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Discrete Models

Random
Variables

Bernoulli Random Variable

om variable whose only
sare 0 and 1 is called a
variable.

Discrete Random
Variables and
Probability
Distributions
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given sample space S of some
nt, a random variable is any
ciates a number with

Types of Random Variables
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else can listed in an infinite
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Parameter of a Probability Distribution

ose that p(x) depends on a quantity
be assigned any one of a number
values, each with different

ing a different probability

Proposition

ny two numbers a and b witha <b,
<X <b)=F(b)-F(a-)

the largest possible X
less than (<) a.

Probability Distribution

bability distribution or

Cumulative Distribution Function

cumulative distribution function
x) of a discrete rv variable X with
is defined for every number by

<x)= > p(y)
Yiy<Xx
is the probability

Probability Distribution for the
Random Variable X

ability distribution for a random variable X:




Example

In the at least one of each or at most 3 children
example, where X ={number of Girls} we have:

0 1 2 3
1 5 1 1
8 8 8 8
2 XP(x)
=Ox}+1x§+2x}+3x}
8 8 8 8
=1.25

The Expected Value of a Function

e rv X has the set of possible
and pmf p(x), then the
lue of any function h(x),

The Expected Value of X

X be a discrete rv with set of
values D and pmf p(x). The
lue or mean value of X,

Ex. Use the data below to find out the expected
number of the number of credit cards that a student

E(X)=%Pp+XaP2 +...4 Xy Py
=0(.08) +1(.28) + 2(.38) + 3(.16)
+4(.06) +5(.03) +6(.01)

Rules of the Expected Value
E(@X +b)=a-E(X)+b




The Variance and Standard
Deviation

ve pmf p(x), and expected value u
iance of X, denoted V(X)

V(X) =.08(12—21)° +.15(18—21)" + .31(20 - 21)°
+.08(22-21)? +.15(24 - 21) +.23(25-21)°

V13.25 = 3.64

Ex. The quiz scores for a particular student are
given below:
2, 25, 20, 18, 12, 20, 24, 20, 20, 25, 24, 25, 18

he variance and standard deviation.

Rules of Variance

Shortcut Formula for Variance

Linear Scaling (affine transformations) aX + b

For any constants a and b, the expectation of the RV aX + b
is equal to the sum of the product of a and the expectation of
the RV X and the constant b.

E(aX +b) =a E(X) +b

And similarly for the standard deviation (b, an additive
factor, does not affect the SD).

SD(aX +b) = [a] SD(X)




Linear Scaling (affine transformations) aX + b

Why is that so?
E(@aXx+b)=aE(X)+b  SD(aX +b) = |a| SD(X)

E(@X +b)= E(ax+b) P(X =x)=
x=0

X =x)+ E‘,b P(X =x)=
x=0

Linear Scaling (affine transformations) aX + b

And why do we care?
E(@X +b)=aE(X) +b SD(aX +b) = |a| SD(X)

-completely general strategy for computing the distributions
of RV’s which are obtained from other RV’s with known
distribution. E.g., X~N(0,1), and Y=aX+b, then we need
not calculate the mean and the SD of Y. We know from the
above formulas that E(Y) = b and SD(Y) =la.

-These formulas hold for all distributions, not only for
Binomial and Normal.

Means and Variances for (in)dependent Variables!

® Means:
B Independent/Dependent Variables {X1, X2, X3, ..., X10}

O E(X1+X2+ X3+ ... + X10) = E(X1)+ E(X2)+ E(X3)+... + E(X10)

® \Variances:
B Independent Variables {X1, X2, X3, ..., X10}, variances add-up
Var(X1+X2 + X3 + ... + X10) =
Var(X1)+Var(X2)+Var(X3)+...+Var(X1)
B Dependent Variables {X1, X2}
Variance contingent on the variable dependences,
0 Eg, If X2=2X1+5,
Var(X1 +X2) =Var (X1 + 2X1 +5) =

Var(3X1 +5) =Var(3X1) = 9Var(X1)
S 1 ATV P —

Linear Scaling (affine transformations) aX + b

Example:
E(@X +b)=aE(X) +b SD(aX +b) = |a| SD(X)

. Does E(X) = 2E(X)-57
. Compute SD(X), SD(Y). Does SD(Y) = 2 SD(X)?

