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Discrete Models

Discrete Random 
Variables and 

Probability 
Distributions
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Random           
Variables
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For a given sample space S of some 
experiment, a random variable is any 
rule that associates a number with 
each outcome in S .

Random Variable
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Bernoulli Random Variable

Any random variable whose only 
possible values are 0 and 1 is called a 
Bernoulli random variable.
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Types of Random Variables

A discrete random variable is an rv
whose possible values either constitute a 
finite set or else can listed in an infinite 
sequence.  A random variable is 
continuous if its set of possible values 
consists of an entire interval on a number 
line.
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Probability 
Distributions for 
Discrete Random 

Variables
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Probability Distribution 

The probability distribution or 
probability mass function (pmf) of a 
discrete rv is defined for every number 
x by p(x) =  P(all s    S  :  X(s) = x) ∈
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Parameter of a Probability Distribution

Suppose that p(x) depends on a quantity 
that can be assigned any one of a number 
of possible values, each with different 
value determining a different probability 
distribution.  Such a quantity is called a 
parameter of the distribution.  The 
collection of all distributions for all 
different parameters is called a family of 
distributions.
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Cumulative Distribution Function

The cumulative distribution function 
(cdf) F(x) of a discrete rv variable X with 
pmf p(x) is defined for every number by 

:
( ) ( ) ( )

y y x
F x P X x p y

≤
= ≤ = ∑

For any number x, F(x) is the probability 
that the observed value of X will be at 
most x.
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Proposition

For any two numbers a and b with ,a b≤
( ) ( ) ( )P a X b F b F a≤ ≤ = − −

“a–” represents the largest possible X
value that is strictly less than (<) a. 

Note:  For integers
( ) ( ) ( 1)P a X b F b F a≤ ≤ = − −
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Probability Distribution for the 
Random Variable X

A probability distribution for a random variable X:

0.090.110.150.200.170.150.13P(X = x)
6410–1–3–8 x

Find
( )
( )

a.  0  

b.  3 1  

P X

P X

≤

− ≤ ≤

0.65

0.67
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Expected Values of 
Discrete Random 

Variables 
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The Expected Value of X

Let X be a discrete rv with set of 
possible values D and pmf p(x).  The 
expected value or mean value of X, 
denoted 

( ) ( )X
x D

E X x p xµ
∈

= = ⋅∑
( ) or ,  isXE X µ
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Example

X 0 1 2 3

pr(x )
5
8

1
8

1
8

1
8

25.1
8
13

8
12

8
51

8
10

)(P)(E

=

×+×+×+×=

∑=
x

xxX

In the at least one of each or at most 3 children
example, where X ={number of Girls}  we have:
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Ex. Use the data below to find out the expected 
number of the number of credit cards that a student 
will possess. 

0.01
0.03
0.06
0.16
0.38
0.28
0.08

P(x =X)

6
5
4
3
2
1
0

x

x = # credit cards

( ) 1 1 2 2 ... n nE X x p x p x p= + + +

0(.08) 1(.28) 2(.38) 3(.16)
          4(.06) 5(.03) 6(.01)

= + + +
+ + +

=1.97

About 2 credit cards
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The Expected Value of a Function

If the rv X has the set of possible 
values D and pmf p(x), then the 
expected value of any function h(x),  
denoted

[ ( )] ( ) ( )
D

E h X h x p x= ⋅∑
( )[ ( )] or ,  ish XE h X µ
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Rules of the Expected Value

( ) ( )E aX b a E X b+ = ⋅ +

This leads to the following:

1. For any constant a,

2.  For any constant b, 

( ) ( ).E aX a E X= ⋅

( ) ( ) .E X b E X b+ = +
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The Variance and Standard 
Deviation

Let X have pmf p(x), and expected value 
Then the variance of X, denoted V(X) 

µ

2 2(or  or ),  isXσ σ
2 2( ) ( ) ( ) [( ) ]

D
V X x p x E Xµ µ= − ⋅ = −∑

The standard deviation (SD) of X is
2

X Xσ σ=
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Ex. The quiz scores for a particular student are 
given below:
22, 25, 20, 18, 12, 20, 24, 20, 20, 25, 24, 25, 18
Find the variance and standard deviation.

