Linear Modeling

Probability Theory

- Axioms
- Basic Principles for probability modeling and computation
- Law of Total Probability \& Bayesian Theorem
- Data Summaries and EDA
- Distributions
(http:// www. socr. ucla.edu/ htmls/ SOCR_Distributions. htm
- Ex
- Experiments \& Demos (http:/ / www. socr. ucla.edu/ htmls/ SOCR_Experiments. html
- Statistical Inference
- Hypothesis Testing \& Confidence intervals
- Parameter Estimation
- Parametric vs. Non-parametric inference
(http:// www. socr. ucla.edu/htmls/ SOCR_Analyses.html)
- CLT \& LLN

- Linear modeling

- Simple linear regression, Multiple linear regression
- ANOVA \& GLM

Fitted Value and Residual

The fitted value of \mathbf{y}, denoted $\hat{\mathbf{y}}$, is :
$\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$
and the residual terms :
$\underset{\mathrm{n} \times 1}{\mathbf{e}}=\mathbf{y}-\hat{\mathbf{y}}=\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}$
Since population ε is unknonw, we estimate σ^{2} from sample :
$\mathbf{s}^{2}(e)=M S E$

Multiple Regression in Matrix Form
$y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i}$
$\left(\begin{array}{c}y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{n}\end{array}\right)=\beta_{0}\left(\begin{array}{c}1 \\ 1 \\ 1 \\ \vdots \\ 1\end{array}\right)+\beta_{1}\left(\begin{array}{c}x_{11} \\ x_{12} \\ x_{13} \\ \vdots \\ x_{1 n}\end{array}\right)+\beta_{2}\left(\begin{array}{c}x_{21} \\ x_{22} \\ x_{23} \\ \vdots \\ x_{2 n}\end{array}\right)+\beta_{3}\left(\begin{array}{c}x_{31} \\ x_{32} \\ x_{33} \\ \vdots \\ x_{3 n}\end{array}\right)+\left(\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \vdots \\ \varepsilon_{n}\end{array}\right)$
$=\left(\begin{array}{cccc}1 & x_{11} & x_{21} & x_{31} \\ 1 & x_{12} & x_{22} & x_{32} \\ 1 & x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1 n} & x_{2 n} & x_{3 n}\end{array}\right)\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right)+\left(\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \vdots \\ \varepsilon_{n}\end{array}\right)$

Multiple Regression and LSE

The general multiple regression model is
$\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ where $V(\boldsymbol{\varepsilon})=\sigma^{2} \quad \mathrm{~V}(\mathbf{y})=\mathrm{V}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon})=\sigma^{2}$
$\mathbf{X}=\left(X_{1}, X_{2}, \cdots X_{p}\right)$
$X_{i}=\left(x_{1 i}, x_{2 i}, \cdots x_{m i}\right)^{\prime}$
The LSE solution for β will be
model
model
assumptions.
Why?
$\operatorname{Min} \operatorname{SSE}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i 1}-\cdots-\beta_{p-1} x_{p-1}\right)^{2}$
In matrix notation
$\mathbf{X}^{\prime} \mathbf{y}=\mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}=>\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X} \mathbf{X}^{-1}\right)^{\prime}\left(\mathbf{X}_{p \times 1}^{\prime} \mathbf{y}\right)$

