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Continuous Random Variables

A random variable X is continuous if its 
set of possible values is an entire 
interval of numbers (If A < B, then any 
number x between A and B is possible).
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Probability Distribution
Let X be a continuous rv.  Then a 
probability distribution or probability 
density function (pdf) of X is a function 
f (x) such that for any two numbers a
and b,

( ) ( )
b

a
P a X b f x dx≤ ≤ = ∫

The graph of f is the density curve.
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Probability Density Function
For f (x) to be a pdf
1. f (x) > 0 for all values of x.

2.The area of the region between the 
graph of f and the x – axis is equal to 1.

Area = 1
( )y f x=
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Probability Density Function

is given by the area of the shaded 
region.

( )y f x=

ba

( )P a X b≤ ≤
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Continuous RV’s

A RV is continuous if it can take on any real value 
in a non-trivial interval (a ; b).

PDF, probability density function, for a cont. RV, 
Y, is a non-negative function pY(y), for any real 
value y, such that for each interval (a; b), the 
probability that Y takes on a value in (a; b), 
P(a<Y<b) equals the area under pY(y) over the 
interval (a: b). pY(y)

a            b

P(a<Y<b)
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Convergence of density histograms to the PDF

For a continuous RV the density histograms 
converge to the PDF as the size of the bins goes 
to zero.

AdditionalInstructorAids\BirthdayDistribution_1978_systat.SYD
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Convergence of density histograms to the PDF

For a continuous RV the density histograms 
converge to the PDF as the size of the bins goes 
to zero.
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Uniform Distribution

A continuous rv X is said to have a 
uniform distribution on the interval [A, B] 
if the pdf of X is

( )
1

; ,
0       otherwise

A x B
f x A B B A

⎧ ≤ ≤⎪= −⎨
⎪⎩
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Probability for a Continuous rv

If X is a continuous rv, then for any 
number c, P(x = c) = 0.  For any two 
numbers a and b with a < b,

( ) ( )P a X b P a X b≤ ≤ = < ≤

( )P a X b= ≤ <

( )P a X b= < <
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Cumulative Distribution 
Functions and Expected 

Values
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The Cumulative Distribution Function

The cumulative distribution function, 
F(x) for a continuous rv X is defined for 
every number x by

( )( ) ( )
x

F x P X x f y dy
−∞

= ≤ = ∫
For each x, F(x) is the area under the 
density curve to the left of x. 
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Using F(x) to Compute Probabilities

( ) ( ) ( )P a X b F b F a≤ ≤ = −

Let X be a continuous rv with pdf f(x) 
and cdf F(x). Then for any number a, 

and for any numbers a and b with a < b,

( ) 1 ( )P X a F a> = −
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Obtaining f(x) from F(x) 

If X is a continuous rv with pdf f(x) 
and cdf F(x), then at every number x
for which the derivative  

( ) ( ).F x f x′ =
( ) exists, F x′
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Percentiles

Let p be a number between 0 and 1.  The 
(100p)th percentile of the distribution of a 
continuous rv X denoted by         , is 
defined by

( )pη

( ) ( )
( ) ( )

p
p F p f y dy

η
η

−∞
= = ∫
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Median

The median of a continuous distribution, 
denoted by    , is the 50th percentile.   So     
satisfies                        That is, half the area 
under the density curve is to the left of   

µ%

.µ%

µ%
0.5 ( ).F µ= %
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Expected Value 

The expected or mean value of a 
continuous rv X with pdf f (x) is

( ) ( )X E X x f x dxµ
∞

−∞

= = ⋅∫
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Expected Value of h(X) 

If X is a continuous rv with pdf f(x) and 
h(x) is any function of X, then

[ ] ( )( ) ( ) ( )h XE h x h x f x dxµ
∞

−∞

= = ⋅∫
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Variance and Standard Deviation 

The variance of continuous rv X with 
pdf f(x) and mean     is

2 2( ) ( ) ( )X V x x f x dxσ µ
∞

−∞

= = − ⋅∫
( )2[ ]E X µ= −

The standard deviation is

µ

( ).X V xσ =
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Short-cut Formula for Variance

