

Sample Space The sample space of an experiment, denoted S, is the set of all possible outcomes of that experiment.

Events

An **event** is any collection (subset) of outcomes contained in the sample space **S**. An event is **simple** if it consists of exactly one outcome and **compound** if it consists of more than one outcome.

Relations from Set Theory

 The union of two events A and B is the event consisting of all outcomes that are either in A or in B.

> Notation: $A \cup B$ Read: A or B

Relations from Set Theory

2. The **intersection** of two events *A* and *B* is the event consisting of all outcomes that are in both *A* and *B*.

Notation: $A \cap B$ Read: A and B **Relations from Set Theory**

3. The complement of an event A is the set of all outcomes in S that are not contained in A.

Notation: A'

Events Ex. Rolling a die. $S = \{1, 2, 3, 4, 5, 6\}$ Let $A = \{1, 2, 3\}$ and $B = \{1, 3, 5\}$ $A \cup B = \{1, 2, 3, 5\}$ $A \cap B = \{1, 3\}$ $A' = \{4, 5, 6\}$

Ex. When rolling a die, if event $A = \{2, 4, 6\}$ (evens) and event $B = \{1, 3, 5\}$ (odds), then A and B are mutually exclusive.

Ex. When drawing a single card from a standard deck of cards, if event $A = \{\text{heart}, \text{diamond}\}$ (red) and event $B = \{\text{spade, club}\}$ (black), then A and B are mutually exclusive.

Propertie	es of Probability
For any event A	P(A) = 1 - P(A').
If A and B are n $P(A \cap B) = 0.$	nutually exclusive, then
	ants A and R
For any two eve	and D,
For any two ever $P(A \cup B) = P(A \cup B)$	$(1) + P(B) - P(A \cap B).$

Ex. A card is drawn from a well-shuffled deck of 52 playing cards. What is the probability that it is a queen or a heart?

Q = Queen and H = Heart $P(Q) = \frac{4}{52}, P(H) = \frac{13}{52}, P(Q \cap H) = \frac{1}{52}$ $P(Q \cup H) = P(Q) + P(H) - P(Q \cap H)$ $= \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$ Slide 16 See 54 UCLA for Direct

Ex. A store stocks light bulbs from three suppliers. Suppliers A, B, and C supply 10%, 20%, and 70% of the bulbs respectively. It has been determined that company A's bulbs are 1% defective while company B's are 3% defective and company C's are 4% defective. If a bulb is selected at random and found to be defective, what is the probability that it came from supplier B?

Let
$$D = \text{defective}$$

 $P(B|D) = \frac{P(B)P(D|B)}{P(A)P(D|A) + P(B)P(D|B) + P(C)P(D|C)}$
 $= \frac{0.2(0.03)}{0.1(0.01) + 0.2(0.03) + 0.7(0.04)} \approx 0.1714$
So about 0.17
Slide 29 Sur 15 ECLA for Dimension

Events A and B are independent events if and only if

$$P(A \cap B) = P(A)P(B)$$

** Note: this generalizes to more than two independent events.

Permutation & Combination
Permutation: Number of ordered arrangements of
$$\underline{\mathbf{r}}$$

objects chosen from $\underline{\mathbf{n}}$ distinctive objects
 $P_n^r = n(n-1)(n-2)...(n-r+1)$
 $P_n^n = P_n^{n-r} \cdot P_r^r$
e.g. $P_6^3 = 6.5.4 = 120.$

Examples

1. Suppose car plates are 7-digit, like **AB1234**. If all the letters can be used in the first 2 places, and all numbers can be used in the last 4, how many different plates can be made? How many plates are there with no repeating digits?

Solution: a) 26.26.10.10.10.10

b)
$$P_{26}^2 \cdot P_{10}^3 = 26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 7$$

Examples

3. There are N telephones, and any 2 phones are connected by 1 line. Then how many lines are needed all together?

Solution: $C_N^2 = N (N - 1) / 2$ If, N=5, complete graph with 5 nodes has $C_5^2 = 10$ edges.

Binomial theorem & multinomial theorem
Binomial theorem
$$(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Deriving from this, we can get such useful formula (a=b=1)
 $\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n = (1 + 1)^n$
Also from $(1+x)^{m+n} = (1+x)^m (1+x)^n$ we obtain:
 $\binom{m+n}{k} = \sum_{i=0}^k \binom{m}{k-i}$
On the left is the coeff of $1^{kx(m+k)}$. On the right is the same coeff in the product of $(\dots + coeff * x^{(m+)} + \dots) * (\dots + coeff * x^{(m+k+i)} + \dots)$.

Multinomial theorem

• N independent trials with results falling in one of k possible categories labeled 1, ..., k. Let p_i = the probability of a trial resulting in the ith category, where p_1 +...+ p_k =1

• N_i = number of trials resulting in the i^th category, where $N_1 + \ldots + N_k = N$

le 49

- •Ex: Suppose we have 9 people arriving at a meeting.
 - P(by Air) = 0.4, P(by Bus) = 0.2
 - P(by Automobile) = 0.3, P(by Train) = 0.1
 - P(3 by Air, 3 by Bus, 1 by Auto, 2 by Train) = ?
 - P(2 by air) = ?

Let's Make a Deal Paradox.

- The *intuition* of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a 50-50 chance of winning with either selection? This, however, is **not the case**.
- The probability of winning by using the switching technique is 2/3, while the odds of winning by not switching is 1/3. The easiest way to explain this is as follows:
- MonteHallExperiment/Game.html

Slide 59 Stat 35, UCLA, Iva