1. X={-1,2,0,3,4,0, -2, 1}; P(X=x)=1/8, for each x
2. Y=2X-5={-7,-1,-5,1, 3,-5, -9, -3}

3. E(X)=

4. E(Y)=

5

6

Linear Scaling (affine transformations) aX + b

And why do we care?
E(aX +b)=aE(X) +b SD(aX +b) = |a| SD(X)

-E.g., say the rules for the game of chance we saw before change and
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of
{0.6, 0.3, 0.1}, as before. What is the newly expected return of the
game? Remember the old expectation was equal to the entrance fee of
$1.50, and the game was fair!

Y = 3(X-1)/2
{$1, $2, $3} > {$0, $1.50, $3},
E(Y) = 3/2E(X)-3/2=3/4=8%0.75

And the game became clearly biased. Note how easy it is to compute E(Y).

The Binomial
Probability
Distribution




Binomial Experiment

n experiment for which the following
conditions are satisfied is called a
experiment.

. The trials are identical, and each trial

Binomial Experiment

pose each trial of an experiment can

in S or F, but the sampling is
lacement from a population of
mple size n is at most 5%
ize, the experiment can
it were exactly a

Notation for the pmf
of a Binomial rv

mf of a binomial rv X
0 parameters n and

by b(x;n,p).

n result in one of the same two
ible outcomes, which are denoted
(S) or failure (F).

dependent.

ccess is constant

Binomial Random Variable

n a binomial experiment consisting
s, the binomial random variable
with this experiment is

Computation of a
Binomial pmf

?Jpx(l— o)




Ex. A card is drawn from a standard 52-card
deck. If drawing a club is considered a success,
ind the probability of

ly one success in 4 draws (with replacement).

Mean and Variance

n, p), then E(X) = np,
vnpq

Ex. If the probability of a student successfully
passing this course (C or better) is 0.82, find the
bability that given 8 students

8 8 0
[8](0.82) (0.18)" [~ 0.2044
0.82)°(0.18)° [~ 0.0000011

(0.82)° (0.18)°

Notation for cdf

in(n, p), the cdf will be

p)= > b(y:n, p)

y=

Ex. 5 cards are drawn, with replacement, from a
tandard 52-card deck. If drawing a club is
nsidered a success, find the mean, variance, and
d deviation of X (where X is the number of

Viq=1-Y =%

pergeometric and
Ive Binomial
ibutions




The Hypergeometric Distribution

e three assumptions that lead to a
eometric distribution:

tion or set to be sampled
ividuals, objects, or

Hypergeometric Distribution

f X is the number of S’s in a completely
om sample of size n drawn from a

The Negative Binomial Distribution

negative binomial rv and distribution

2. Each individual can be
characterized as a success (S) or
ilure (F), and there are M

es in the population.

n individuals is

Hypergeometric
Mean and Variance

The probability of success is constant
trial to trial, so P(S on trial i) = p
223, ...

nt continues until a total
e been observed,
ositive integer.




pmf of a Negative Binomial

f of the negative binomial rv X
eters r = number of S’s and

Hypergeometric Distribution & Binomial

Binomial approximation to Hyperheometric
D is small (usually < 0.1), then e p
approaches

M /N=p
idents are against a new tax.

;N,n,M) Bin(x;n, p)

The Poisson
robability

Negative Binomial
Mean and Variance

Geometric, Hypergeometric,
Negative Binomial

® Negative binomial pmf [X ~ NegBin(r, p), if r=1 =
Geometric X
i P(X =X)=(-p)*P
Number of trials (x) until the rth success (negative, since
number of successes (r) is fixed & number of trials (X) is random)

POx=x)=(*F 7)o" - )"

E(X) = r(1; P, var(x)="¢"P)

p2

Poisson Distribution

dom variable X is said to have
distribution with
>0), if the pmf of X




The Poisson Distribution
as a Limit

that in the binomial pmf

let n — o0 and p — 0 in such
roaches a valueA > 0.

Poisson Process

umptions:

ists a parameter & > 0 such
rt time interval of

bility that exactly
IS - At+0(At).