$$
X^{\prime} \mathbf{y}=\left(\begin{array}{c}
1^{\prime} \mathbf{y} \\
X_{1}^{\prime} \mathbf{y} \\
X_{2}^{\prime} \mathbf{y} \\
X_{3}^{\prime} \mathbf{y}
\end{array}\right) \quad X^{\prime} X=\operatorname{SSCP}=\left(\begin{array}{cccc}
1^{\prime} 1 & 1^{\prime} X_{1} & \cdots & 1^{\prime} X_{p} \\
X_{1}^{\prime} 1 & X_{1}^{\prime} X_{1} & \cdots & X_{1}^{\prime} X_{p} \\
X_{2}^{\prime} 1 & X_{2}^{\prime} X_{1} & \cdots & X_{2}^{\prime} X_{p} \\
\vdots & \vdots & \ddots & \vdots \\
X_{p}^{\prime} 1 & X_{p}^{\prime} X_{1} & \cdots & X_{p}^{\prime} X_{p}
\end{array}\right) \quad\left(X^{\prime} X\right)^{-1}=\left(\begin{array}{cccc}
c_{00} & c_{01} & \cdots & c_{01} \\
c_{10} & c_{11} & \cdots & c_{1,} \\
\vdots & \vdots & \ddots & \vdots \\
c_{p 0} & c_{p 1} & \cdots & c_{p y}
\end{array}\right.
$$

Interpreting Multiple Regression Mode

For a multiple regression model
$y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+e_{i}$
β_{1} should be interpreted as change in y when 1 unit change is observed in x_{1} and x_{2} is kept constant. This statement is not very clear when x_{1} and x_{2} are not independent.

- Misunderstanding: β_{i} always measures the effect of x_{i} on $E(y)$, independent of other x variables.
- Misunderstanding: a statistically significant β value establishes a cause and effect relationship between x and y.

Properties of Coefficient Estimate

- It can be shown that:
$\boldsymbol{\sigma}^{\mathbf{2}}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
$E\left(\hat{\beta}_{i}\right)=\beta_{i}$
$V\left(\hat{\beta}_{i}\right)=c_{i i} \sigma^{2}$
$\sigma_{\hat{\beta}_{i}}=\sigma \sqrt{c_{i i}}$
$\operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)=c_{i j} \sigma^{2}$
- In the simplest case when there is only one x ,
$\sigma_{\hat{\beta}_{1}}=\sigma / \sqrt{S S_{x x}}$

Properties of Coefficient Estimate

- Proof
$Y_{n+1}=X_{n x} \beta_{k=1}+\varepsilon_{n \times 1} ; \quad \varepsilon_{n \times 1} \sim N\left(0, \sigma^{2} I_{n \times n}\right)$
Leasts quares solution is : $\hat{\beta}=\left(X^{\prime} X\right)^{-} X^{\prime} Y=: A_{k x y}^{\prime} Y_{n \times 1}$ $E(\hat{\beta})=E\left(\left(X^{\prime} X\right)^{-} X^{\prime} Y\right)=\left(X^{\prime} X\right)^{-} X^{\prime} E(Y)=\left(X^{\prime} X\right)^{-} X^{\prime} X \beta=\beta$

General Property of Matrices : $\operatorname{Var}\left(A_{k \times n}^{\prime} Y_{n \times 1}\right)=A_{k \times n}^{\prime} \operatorname{Var}\left(Y_{n \times 1}\right) A_{n \times k}$ $\operatorname{Var}(\hat{\beta})=\operatorname{Var}\left(A_{k \times n}^{\prime} Y_{n \times 1}\right)=A_{k \times n}^{\prime} \operatorname{Var}\left(Y_{n \times 1}\right) A_{n \times k}=A_{k \times n}^{\prime} \operatorname{Var}\left(\varepsilon_{n \times 1}\right) A_{n \times k}=$ $\left.A_{k \times n}^{\prime} \sigma^{2} I_{n \times n} A_{n x k}=\sigma^{2} A_{k \times n}^{\prime} A_{n \times k}=\sigma^{2}\left(X^{\prime} X\right)^{-} X^{\prime}\right)\left(X\left(X^{\prime} X\right)^{-}\right) \Rightarrow$ $\underline{\operatorname{Var}(\hat{\beta}})=\sigma^{2}\left(X^{\prime} X\right)^{-} X^{\prime} X\left(X^{\prime} X\right)^{-}=\sigma^{2}\left(X^{\prime} X\right)^{-}\left(X^{\prime} X\left(X^{\prime} X\right)^{-}\right)=\sigma^{2}\left(X^{\prime} X\right)^{-}$