21µ =

321421Frequency
.23.15.08.31.15.08Probability

252422201812Value 

( ) ( ) ( )22 2
1 1 2 2( ) ... n nV X p x p x p xµ µ µ= − + − + + −

( )V Xσ =
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( ) ( ) ( )
( ) ( ) ( )

2 2 2

2 2 2

( ) .08 12 21 .15 18 21 .31 20 21

.08 22 21 .15 24 21 .23 25 21

V X = − + − + −

+ − + − + −

( ) 13.25V X =

( )V Xσ = 13.25 3.64= ≈
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Shortcut Formula for Variance

2 2 2( ) ( )
D

V X x p xσ µ
⎡ ⎤

= = ⋅ −⎢ ⎥
⎣ ⎦
∑

( ) ( ) 22E X E X⎡ ⎤= − ⎣ ⎦
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Rules of Variance
2 2 2( ) aX b XV aX b aσ σ++ = = ⋅

aX b Xaσ σ+ = ⋅and

This leads to the following:
2 2 21.  ,aX X aX Xa aσ σ σ σ= ⋅ = ⋅
2 22.  X b Xσ σ+ =
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For any constants a and b, the expectation of the RV aX + b
is equal to the sum of the product of a and the expectation of 
the RV X and the constant b.

E(aX + b) = a E(X) +b

And similarly for the standard deviation (b, an additive 
factor, does not affect the SD).

SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b
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Why is that so?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b

.1
00

00

0

baE(X)baE(X)

n

x
x) P(Xb

n

x
x)x P(Xa

n

x
x)b  P(X

n

x
x)a x P(X

n

x
x)b)  P(X(a xb)E(aX

+=×+

=∑
=

=+∑
=

=

=∑
=

=+∑
=

=

=∑
=

=+=+
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Example:

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

1. X={-1, 2, 0, 3, 4, 0, -2, 1}; P(X=x)=1/8, for each x 

2. Y = 2X-5 = {-7, -1, -5, 1, 3, -5, -9, -3}

3. E(X)=

4. E(Y)=

5. Does  E(X)  =  2 E(X) –5 ?

6. Compute SD(X),  SD(Y). Does SD(Y)  =  2 SD(X)?

Linear Scaling (affine transformations) aX + b
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And why do we care?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

-completely general strategy for computing the distributions 
of RV’s which are obtained from other RV’s with known 
distribution. E.g., X~N(0,1), and Y=aX+b, then we need 
not calculate the mean and the SD of Y. We know from the 
above formulas that E(Y) = b and SD(Y) =|a|.

-These formulas hold for all distributions, not only for 
Binomial and Normal.

Linear Scaling (affine transformations) aX + b
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And why do we care?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

-E.g., say the rules for the game of chance we saw before change and 
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of 
{0.6, 0.3, 0.1}, as before. What is the newly expected return of the 
game? Remember the old expectation was equal to the entrance fee of 
$1.50, and the game was fair!

Y = 3(X-1)/2
{$1, $2, $3} {$0, $1.50, $3}, 

E(Y) =  3/2 E(X) –3/2 = 3 / 4 = $0.75

And the game became clearly biased. Note how easy it is to compute E(Y).

Linear Scaling (affine transformations) aX + b
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Means and Variances for (in)dependent Variables!

Means:
Independent/Dependent Variables {X1, X2, X3, …, X10}

E(X1 + X2 + X3 + … + X10) = E(X1)+ E(X2)+ E(X3)+… + E(X10)

Variances:
IndependentIndependent Variables {X1, X2, X3, …, X10}, variances add-up
Var(X1 +X2 + X3 + … + X10) = 

Var(X1)+Var(X2)+Var(X3)+…+Var(X1)
DependentDependent VariablesVariables {X1, X2} 
Variance contingent on the variable dependences, 

E.g., If  X2 = 2X1 + 5,

Var(X1 +X2) =Var (X1 + 2X1 +5) = 
Var(3X1 +5) =Var(3X1) = 9Var(X1)
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The Binomial 
Probability      
Distribution    
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Binomial Experiment
An experiment for which the following 
four conditions are satisfied is called a 
binomial experiment.

