Linear Modelin . :
S prosanlie Theoy g Fitted Value and Residual
= Axioms
= Basic Principles for probability modeling and computation
= Law of Total Probability & Bayesian Theorem .
= Data Summaries and EDA The fitted value of y, denoted y
= Distribution
l(;wttp://www..socr.ucla.e(lu/htmIS/SOCR7D|Str|buthS.htm

E"p@riments & Demos and the residual terms :
APC - &8 c S

(http://www.socr.ucla.edu/htmls/SOCR_Experiments.html y-9y=y-Xp

Statistical Inference Since population & is unknonw, we estimate o’ from sample :
Hypothesis Testing & Confidence intervals 2 i

- Parameter )= 28y

= Parametric vs. Non-parametric inference
(http://www.socr.ucla.edu/htmls/SOCR_Analyses.html)

e CLT &LLN

Linear modeling

« Simple linear regression, Multiple linear regression

= ANOVA & GLM

Multiple Regression in Matrix Form Interpreting Multiple Regression Model

vi=Bo+ Bix, + Byx,, + ¢, For a multiple regression model :

Y= Bo+ Bix, + Byx,, +e,

. should be interpreted as change in y when 1 unit
change is observed in x, and x, is kept constant. This
statement is not very clear when x; and x, are

= Misunderstanding: g, always measures the effect of x;
on E(y), independent of other x variables.

= Misunderstanding: a statistically significant g value
establishes a cause and effect relationship between x
andy.

: : Properties of Coefficient Estimate
Multiple Regression and LSE £
The general multiple regress model
B+e where V(e)=0c" V(
o0 %))

It can be shown that:
o) = (X'X)"

pxp

: 6)=p,
Min SSE =7 (, X } E(/?’) Z )
= V()

Is based on
model

The LSE solution for B will be : assumptions,
) Why?

In the simplest case when there is only one X,




Properties of Coefficient Estimate Properties of Coefficient Estimate

= Proof
= Example:

00 0 0 0 0 0
00 0 0 0 0 0
00 0714 0225 0322-0313-0414-0.13
» 00 0225 0793 0.194-0.339-0.167-0.2
XX =100 0322 94 7 -0172 -0396
00 - 3 - 0551 0194 0128
-0414 -0167 -0396 0.194 0524 0.0141
0247 -0.216 0.128 0.0141 0.0366 |

Jrank =6

General Property of Matrices :Var(4,,,Y, ‘ar(Y, : j BB, £,,) =(00,00052,082,147,10520443)
Il”‘(/%):"([/“:l % ‘ _ - “‘ et the i ]““:)u“rzlly.m)n(‘ul/’ j , = (0-1100000)xb =
’ K‘\y(‘\ X) )= .v 4 K k = k'Var(b)k
XX) ): o’ (XX) te 6* ~s*(e) = MSE

and SSE =YY —b'X"Y =0.

Properties of Coefficient Estimate Confidence Intervals and Tests of Hypotheses for £'s

= Example: Suppose that

(110001007 . One -Vtalled test Two - tailed test
10100100 2 H,: =0 H,: B =0
10010100 1245 | B S0 0 .
10001010 5], H,:p ()or(/),<f)) H,:B#0

test statistic : # / here s = sample SD

-0339 -0.167 -0.24
-0.1 0396 -0216 ’
0194 0128 Rejection region :

-0414 -0167-0396 0.194 0524 0.0141
-0137 -0247 -0216 0128 00141 0.0366 | t>1,(ore<t,) [1]>1,,
t,,, isbased on [n-(p + 1)]df, p is number of independent variables in the model

Then:

Properties of Coefficient Estimate Two-way ANOVA

X ’>< X b =(X Y = Two treatment factors, with g and b levels
8x8 8x1 8x1 =]

There are 7 < /<glevels of factor 1

()

1 < k<blevels of factor 2
gb combinations of levels (4£)

N independent obsetrvations

[P R R R,




) Hypotheses tested by ANOVA:
Univariate Analysis of Variance N i

Two-way Fixed Effects Model with Interaction 1) Does the effect of one factor on the response

variable(s) depend on level of the other factor?
Hy: There is no interaction between Factor 1 and
The ANOVA model (Linear Model) can be written as: Factor 2
My = My = M + e =0

— 2) Do the levels of Factor 1 differ in the effects on the
y/kl e ll’l + T/ + ﬂk + 7/]/( + elkr response variable(s)

Hy: There is no main effect of Factor 1 on the
s the grand mean response
T is the fixed effect for factor 1, 1 <I<g levels of factor M =My == IU;L
3 i3 fixed effec et ) t levels T . X .
~|)‘1\ n,.L.d u{ku. of factor 2, levels of f 3) Do the levels of Factor 2 differ in their effects on
Y is the interaction the response variable(s)

r replicates
/Ll.l = /u,fl == Iu_p

ANOVA Table & Variance
The Expected Response Decomposition

Degfeas of

e F-ratlos

>
g

b g b
=2 B =2ru=2rx=0
k=1 I=1 k=1

are independent N(0, ¢?)