Properties of Coefficient Estimate

- Example:
$\left(X^{\prime} X\right)=\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.714 & 0.225 & 0.322 & -0.313-0.414-0.137 \\ 0 & 0 & 0.225 & 0.793 & 0.194-0.339-0.167-0.247 \\ 0 & 0 & 0.322 & 0.194 & 0.67 & -0.172 & -0.396-0.216 \\ 0 & 0 & -0.313-0.339 & -0.172 & 0.551 & 0.194 & 0.128 \\ 0 & 0 & -0.414 & -0.167 & -0.396 & 0.194 & 0.524 & 0.0141 \\ 0 & 0 & -0.137 & -0.247 & -0.216 & 0.128 & 0.0141 & 0.0366\end{array}\right]_{s, 8}$
$\hat{\beta}=\left(\beta_{0}, \beta_{11}, \beta_{12}, \beta_{13}, \beta_{14}, \beta_{21}, \beta_{22}, \beta_{23}\right)^{\prime}=(0.0,0.0,0.52,0.82,1.47,1.05,2,04,4,3)^{\prime}$
Let the contrast $k=\left(\begin{array}{c}-110\end{array} 00000\right)^{\prime}$, then $k^{\prime} \times b=\left(\begin{array}{lll}0-1 & 100000\end{array}\right) \times b \Rightarrow$
$k^{\prime} \times b=\left(\begin{array}{ll}0-1 & 1 \\ 0 & 0\end{array} 0000\right) \times b=b_{12}-b_{11}=0.052$.
Note that k could have been $k=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0\end{array} 0000\right.$)
$\left.\Rightarrow \operatorname{Var}\left(k^{\prime} b\right)=k^{\prime} \operatorname{Var}(b) k=k^{\prime} \operatorname{Var}(b) k=\sigma^{2} k^{\prime}\left(X^{\prime} X\right)\right)^{\prime} k=0.714 \sigma^{2}$
Estimate $\sigma^{2} \approx s^{2}(e)=$ MSE $=\frac{\operatorname{SSE}}{n-r}$, where $r=\operatorname{rank}(X)=6, \boldsymbol{n}=12$
and $\operatorname{SSE}=Y^{\prime} Y-b^{\prime} X^{\prime} Y=0.0031 \Rightarrow s^{2}(e)=0.0005$.

Confidence Intervals and Tests of Hypotheses for β^{\prime} s

$H_{0}: \beta_{i}=0$
$H_{0}: \beta_{i}=0$
$H_{a}: \beta_{i}>0$ or $\left(\beta_{i}<0\right)$
$H_{a}: \beta_{i} \neq 0$
test statistic $: t=\frac{\hat{\beta}_{i}}{s \sqrt{c_{i i}}}$, where $s=$ sample $S D$
Rejection region :
$t>t_{\alpha}\left(\right.$ or $\left.t<t_{\alpha}\right)$
$|t|>t_{\omega / 2}$
$t_{\alpha / 2}$ is based on $[\boldsymbol{n}-(p+1)] d f, p$ is number of independent variables in the model

Properties of Coefficient Estimate

$$
\left(X^{\prime} X\right)_{8 \times 8} \times b_{8 \times 1}=\left(X^{\prime} Y\right)_{8 \times 1} \Leftrightarrow
$$