1. The experiment consists of a  
sequence of n trials, where n is fixed 
in advance of the experiment.
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2. The trials are identical, and each trial 
can result in one of the same two 
possible outcomes, which are denoted 
by success (S) or failure (F).

3. The trials are independent.

4. The probability of success is constant 
from trial to trial: denoted by p.
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Binomial Experiment

Suppose each trial of an experiment can 
result in S or F, but the sampling is 
without replacement from a population of 
size N.  If the sample size n is at most 5% 
of the population size, the experiment can 
be analyzed as though it were exactly a 
binomial experiment. 
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Binomial Random Variable

Given a binomial experiment consisting 
of n trials, the binomial random variable 
X associated with this experiment is 
defined as

X = the number of S’s among n trials
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Notation for the pmf
of a Binomial rv

Because the pmf of a binomial rv X
depends on the two parameters n and 
p, we denote the pmf by b(x;n,p).
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Computation of a      
Binomial pmf

nx
ppx

npnxb xnx

≤≤
−⎟

⎠
⎞⎜

⎝
⎛= −

0
)1(),;(
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Ex. A card is drawn from a standard 52-card 
deck.  If drawing a club is considered a success, 
find the probability of

a.  exactly one success in 4 draws (with replacement).

1 34 1 3
1 4 4
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

b.  no successes in 5 draws (with replacement).
0 55 1 3

0 4 4
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

0.422≈

0.237≈

p = ¼; q = 1– ¼ = ¾
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Notation for cdf

For X ~ Bin(n, p), the cdf will be 
denoted by

0
( ) ( ; , ) ( ; , )

x

y
P X x B x n p b y n p

=
≤ = = ∑

x = 0, 1, 2, …n
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Mean and Variance

For X ~ Bin(n, p), then E(X) = np, 
V(X) = np(1 – p) = npq,
(where q = 1 – p).

X npqσ =
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Ex. 5 cards are drawn, with replacement, from a 
standard 52-card deck.  If drawing a club is 
considered a success, find the mean, variance, and 
standard deviation of X (where X is the number of 
successes). 

p = ¼; q = 1– ¼ = ¾

15 1.25
4

npµ ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

( ) 1 35 0.9375
4 4

V X npq ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

0.9375 0.968X npqσ = = ≈
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Ex. If the probability of a student successfully 
passing this course (C or better) is 0.82, find the 
probability that given 8 students

a.  all 8 pass.

b.  none pass.

c.  at least 6 pass.

( ) ( )8 08
0.82 0.18

8
⎛ ⎞
⎜ ⎟
⎝ ⎠

( ) ( )0 88
0.82 0.18

0
⎛ ⎞
⎜ ⎟
⎝ ⎠

( ) ( ) ( ) ( ) ( ) ( )6 2 7 1 8 08 8 8
0.82 0.18 0.82 0.18 0.82 0.18

6 7 8
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0.2758 0.3590 0.2044≈ + + = 0.8392

0.2044≈

0.0000011≈
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Hypergeometric and 
Negative Binomial 

Distributions 
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The Hypergeometric Distribution

The three assumptions that lead to a 
hypergeometric distribution:

1.  The population or set to be sampled 
consists of N individuals, objects, or 
elements (a finite population).
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2. Each individual can be 
characterized as a success (S) or 
failure (F), and there are M
successes in the population.