( ) [ ]22( ) ( )V X E X E X= −
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The Normal 
Distribution
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Normal Distributions

2 2( ) /(2 )1( )
2

xf x e xµ σ

σ π
− −= − ∞ < < ∞

A continuous rv X is said to have a 
normal distribution with parameters  

and ,  where  and µ σ µ− ∞ < < ∞
0 ,  if the pdf of  isXσ<
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Standard Normal Distributions

2 / 21( ;0,1)
2

zf z e
σ π

−=

The normal distribution with parameter 
values                              is called a 
standard normal distribution.  The 
random variable is denoted by Z.  The 
pdf is

0 and 1µ σ= =

The cdf is

z− ∞ < < ∞

( ) ( ) ( ;0,1)
z

z P Z z f y dy
−∞

Φ = ≤ = ∫
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Standard Normal Cumulative Areas

0      z

Standard 
normal 
curve

Shaded area = ( )zΦ
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Standard Normal Distribution

a.  

Area to the left of  0.85 = 0.8023

b.  P(Z > 1.32)

Let Z be the standard normal variable.    
Find (from table)

( 0.85)P Z ≤

1 ( 1.32) 0.0934P Z− ≤ =
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Find the area to the left of 1.78 then 
subtract the area to the left of –2.1. 

= 0.9625 – 0.0179

= 0.9446

c.  ( 2.1 1.78)P Z− ≤ ≤

= ( 1.78) ( 2.1)P Z P Z≤ − ≤ −
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Notationzα

will denote the value on the 
measurement axis for which the area 
under the z curve lies to the right of .zα

zα

zα0

Shaded area 
( )P Z zα α= ≥ =
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=  2[P(z < Z ) – ½] 
P(z < Z < –z ) = 2P(0 < Z < z)  

z = 1.32  

Ex. Let Z be the standard normal variable.  Find z if  
a.  P(Z < z) = 0.9278.

Look at the table and find an entry 
= 0.9278 then read back to find

z = 1.46.

b.  P(–z < Z < z) = 0.8132

=  2P(z < Z ) – 1 = 0.8132
P(z < Z ) = 0.9066 
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Nonstandard Normal Distributions

If X has a normal distribution with 
mean     and standard deviation    , then µ σ

XZ µ
σ
−=

has a standard normal distribution.
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Normal Curve

68%
95%

99.7%

Approximate percentage of area within 
given standard deviations (empirical 
rule).
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Ex. Let X be a normal random variable 
with              

= 0.2266

( ) 65 8065
20

P X P Z −⎛ ⎞≤ = ≤⎜ ⎟
⎝ ⎠

( ).75P Z= ≤ −

Find  ( 65).P X ≤
80  and  20.µ σ= =
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Ex. A particular rash shown up at an 
elementary school.  It has been 
determined that the length of time that the 
rash will last is normally distributed with

6 days and  1.5 days.µ σ= =
Find the probability that for a student 
selected at random, the rash will last for 
between 3.75 and 9 days.
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( ) 3.75 6 9 63.75 9
1.5 1.5

P X P Z− −⎛ ⎞≤ ≤ = ≤ ≤⎜ ⎟
⎝ ⎠

( )1.5 2P Z= − ≤ ≤

= 0.9772 – 0.0668

= 0.9104
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Percentiles of an Arbitrary Normal 
Distribution

(100p)th percentile 
for normal

(100 )th for
standard normal

p
µ σ⎡ ⎤

= + ⋅⎢ ⎥
⎣ ⎦( ),µ σ
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Let X be a binomial rv based on n trials, each 
with probability of success p.  If the binomial 
probability histogram is not too skewed, X may 
be approximated by a normal distribution with

 and .np npqµ σ= =

Normal Approximation to the 
Binomial Distribution

0.5( ) x npP X x
npq

⎛ ⎞+ −≤ ≈ Φ ⎜ ⎟⎜ ⎟
⎝ ⎠
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Ex. At a particular small college the pass rate 
of Intermediate Algebra is 72%.  If 500 
students enroll in a semester determine the 
probability that at least 375 students pass. 