$\left[\begin{array}{cccccccc}12 & 4 & 3 & 2 & 3 & 3 & 5 & 4 \\ 4 & 4 & 0 & 0 & 0 & 1 & 1 & 2 \\ 3 & 0 & 3 & 0 & 0 & 1 & 2 & 0 \\ 2 & 0 & 0 & 2 & 0 & 1 & 0 & 1 \\ 3 & 0 & 0 & 0 & 3 & 0 & 2 & 1 \\ 3 & 1 & 1 & 1 & 0 & 3 & 0 & 0 \\ 5 & 1 & 2 & 0 & 2 & 0 & 5 & 0 \\ 4 & 2 & 0 & 1 & 1 & 0 & 0 & 4\end{array}\right]\left[\begin{array}{l}b_{0} \\ b_{11} \\ b_{12} \\ b_{13} \\ b_{14} \\ b_{21} \\ b_{22} \\ b_{23}\end{array}\right]=\left[\begin{array}{c}27.82 \\ 9.17 \\ 6.67 \\ 4.70 \\ 7.28 \\ 6.45 \\ 11.42 \\ 9.95\end{array}\right]$

Two-way ANOVA

- Two treatment factors, with \mathbf{g} and \mathbf{b} levels
- There are $1 \leq l \leq g$ levels of factor 1
- $1 \leq k \leq b$ levels of factor 2
- gb combinations of levels (l,k)
- \mathbf{N} independent observations

Univariate Analysis of Variance
Two-way Fixed Effects Model with Interaction
The ANOVA model (Linear Model) can be written as:

$$
y_{l k r}=\mu+\tau_{l}+\beta_{k}+\gamma_{l k}+e_{l k r}
$$

μ is the grand mean
τ is the fixed effect for factor $1, l \leq l \leq g$ levels of factor 1
β is fixed effect of factor $2, \quad l \leq k \leq b$ levels of factor 2
γ is the interaction
r replicates

Hypotheses tested by ANOVA:

1) Does the effect of one factor on the response variable(s) depend on level of the other factor?
H_{0} : There is no interaction between Factor 1 and Factor 2

$$
\mu_{l k}-\mu_{l^{\prime} k}-\mu_{l k^{\prime}}+\mu_{l^{\prime} k^{\prime}}=0
$$

2) Do the levels of Factor 1 differ in the effects on the response variable(s)
H_{0} : There is no main effect of Factor 1 on the response

$$
\mu_{1 .}=\mu_{2 .}=\cdots=\mu_{p}
$$

3) Do the levels of Factor 2 differ in their effects on the response variable(s)

$$
\mu_{1.1}=\mu_{\cdot 2}=\cdots=\mu_{\cdot p}
$$

ANOVA Table \& Variance Decomposition

In other words

| $E\left(y_{l k}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$=|$| μ |
| :---: |
| Mean
 Response |

ANOVA in Matrix Notation

- Regardless of the complexity of the ANOVA model, we can express it in matrix notation

$$
\mathbf{y}=\mathbf{X} \beta+\varepsilon
$$

- \mathbf{X} is a matrix of 0 's and 1 s that follows the experimental plan and its' linear model

The General Linear Model

$$
y=X b+e
$$

| y is the column vector of |
| :---: | :---: |
| responses for N |
| individuals |\quad| \boldsymbol{X} is the $(\mathrm{N} \times \mathrm{r})$ "design |
| :---: |
| matrix" |

GML vs. Multiple Regression

- The multiple regression limitations:
- It can be used to analyze only a single dependent variable
- It cannot provide a solution for the regression coefficients when the X variables are not approx linearly independent (the inverse of X'X therefore does not exist).
- These restrictions can be overcome by transforming the multiple regression model into the general linear model.

GML vs. Multiple Regression

- The general purpose of multiple regression is to quantify the relationship between several independent (or predictor) variables (X) and one dependent (or response) variable (Y).

$$
Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}+\ldots+b_{k} X_{k}
$$

- There are k predictors (X) and the regression coefficients $\left(b_{1} \ldots b_{k}\right)$ represent the independent contributions of each independent variable to
the prediction of the dependent variable, i.e., X1 is (partially) correlated with the Y variable, after controlling for all other independent variables.
- Example: we can find a significant positive correlation between brain voiume and height in the population (i.e., short people have smaller brains). Let's add the variable Gender into the multiple regression women, on the average have smaller head-size than men: they are also shorter on the average than men. Thus, after we remove this gender difference by entering Gender into the equation, the relationship between Brain Volume and height may disappear, as brain volume may not make any unique contribution to the prediction of height, above and beyond what it shares in the prediction with variable Gender. I.e., controlling fo
the variable Gender, the partial correlation between brain volume and the variable Gender, the partial correlation between brain volume and
height is zero.