3. A sample of n individuals is 
selected without replacement in 
such a way that each subset of size 
n is equally likely to be chosen. 
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Hypergeometric Distribution
If X is the number of S’s in a completely 
random sample of size n drawn from a 
population consisting of M S’s and (N – M) 
F’s, then the probability distribution of X, 
called the hypergeometric distribution, is 
given by

( ) ( ; , , )

M N M
x n x

P X x h x n M N
N
n

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠max(0, ) min( , )n N M x n M− + ≤ ≤
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Hypergeometric                  
Mean and Variance

( ) ( ) 1
1

M N n M ME X n V X n
N N N N

−⎛ ⎞ ⎛ ⎞= ⋅ = ⋅ ⋅ −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
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The Negative Binomial Distribution

The negative binomial rv and distribution
are based on an experiment satisfying the 
following four conditions:

1. The experiment consists of a 
sequence of independent trials. 

2. Each trial can result in a success (S) 
or a failure (F).
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3. The probability of success is constant 
from trial to trial, so P(S on trial i) = p
for i = 1, 2, 3, …

4. The experiment continues until a total 
of r successes have been observed, 
where r is a specified positive integer.
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pmf of a Negative Binomial

The pmf of the negative binomial rv X
with parameters r = number of S’s and    
p = P(S) is

x = 0, 1, 2, …

xr ppr
rxprxNB )1(1   

1),;( −⎟
⎠
⎞⎜

⎝
⎛

−
−+=
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Negative Binomial                 
Mean and Variance

2
(1 ) (1 )( ) ( )r p r pE X V X

p p
− −= =
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Hypergeometric Distribution & Binomial

Binomial approximation to Hyperheometric

Ex: 4,000 out of 10,000 residents are against a new tax. 
15 residents are selected at random.

P(at most 7 favor the new tax) = ?

p
N
M

N
n ≈<  then0.1),(usually small is  

),;(),,;(

/

pnxBinMnNxHyperGeom
approaches

pNM
⇒

=
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Geometric, Hypergeometric, 
Negative Binomial

Negative binomial pmf [X ~ NegBin(r, p), if r=1 
Geometric (p)]

Number of trials (x) until the rth success (negative, since 
number of successes (r) is fixed & number of trials (X) is random)

ppxXP x)1()( −==

2
)1()(     ;)1()(

)1(1   
1)(

p
prXVar

p
prXE

ppr
rxxXP xr

−=−=

−⎟
⎠
⎞⎜

⎝
⎛

−
−+==
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The Poisson  
Probability   
Distribution 
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Poisson Distribution

A random variable X is said to have 
a Poisson distribution with 
parameter                  if the pmf of X
is 

( )0 ,λ λ >

( ; ) 0,1, 2...
!

xep x x
x

λλλ
−

= =
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The Poisson Distribution      
as a Limit

Suppose that in the binomial pmf      
b(x;n, p), we let                             in such 
a way that np approaches a value             

and 0n p→ ∞ →
0.λ >

Then ( ; , ) ( ; ).b x n p p x λ→
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Poisson Distribution            
Mean and Variance

( ) ( )E X V X λ= =

If X has a Poisson distribution with 
parameter ,  then λ
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Poisson Process

3 Assumptions:

1.  There exists a parameter     > 0 such 
that for any short time interval of 
length     , the probability that exactly 
one event is received is 

α

t∆
( ).t o tα ⋅∆ + ∆
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2. The probability of more than one 
event during      is       

3. The number of events during the time 
interval      is independent of the 
number that occurred prior to this time 
interval.

t∆ ( ).o t∆

t∆
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Poisson Distribution

( ) ( ) / !,t k
kP t e t kα α−= ⋅ so that the number

of pulses (events) during a time interval 
of length t is a Poisson rv with parameter   

The expected number of pulses 
(events) during any such time interval is         
so the expected number during a unit 
time interval is    .α

,tα
.tλ α=
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Poisson Distribution – Definition

Used to model counts – number of arrivals (k) on a 
given interval …

The Poisson distribution is also sometimes referred to 
as the distribution of rare events. Examples of 
Poisson distributed variables are number of accidents 
per person, number of sweepstakes won per person, 
or the number of catastrophic defects found in a 
production process.
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Functional Brain Imaging –
Positron Emission Tomography (PET)
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Functional Brain Imaging - Positron Emission 
Tomography (PET)

http://www.nucmed.buffalo.edu
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Functional Brain Imaging –
Positron Emission Tomography (PET)

Isotope Energy (MeV)   Range(mm)  1/2-life  Appl.
C 0.96 1.1     20 min    receptors
O 1.7 1.5     2 min     stroke/activation
F 0.6      1.0     110 min      neurology
I ~2.0 1.6     4.5 days      oncology

11
15
18

124
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Functional Brain Imaging –
Positron Emission Tomography (PET)
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Hypergeometric Distribution & Binomial

Binomial approximation to Hyperheometric

Ex: 4,000 out of 10,000 residents are against a new tax. 
15 residents are selected at random.

