indistinguishable: no empty urns are $\binom{n-1}{r-1}$ allowed - select $r-1$ of all possible $n-1$ dividing points between the n -balls. $(r-1)$ 3) If empty urns are allowed $\begin{aligned} & \mathrm{n}=9,3 \text {, and } \circ \text { are empty bins }\end{aligned}\binom{n+r-1}{r-1}$

Example

1) An investor has $\$ 20 \mathrm{k}$ to invest in 4 potential stocks. Each investment is in increments of $\$ 1 \mathrm{k}$, to minimize transaction fees. In how many different ways can the money be invested?
2) $x_{1}+x_{2}+x_{3}+x_{4}=20, x_{k}>=0 \rightarrow\binom{23}{3}=1,771$
3) If not all the money needs to be invested, let $x 5$ be the left over money, then
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}=20 \underset{\text { Slide } 52}{\binom{24}{4}=10,626}$

Sterling Formula for asymptotic behavior of \mathbf{n} !

Probability and Venn diagrams

Proposition

$$
\begin{aligned}
& P\left(A_{1} \cup A_{2} U \ldots \cup A_{n}\right)= \\
& \sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{1 \leq i<i 2 \leq n} P\left(A_{i 1} \bigcap A_{i 2}\right)+\ldots
\end{aligned}
$$

$$
+(-1)^{r+1} \sum_{1 \leq i \leq i<j<\ldots i d i \leq n} p\left(A_{i n} \bigcap A_{i n} \bigcap \cdots \bigcap A_{i}\right)+\ldots
$$

$$
+(-1)^{n+1} P\left(A_{i n} \bigcap A_{i 2} \bigcap \cdots \bigcap A_{i_{i n}}\right)
$$

Let's Make a Deal Paradox.

- The intuition of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a 50-50 chance of winning with either selection? This, however, is not the case.
- The probability of winning by using the switching technique is $2 / 3$, while the odds of winning by not switching is $1 / 3$. The easiest way to explain this is as follows:
- MonteHallExperiment/Game.html