GML

- The general linear model differs from the multiple regression model is in terms of the number of dependent variables that can be analyzed. The Y vector of n observations of a single Y variable can be replaced by a Y matrix of n observations of m different Y. variables (in fact replaced with linear combinations of responses).
- Similarly, the \mathbf{b} vector of regression coefficients for a single \mathbf{Y} variable can be replaced by a b matrix of regression coefficients, with one vector of b coefficients for each of the m dependent variables.
- These substitutions yield what is sometimes called the multivariate regression model - the matrix formulations of the multiple and multivariate regression models are identical, except for the
number of columns in the \mathbf{Y} and \mathbf{b} matrices.
- The method for solving for the \mathbf{b} coefficients is also identical, that is, m different sets of regression coefficients are separately found for the m different dependent variables in the multivariate regression model.

GML - Multiple Regression

- The multiple regression model in matrix notation then can be expressed as

$$
Y=X b+e
$$

b is a column vector of 1 (for the intercept) $+k$ unknown
regression coefficients. Recall that the goal of multiple regression is to minimize the sum of the squared residuals. Regression coefficients that satisfy this criterion are found by solving the set of normal equations

$$
\mathbf{X}^{\prime} \mathbf{X b}=\mathbf{X}^{\prime} \mathbf{Y}
$$

- If the X variables are linearly independent (i.e., they are nonreaundant, yielding an $\mathbf{X} \mathbf{X}$ matrix which is of full rank) there is a unique solution to the normal equations.
- Premultiplying both sides of the matrix formula for the normal equations by the inverse of $\mathbf{X} \mathbf{X}$ gives

$$
\left(X^{\prime} X\right)^{-1} X^{\prime} X b=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \quad \Rightarrow \quad b=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

- 3 basic matrix operations
- matrix transposition, exchange the rows and columns of a matrix
- matrix multiplication, sum of the products of the elements for each row and column combination of two conformable
- matrix inversion, which involves finding the matrix equivalent of a

GML

- The general linear model also differs from the multiple regression model in its ability to provide a solution for the normal equations when the X variables are not linearly independent and the wherse of $\mathbf{X} \mathbf{X}$ does not exist. Redundancy of the X variables may be incidental (e.g., two predictor variables are perfectly correlated), accidental (e.g., two copies of the same variable) or designed (e.g., indicator variables with exactly opposite values might be used in the analysis, as when both Male and Female predictor variables are used in representing Gender)
- Finding the regular inverse of a non-full-rank matrix is analogous to finding the reciprocal of 0 in ordinary arithmetic. No such inverse or reciprocal exists because division by 0 is not permitted. This problem is solved in the general linear model by using a proneralized inverse of the $\mathbf{X}^{\prime} \mathbf{X}$ matrix in solving the norma equations. A generalized inverse (\mathbf{A}^{-}) is any matrix A that satisfies
$A A \cdot A=A$

GML

- A generalized inverse is unique and coincides with the regular inverse if the matrix \mathbf{A} is full rank.
- A generalized inverse for a non-full-rank matrix can be computed by zeroing the elements in redundant rows and columns of the matrix
- Suppose that an $\mathbf{X} \mathbf{X}$ matrix with r non-redundant columns is

$$
X^{\prime} X=\left[\begin{array}{l}
A_{11} \mid A_{21} \\
A_{12} A_{22}
\end{array}\right]
$$