P(at most 7 favor the new tax) = ?

p
N
M

N
n ≈<  then0.1),(usually small is  

),;(),,;(

/

pnxBinMnNxHyperGeom
approaches

pNM
⇒

=
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Poisson Distribution  – Mean

Used to model counts – number of arrivals (k) on a 
given interval …

Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

Mean of Y, µY = λ, since
!

e
k

k λλ −

λ

λλλλλλ

λλλ

λλλλ

λλ
λ

===
−

=

=
−

===

−
∞

=

−
∞

=

−
−

∞

=

−
∞

=

−
∞

=

−

∑∑

∑∑∑

ee
!

e
)!1(

e

)!1(
e

!
e

!
e)(

01

1

100

k

k

k

k

k

k

k

k

k

k

kk

kk
k

k
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Poisson Distribution - Variance

Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

Variance of Y, σY = λ½,  since

For example, suppose that Y denotes the 
number of blocked shots (arrivals) in a randomly 
sampled game for the UCLA Bruins men's 
basketball team. Then a Poisson distribution 
with mean=4 may be used to model Y .

!
e
k

k λλ −λ

λλλσ
λ

==−== ∑
∞

=

−

...
!

e)()(
0

22

k

k

Y k
kYVar
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Poisson Distribution - Example

For example, suppose that Y denotes the 
number of blocked shots in a randomly sampled 
game for the UCLA Bruins men's basketball 
team. Poisson distribution with mean=4 may be 
used to model Y .

1   2   3   4   5 6   7   8   9   10   11   12   13   14   15
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Poisson as an approximation to Binomial

Suppose we have a sequence of Binomial(n, pn)
models, with   lim(n pn)  λ, as  n infinity. 

For each 0<=y<=n, if Yn~ Binomial(n, pn), then

P(Yn=y)=
But this converges to:

Thus, Binomial(n, pn) Poisson(λ) 

yn
n

y

n ppy
n −−⎟
⎠
⎞⎜

⎝
⎛ )1(

!
)1(

  

    y
ey

ppy
n

npn

n
yn

n

y

n

λλ
λ

−
⎯⎯⎯ →⎯−⎟

⎠
⎞⎜

⎝
⎛

⎯→⎯×

∞⎯→⎯
−

WHY?
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Poisson as an approximation to Binomial

Rule of thumb is that approximation is good if:

n>=100
p<=0.01
λ =n p <=20

Then, Binomial(n, pn) Poisson(λ) 
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Example using Poisson approx to Binomial

Suppose P(defective chip) = 0.0001=10-4. Find 
the probability that a lot of 25,000 chips has > 2 
defective!

Y~ Binomial(25,000, 0.0001), find P(Y>2). Note 
that Z~Poisson(λ =n p =25,000 x 0.0001=2.5)

456.0
!2
5.2

!1
5.2

!0
5.21

!
5.21)2(1)2(

5.2
2

5.2
1

5.2
0

2

0

5.2

=⎟
⎠
⎞

⎜
⎝
⎛ ++−

=−=≤−=>

−−−

=

−∑

eee

e
z

ZPZP
z
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Relation among Distributions

Normal (X)
2,σµ

Normal (Z)
1,0

σ
µ−= XZ

Lognormal (Y)
2,σµ

YX ln= XeY =
Chi-square (   )

n

2χ

∑ =
= n

i iZ
1

2χ

Gamma
βα ,

2,2/ == βα n

Exponential(X)
β

1=α

n=2

Weibull
βγ ,

1=γ

Uniform(U)
1,0

UX lnβ−=

Uniform(X)
βα ,

αβ
α

−
−= XU ααβ +−= UX )(

Beta
βα , 1== βα