500(.72) 360npµ = = =

500(.72)(.28) 10npqσ = = ≈

375.5 360( 375) (1.55)
10

P X −⎛ ⎞≤ ≈ Φ = Φ⎜ ⎟
⎝ ⎠

= 0.9394
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Normal approximation to Binomial

Suppose Y~Binomial(n, p)
Then Y=Y1+ Y2+ Y3+…+ Yn, where

Yk~Bernoulli(p) , E(Yk)=p  & Var(Yk)=p(1-p) 

E(Y)=np &  Var(Y)=np(1-p), SD(Y)= (np(1-p))1/2

Standardize Y:
Z=(Y-np) / (np(1-p))1/2

By CLT Z ~ N(0, 1). So, Y ~ N [np, (np(1-p))1/2]

Normal Approx to Binomial is 
reasonable when  np >=10   &   n(1-p)>10
(p & (1-p) are NOT too small relative to n).
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Normal approximation to Binomial – Example

Roulette wheel investigation:
Compute P(Y>=58),  where Y~Binomial(100, 0.47) –

The proportion of the Binomial(100, 0.47) population having 
more than 58 reds (successes) out of 100 roulette spins (trials).

Since np=47>=10   &   n(1-p)=53>10 Normal 
approx is justified.

Z=(Y-np)/Sqrt(np(1-p))   =                                  
58 – 100*0.47)/Sqrt(100*0.47*0.53)=2.2
P(Y>=58)   P(Z>=2.2) = 0.0139
True P(Y>=58) = 0.177, using SOCR (demo!)
Binomial approx useful when no access to SOCR avail.

Roulette has 38 slots
18red 18black 2 neutral
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Normal approximation to Poisson

Let X1~Poisson(l) & X2~Poisson(m)  X1+ X2~Poisson(l+m)

Let X1, X2, X3, …, Xk ~ Poisson(l), and independent,
Yk = X1 + X2 + ··· + Xk ~ Poisson(kl), E(Yk)=Var(Yk)=kl.

The random variables in the sum on the right are 
independent and each has the Poisson distribution 
with parameter  l.
By CLT the distribution of the standardized variable 
(Yk − kl) / (kl)1/2 N(0, 1), as k increases to infinity.

So, for  kl >= 100,  Zk = {(Yk − kl) / (kl)1/2 }  ~  N(0,1).
Yk ~  N(kl, (kl)1/2).
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Normal approximation to Poisson – example

Let X1~Poisson(l) & X2~Poisson(m)  X1+ 
X2~Poisson(l+m)
Let X1, X2, X3, …, X200 ~ Poisson(2), and independent,
Yk = X1 + X2 + ··· + Xk ~ Poisson(400), 
E(Yk)=Var(Yk)=400.
By CLT the distribution of the standardized variable 
(Yk − 400) / (400)1/2 N(0, 1), as k increases to infinity.
Zk = (Yk − 400) / 20 ~ N(0,1) Yk ~ N(400, 400).
P(2 < Yk < 400) = (std’z 2 & 400) = 

P( (2−400)/20 < Zk < (400−400)/20 ) = P( -20< Zk<0) = 0.5
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Poisson or Normal approximation to Binomial?

Poisson Approximation (Binomial(n, pn)
Poisson(λ) ):

n>=100  &  p<=0.01  &   λ =n p <=20
Normal Approximation

(Binomial(n, p) N ( np, (np(1-p))1/2) )
np >=10   &   n(1-p)>10

!
)1(

  

    y
ey

ppy
n

npn

n
yn

n

y

n

λλ
λ

−
⎯⎯⎯ →⎯−⎟

⎠
⎞⎜

⎝
⎛

⎯→⎯×

∞⎯→⎯
− WHY?