Poisson Distribution

t)=e % . (at)* /!, s0 that the number

s (events) during a time interval

is a Poisson rv with parameter
cted number of pulses
uch time interval isot,

Poisson Distribution
Mean and Variance

Poisson distribution with

The probability of more than one
t during At iso(At).

er of events during the time
independent of the
ed prior to this time

Poisson Distribution — Definition

® Used to model counts — number of arrivals (k) on a
given interval ...

® The Poisson distribution is also sometimes referred to
as the distribution of rare events. Examples of
Poisson distributed variables are number of accidents
per person, number of sweepstakes won per person,
or the number of catastrophic defects found in a
production process.
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Functional Brain Imaging —
Positron Emission Tomography (PET)

Functional Brain Imaging —
Positron Emission Tomography (PET)

O —-'_"---l .
% "~ Isotope Energy (MeV) Range(mm) 1/2-life Appl.
ANy & oe 0.9 11 20min receptors
Ll . I 150 17 15 2min stroke/activation
B~ Soomm s 1 0.6 1.0 110min  neurology
e - 124 ~2.0 1.6 45days oncology
[=8 °

Hypergeometric Distribution & Binomial |

® Binomial approximation to Hyperheometric

[ ] % is small (usually < 0.1), then Wz p
approaches
M /N=p

000 out of 10,000 residents are against a new tax.
ts are selected at random.

HyperGeom(x;N,n,M) Bin(x;n, p)

7 favor the new tax) = ?
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Functional Brain Imaging - Positron Emission
Tomography (PET)

Anmhilation detection

http://www.nucmed.buffalo.edu

Functional Brain Imaging —
Positron Emission Tomography (PET)

Left Hand

Poisson Distribution — Mean

® Used to model counts — number of arrivals (k) on a
given interval ...

®|Y~Poisson(]), then P(Y=k) =

® Mean of Y, 1y = A, since
o0 ﬂke—/l P oo kﬂk i oo ﬂk
g k! g k! = (k-1!

Ae™

, k=0,1,2, ...

e S A SR etei= g
L & -

k=1 k=0 k!
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Poisson Distribution - Variance

Poisson Distribution - Example

® Y~Poisson(A), then P(Y=k) = A¢" =012,
I
® Variance of Y, 6, = A%, since

o =Var(Y)= Y (k- 4)? A

ot
ko

® For example, suppose that Y denotes the
number of blocked shots (arrivals) in a randomly
sampled game for the UCLA Bruins men's
basketball team. Then a Poisson distribution
with mean=4 may be used to model Y .

® For example, suppose that Y denotes the

number of blocked shots in a randomly sampled
game for the UCLA Bruins men's basketball
team. Poisson distribution with mean=4 may be
used to model Y .
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Poisson as an approximation to Binomial

Poisson as an approximation to Binomial

® Suppose we have a sequence of Binomial(n, p,,)
models, with lim(n p,) = A, as n->infinity.

® For each O<=y<=n, if Y, ~ Binomial(n, p,), then
n n-
| P(Yn:y): (y) pny (1_ pn) /

M But this converges to:
wHY?  pYe—4

n y _ n-y
(3)pa-py—=

nxp,——1 yl

® Thus, Binomial(n, p,) = Poisson(\)

® Rule of thumb is that approximation is good if:

@ Then, Binomial(n, p,) = Poisson(A)

[ | n>=100
[ | p<=0.01
u A =np <=20

Example using Poisson approx to Binomial

Relation among Distributions

® Suppose P(defective chip) = 0.0001=10*. Find
the probability that a lot of 25,000 chips has > 2
defective!

® Y~ Binomial(25,000, 0.0001), find P(Y>2). Note
that Z~Poisson(A. =n p =25,000 x 0.0001=2.5)

d 2-\5Z -25
PZ>2)=1-P(Z<2)=1-3 = e* =
1— [25 025 4 29 has 2'562'5) =0.456

0! I 4

Siat3s UCIA Ivo Dingy

X—u
Normal (X) | Z=—_— | Normal (2)
#,0°
7 n
1 2R
=e x
Chi-squarel({’zi Weibull

L]
T

a=niz=2 n=N_ r=1
1

IGamma o =1 | Exponential(X)

X =—-pInu
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