- where \mathbf{A}_{11} is an r by r matrix of rank r. Then the regular inverse of A11 exists and a generalized inverse of $\mathbf{X}^{\mathbf{X}} \mathbf{X}$ is

$$
\left(X^{\prime} X\right)^{-}=\left[\begin{array}{l}
A_{11} \mid O_{21} \\
O_{12} O_{22}
\end{array}\right]
$$

- where each $\mathbf{0}$ (null) matrix is a matrix of 0 's (zeroes) and has the same dimensions as the corresponding A matrix.

$$
\begin{aligned}
& \text { GML } \\
& \text { - There are infinitely many generalized inverses of a non-full-rank X'X } \\
& \text { matrix. Thus, infinitely many solutions to the normal equations. So, the } \\
& \text { regression coefficients can change depending on the particular generalized } \\
& \text { inverse chosen for solving the normal equations. However, many results } \\
& \text { obtained using the general linear model have invariance properties (e.g., } \\
& \text { correlation is linearly invariant). } \\
& \text { - Example: If both Male and Female predictor variables with exactly opposite } \\
& \text { values are used in an analysis to represent Gender, it is essentially arbitrary } \\
& \text { as to which predictor variable is considered to be redundant (e.g., Male can } \\
& \text { be considered to be redundant with Female, or vice versa). } \\
& \text { The predicted values and the corresponding residuals for males and females } \\
& \text { will be unchanged -- no matter which predictor variable is considered to be } \\
& \text { redundant, no matter which corresponding generalized inverse is used in } \\
& \text { solving the normal equations, and no matter which resulting regression } \\
& \text { equation is used for computing predicted values on the dependent } \\
& \text { variables. Using the general linear model, finding a particular arbitrary } \\
& \text { solution to the normal equations is primarify a means to accounting for } \\
& \text { responses effects on the dependent variables. }
\end{aligned}
$$

GML

- Overparameterized model of categorical predictors.
- The second basic method for recoding categorical predictors is the indicator each group identified by a categorical predictor variable. Example, females might be assigned a value of 1 and males a value of 0 on a first predictor variable identifying membership in the female Gender group. Males would then be assigned a value of 1 and females a value of 0 on a second predicto variable identifying membership in the male Gender group
- This method of recoding categorical predictor variables will almost always leac to $\mathbf{X X}$ matrices with redundant columns, and thus require a generalized inverse for solving the normal equations. As such, this method is often called because it results in more columns in the $\mathbf{X} \mathbf{X}$ than are necessary for determining the relationships of categorical predictor variables to responses on the dependent variables.
- The general linear model can be used to perform analyses with categorical preaictor variables whids. coded using either Standard of Overparameterized models.

GML - Calculations

- The general linear model can be expressed as
$\mathrm{YM}=\mathrm{Xb}+\mathrm{e}$
Example: Y1=Systolic Y2 $=$ Diastolic Pressure $\mathrm{MAP}=(\mathrm{Y} 1+2 * \mathrm{Y} 2) / 3$ Mean Arterial Pressure
- Here $\mathbf{Y}, \mathbf{X}, \mathbf{b}$, and e are multivariate response, Desing matrix, parameter matrix, resiaual matrix and Mis an $m \times s$ matrix of coefficients defining s linear transformation of the dependent variables. The normal equations are

$$
X^{\prime} X^{\prime}=X^{\prime} Y M
$$

- and a solution for the normal equations is given by $\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right) \cdot \mathbf{X}^{\prime} \mathbf{Y M}$
- The inverse of $\mathbf{X}^{\mathbf{}} \mathbf{X}$ is a generalized inverse if $\mathbf{X}^{\mathbf{}} \mathbf{X}$ contains redundant columns
- Allows for analyzing linear combinations of multiple dependent variables, add a method for dealing with redundant predictor variables and recoded categorical predictor variables, and the major limitations of multiple
regression are overcome by the general linear model.