Stat 35 UCLA, Ivo DinovSlide 44

The Gamma 
Distribution and Its 

Relatives
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The Gamma Function

For 0,   α > the gamma function
( ) is defined byαΓ

1

0

( ) xx e dxαα
∞

− −Γ = ∫
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Gamma Distribution

A continuous rv X has a gamma 
distribution if the pdf is

1 /1 0
( ; , ) ( )

           0                otherwise

xx e x
f x

α β
αα β β α

− −⎧ ≥⎪= Γ⎨
⎪
⎩

where the parameters satisfy 0, 0.α β> >
The standard gamma distribution has 1.β =
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Mean and Variance

The mean and variance of a random 
variable X having the gamma distribution

( ; , ) aref x α β

2 2( ) ( )E X V Xµ αβ σ αβ= = = =
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Probabilities from the Gamma 
Distribution

Let X have a gamma distribution with 
parameters    

( ) ( ; , ) ;xP X x F x Fα β α
β

⎛ ⎞≤ = = ⎜ ⎟
⎝ ⎠

Then for any x > 0, the cdf of X is given by
and .α β

where
1

0

( ; )
( )

x yy eF x dy
α

α
α

− −
=

Γ∫
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Exponential Distribution

A continuous rv X has an exponential 
distribution with parameter     if the pdf is

0( ; )
            0                otherwise

xe xf x
λλλ

−⎧ ≥⎪= ⎨
⎪⎩

λ
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Mean and Variance

The mean and variance of a random 
variable X having the exponential 
distribution

2 2
2

1 1µ αβ σ αβ
λ λ

= = = =
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Probabilities from the Gamma 
Distribution

Let X have a exponential distribution
Then the cdf of X is given by

    0       0
( ; )

1    0x

x
F x

e xλλ −

<⎧⎪= ⎨
− ≥⎪⎩
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Applications of the Exponential 
Distribution

Suppose that the number of events 
occurring in any time interval of length t
has a Poisson distribution with parameter  
and that the numbers of occurrences in 
nonoverlapping intervals are independent 
of one another.  Then the distribution of 
elapsed time between the occurrences of 
two successive events is exponential with 
parameter   

tα

.λ α=
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The Chi-Squared Distribution
Let v be a positive integer.  Then a 
random variable X is said to have a chi-
squared distribution with parameter v if 
the pdf of X is the gamma density with

/ 2 and 2.vα β= = The pdf is
( / 2) 1 / 2

/ 2
1 0

( ; ) 2 ( / 2)
            0                              0

v x
v x e x

f x v v
x

− −⎧ ≥⎪= Γ⎨
⎪ <⎩
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The Chi-Squared Distribution

The parameter v is called the number of 
degrees of freedom (df) of X.  The 
symbol     is often used in place of “chi-
squared.”

2χ
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Identifying Common Distributions – QQ plots

Quantile-Quantile plots indicate how well the model 
distribution agrees with the data.

q-th quantile, for 0<q<1, is the (data-space) value, Vq, at or 
below which lies a proportion q of the data.

1 Graph of the CDF, FY(y)=P(Y<=Vq)=q

0

q

Vq
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Constructing QQ plots

Start off with data {y1, y2, y3, …, yn}
Order statistics y(1) <= y(2) <= y(3) <=…<= y(n)
Compute quantile rank, q(k), for each observation, y(k),

P(Y<= q(k)) = (k-0.375) / (n+0.250),
where Y is a RV from the (target) model distribution.
Finally, plot the points (y(k), q(k)) in 2D plane, 1<=k<=n.
Note: Different statistical packages use slightly 
different formulas for the computation of q(k). However, 
the results are quite similar. This is the formulas 
employed in SAS.
Basic idea: Probability that: P((model)Y<=(data)y(1))~ 
1/n;  
P(Y<=y(2)) ~ 2/n;   P(Y<=y(3)) ~ 3/n;    …
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Example - Constructing QQ plots

Start off with data {y1, y2, y3, …, yn}.

Plot the points (y(k), q(k)) in 2D plane, 1<=k<=n.
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Other Continuous 
Distributions
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The Weibull Distribution

A continuous rv X has a Weibull
distribution if the pdf is

1 ( / ) 0
( ; , )

            0                 0

xx e x
f x

x

αα β
α

α
α β β

− −⎧ ≥⎪= ⎨
⎪ <⎩

where the parameters satisfy 0, 0.α β> >
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Mean and Variance

The mean and variance of a random 
variable X having the Weibull
distribution are

2
2 21 2 11 1 1µ β σ β

α α α

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= Γ + = Γ + − Γ +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
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Weibull Distribution

The cdf of a Weibull rv having 
parameters 

( / )1 0( ; , )
            0         < 0

xe xF x
x

αβ
α β

−⎧⎪ − ≥= ⎨
⎪⎩

 and  is α β
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Lognormal Distribution

A nonnegative rv X has a lognormal 
distribution if the rv Y = ln(X) has a 
normal distribution the resulting pdf has 
parameters

2 2[ln( ) ] /(2 )1 0
( ; , ) 2

            0                             0

xe x
f x x

x

µ σ
µ σ πα

− −⎧ ≥⎪= ⎨
⎪ <⎩

and  and isµ σ
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Mean and Variance

The mean and variance of a variable X
having the lognormal distribution are

( )2 2 2/ 2 2( ) ( ) 1E X e V X e eµ σ µ σ σ+ += = −
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Lognormal Distribution

( ; , ) ( ) [ln( ) ln( )]F x P X x P X xµ α = ≤ = ≤

The cdf of the lognormal distribution  is 
given by

ln( ) ln( )x xP Z µ µ
σ σ

− −⎛ ⎞ ⎛ ⎞= ≤ = Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Beta Distribution

A rv X is said to have a beta distribution
with parameters A, B, 0,  and 0α β> >
if the pdf of X is
( ; , , , )f x A Bα β =

1 11 ( ) 0
( ) ( )

            0                otherwise

x A B x x
B A B A B A

α βα β
α β

− −⎧ Γ + − −⎛ ⎞ ⎛ ⎞⋅ ≥⎪ ⎜ ⎟ ⎜ ⎟− Γ ⋅Γ − −⎨ ⎝ ⎠ ⎝ ⎠
⎪
⎩
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Mean and Variance
The mean and variance of a variable X
having the beta distribution are

( )A B A αµ
α β

= + − ⋅
+

2
2

2
( )

( ) ( 1)
B A αβσ

α β α β
−=

+ + +
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Probability              
Plots
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Sample Percentile

Order the n-sample observations from 
smallest to largest.  The ith smallest 
observation in the list is taken to be the 
[100(i – 0.5)/n]th sample percentile.
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Probability Plot

[100( .5) / ]th percentile th smallest sample
of the distribution observation

i n i−⎛ ⎞
⎜ ⎟
⎝ ⎠,
If the sample percentiles are close to the 
corresponding population distribution 
percentiles, the first number will roughly 
equal the second.
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Normal Probability Plot

A plot of the pairs
( )[100( .5) / ]th  percentile, th smallest observationi n z i−

On a two-dimensional coordinate system 
is called a normal probability plot.  If the 
drawn from a normal distribution the 
points should fall close to a line with 
slope     and interceptσ .µ
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Beyond Normality
Consider a family of probability 
distributions involving two parameters

Let                     denote the1 2 and .θ θ 1 2( ; , )F x θ θ
corresponding cdf’s.  The parameters

1 2 and θ θ are said to location and scale
parameters if

1
1 2

2
( ; , ) is a function of .xF x θθ θ

θ
−
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Relation among Distributions

Normal (X)
2,σµ

Normal (Z)
1,0

σ
µ−= XZ

Lognormal (Y)
2,σµ

YX ln= XeY =
Chi-square (   )

n

2χ

∑ == ni iZ1
22

χ

Gamma
βα ,

2,2/ == βα n

Exponential(X)
β

1=α

n=2

Weibull
βγ ,

1=γ

Uniform(U)
1,0

UX lnβ−=

Uniform(X)
βα ,

αβ
α

−
−= XU ααβ +−= UX )(

Beta
βα , 1== βα

Cauchy
(0,1)

Tdf=n
(0,1)

∞⎯→⎯df

1⎯→⎯df