GML

- In multiple regression model, the X variables are continuous. The general inear model is frequently applied to analyze
- ANOVA or MANOVA design with categorical predictor variables
- ANCOVA or MANCOVA design with both categorical and continuous predictor variables
- Multiple or multivariate regression design with continuous predictor variables.
- Example: Gender is clearly a nominal level variable. There are two basic predictor variables, and analyzed using the general linear model.
- Standard model of categorical predictors. Males and females can be assigned any two distinct values on a single predictor variable. Typically, the values corresponding to group membership are chosen to facilitate interpretation of the regression coefficient associated with the predictor variable. For example, the two groups are assigned values of 1 and -1 on the predictor variable, so
that if the regression coefficient for the variable is positive, the group coded as 1 on the predictor variable will have a higher predicted value (i.e., a higher group mean) on the dependent variable, and if the regression coefficient is negative, the group coded as-1 on the predictor variable will have a higher predicted value on the dependent variable. An advantage is that since each group is coded with a value one away from zero - helps in interpreting the magnitude of differences in predicted values between groups, because for each unit change in the predictor variable.

GML - Calculations

$$
[Y]_{M N[}[M]_{M S}=[X]_{M X X}[b]_{N \times 1}+[\varepsilon]_{\times N 1}
$$

GML - ANOVA example

- A design with a single categorical predictor variable is called a one-way ANOVA design. For example, a study of 4 different populations (NC, MCI, AD-1, AD-2), with four levels for the factor disease.
- In general, consider a single categorical predictor variable A with 1 case in each of its 4 categories. Using the Standard model coding of A into 3 quantitative contrast variables, the matrix \mathbf{X} defining the between design is

$$
\left.X=\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right\} \underbrace{X_{1}}_{X_{0}} x_{X_{2}} \quad X_{3} .\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & -1 & -1 & 0 \\
1 & -1 & -1 & -1
\end{array}\right]
$$

- That is, cases in groups A1, A2, A3 and A4 are all assigned values of 1 on X0 (the intercept), the case in group A1 is assigned a value of 1 on X1 and a value 0 on other $X^{\prime} s$, the case in group A2 is assigned a value of 1 on $X 2$ and a value 0 on other X's, and the case in group A3 is assigned a value of -1 on X1 and X2.

Least Squares Estimates of b

$$
b=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

Elaboration of Matrix Elements

The transpose of the parameter vector is $(\mathrm{r} \times 1)$:
$b^{\prime}=\left\lfloor\tau_{1} \cdots \tau_{g}, \beta_{1} \cdots \beta_{b}, \gamma_{11} \cdots \gamma_{1 b} \cdots \gamma_{g 1} \cdots \gamma_{g b}, \mu\right\rfloor$
$y_{l k r}=\mu+\tau_{l}+\beta_{k}+\gamma_{l k}+e_{l k r}$

- One-way designs with an equal number of cases in each group, Standard Model coding yields X1 ... Xk variables all of which have means of 0 .
GML - ANOVA example
- Using the Underparameterized model to represent A, the X matrix defining the between design is just

$$
\left.X=\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right\} \underbrace{}_{X_{0}} X_{1} X_{2} \begin{array}{lllll}
X_{3} & X_{4}
\end{array}\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- The \mathbf{X} matrix serves two purposes:
- Specifies the coding for the levels of the original predictor variables on the

X variables used in the analysis

- Shows the between variable design.

Design Matrix

$$
A=\left[\begin{array}{cccc}
1 \cdots 0 & 1 \cdots 0 & 1 \cdots 0 \cdots 0 \cdots 0 & 1 \\
\cdots & \cdots & \cdots & \cdots \\
1 \cdots 0 & 0 \cdots 1 & 0 \cdots 1 \cdots 0 \cdots 0 & 1 \\
\cdots & \cdots & \cdots & \cdots \\
0 \cdots 1 & 1 \cdots 0 & 0 \cdots 0 \cdots 1 \cdots 0 & 1 \\
\cdots & \cdots & \cdots & \cdots \\
0 \cdots 1 & 0 \cdots 1 & 0 \cdots 0 \cdots 0 \cdots 1 & 1
\end{array}\right]_{N X r}\left[\begin{array}{c}
b \\
\tau_{1} \\
\cdots \\
\tau_{s} \\
\beta_{1} \\
\cdots \\
\beta_{k} \\
\gamma_{11} \\
\cdots \\
\cdots \\
\gamma_{k s}
\end{array}\right]_{r \times 1}
$$

Each column of the design matrix corresponds with the appropriate element of the parameter vector.

The Population-based Regression Model

$$
E\left(Y / X_{i}\right)=\beta_{0}+\beta_{1} X_{i}
$$

β_{0}, β_{1} are unknown, but fixed parameters
β_{0}, - intercept
β_{1} - slope

$$
\begin{equation*}
Y_{i}=E\left(Y / X_{i}\right)+\varepsilon_{i} \tag{8}
\end{equation*}
$$

Assumptions of ANOVA

- Normal distribution
- Independence of residuals
- Homoscedasticity of Variances
- Variances are \approx Equal

Properties of Population Model

- Postulates the condition means are linear functions of the X_{i}.
- The β 's are known as regression coefficients.
- The intercept gives $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=0)$
- The slope describes the change in Y for a fixed unit
change in X
- Most widely applied technique for assessing relationships among variables
- Used to investigate relationship between a response (dependent) variable and one or more predictor (independent) variables.
- Regression analysis is concerned with estimating and predicting the population mean value of the response variable Y on the basis of known (fixed) values of one or more predictor (or explanatory) variable(s)

Regression Analysis

Sample-based Regression Model

$$
E\left(Y_{i} / X_{i}\right)=b_{0}+b_{1} X
$$

or

$$
Y_{i}=b_{0}+b_{1} X_{i}+e_{i}
$$

How to estimate b_{0} and b_{1}.

- Use Ordinary Least Squares approach.
- i.e., minimize error sum of squares.

$$
\text { minimize } \sum_{i=1}^{n} \hat{e}_{i}
$$

ANOVA Table for Regression

Source of Variation	$\left[Y_{i}-\bar{Y}\right]$	Sum of Squares	DF	Mean Square
Total	$\sum y^{2}$	$\mathrm{n}-1$		
Linear Regression	$\hat{Y}_{i}-\bar{Y}$	$\frac{\left(\sum x y\right)^{2}}{\sum x^{2}}$	1	Regression SS/ Regression df
Residual	$Y_{i}-\hat{Y}$	Total SS- Regression SS	$\mathrm{n}-2$	Residual SS/ Residual df

Matrix Notation for Linear Regression

$$
Y=X \beta+\varepsilon
$$

We can estimate the regression parameters using the simple expression:

$$
\hat{\beta}=\left[X^{\prime} X\right]^{-1} X^{\prime} y
$$

Example of am fMRI Study

Advantages of General Linear Model (GLM)

- Can perform data analysis within and between subjects without the need to average the data itself
- Allows you to counterbalance random stimuli orders
- Allows you to exclude segments of runs with artifacts
- Can perform more sophisticated analyses (e.g., 2 factor ANOVA with interactions)
- Easier to work with (do one GLM vs. many Ttests and/ or correlations)

General Linear Model Approach

Options for Multiple Comparisons

- Statistical Correction
- Gaussian Field Theory (Worsley, et al.)
- False discovery rate (Taylor, et al.)
- Bonferroni (Dinov, et al.)
- Tukey (Mills, et al.)
- Cluster Analyses (Müller, et al.)
- ROI Approaches (e.g., cCB Probabilistic Atlas; Mega, et al.)

Why Use
 Nonparametric Statistics?

- Parametric tests are based upon assumptions that may include the following:
- The data have the same variance, regardless of the treatments or conditions in the experiment.
- The data are normally distributed for each of the treatments or conditions in the experiment.
- What happens when we are not sure that these assumptions have been satisfied?