ANOVA in Matrix Notation
In other words

ss of the complexity of the ANOVA model, we can
s it in matrix notation
y=Xpte
ix of 0’s and 1s that follows the expetimental plan and

model




The General Linear Model

yis the column vector of Xis the (N x 1) “design
tespor for N ‘

POl matrix”
individuals

b is a vector of parameters eis a vector of

GML vs. Multiple Regression

The general purpose of multiple regression is to quantify the relationship
between several independ: (or predictor) variables (X) and one
dependent (or response) variable (Y).

+ by X, + X, + ...+ bX,

There are k predictors (X) and the regression coefficients (b,
represent the independent contributions of each independen
the prediction of the dependent variable, i.e., X1 is (partially)

e
add the variable Gender into the multiple

equation, this correlation would probably disappear. Th

women, on the a e, havi naller head- than men; they are a

shorter on the average than men. Thus, after we remove this gender

difference by entering Gender in he equation, the relationship between

Brain Volume and height may disapp: brain volume may not make

any unique contribution to the prediction of height, above and beyond

what it shares in the prediction with variable Gender. I.e., controlling for==

the variable Gender, the partial correlation between brain volume and
height is zero

GML - Multiple Re

The multiple regression model in matrix notation then can be
expressed as
Y=Xb+e
b is a column vector of 1 (for the intercept) + k unknown
regression coefficients. Recall that the goal of multip
is to minimize the sum of the squared residuals. Regression
coefficients that satisfy this criterion are found by solving the set
of normal equation
X'Xb = XY
If the X variables are linearly independent (i.e., they are
nonredundant, yielding an X"X matrix which is of full rank) there is
a unique solution to the normal equations.
Premultiplying both sides of the matrix formula for the normal
equations by the inverse of X'X gives
(XX)IXXb = (XX)IXY & b= (XX)IXY

3 basic matrix operations
= matrix transposition, exchange the rows and columns of a matrix
= matrix multiplication, sum of the products of the elements for

each row and column combination of two conformable

matrix inversion, which involves finding the matrix equivalent of a*

numeric lecmlocql that is, the matrix that satisfies

GML vs. Multiple Regression

The multiple regression limitations:

It can be used to analyze only a single dependent
variable

It cannot provide a solution for the regression
coefficients when the X variables are not approx
linearly independent (the inverse of X'X therefore
does not exist).

These restrictions can be overcome by transforming

the multiple regression model into the general linear
model.

GML

The general linear model differs fror

model is in terms of the number of d

be analyzed. The Y vector of n observations of a smgle Y variable
can be replaced by a Y matrix of n observations of m different Y
variables (in fact replaced with linear combinations of responses).

Similarly, the b vector of regression coefficients for a single Y
variable can be replaced by a b matrix of regression coefficients,
with one vector of b coefficients for each of the m dependent
variables

These substitutions yield what is sometimes called the multivariate
regression model - the matrix formulations of the multiple and
multivariate regression models are identical, except for the
number of columns in the Y and b matrices.

The method for solving for the b coefficients is also identical, that
is, m different sets of regression coefficients are separately found
for the m different dependent variables in the multivariate
regression model.

GML

The general linear model also differs from the mu

model in its ability to

when the X variables ar

inverse of X"X does not exist. Redundancy of the X variables may
be incidental (e.g., two predictor variables are perfectly
correlated), accidental (e.g., two copies of the same variable) or
designed (e.g., indicator variables with exactly opposite values
might be used in the analysis, as when both Male and Female
predictor variables are used in representing Gender).

Finding the regular inverse of a non-full-rank matrix is analogous
finding the reciprocal of 0 in ordinary arithmetic. No such inverse
or reciprocal exists because division by 0 is not permitted. This
problem is solved in the general linear model by using a

lized inve of the X"X matrix in solving the normal
equatlons. A generalized inverse (A°) is any matrix A that satisfies

AAA=A




GML

A generalized inverse is unique and coincides with the regular
inverse if the matrix A is full rank

A generalized inverse for a non-full-rank matrix can be computed by
zeroing the elements in redundant rows and columns of the matrix.

Suppose that an X'X matrix with r non-redundant columns is
partitioned as

where A,, is an r by r matrix of rank r. Then the regular inverse of
Al1 exists and a generalized inverse of X'X is

where each O (null) matrix is a matrix of 0's (zeroes) and has the
same dimensions as the corresponding A matrix.

GML

are infinitely many generalized inverses of a non-full-rank X*X
. Thus, infinitely many solutions to the normal equations. So, the

inverse chosen for solving the normal equations. However, many results
obtained using the general linear model have invariance properties (e.g.,
correlation is linearly invariant).

If both Male and Female predictor variables with exactly opposite
to represent Gender, it is essentially
as to which predictor variable is considered to be redundant (e.g.,
be considered to be redundant with Female, or vice versa).

The predicted values and the corresponding residuals for males and females
will be unchanged -- no matter which predictor variable is mr1<|dere(l to be
redundant, no matter which corresponding generalized inverse is
solving the normal equations, and no matter which resulting regres:
equation is used for computing predicted values on the dependent
ariables. Using the general linear model ding a particular arbitrary
] a means to accounting for
effects on the 5

GML

In multipl model, the X variables are continuous. The general
linear model is frequently applied to analyze
= ANOVA or MANOVA design with catego pred r variabl
= ANCOVA or MANCOVA design with both categorical and continuous predictor
bles
Vultiple or multivariate regression design with continuous predictor variables.
Gender is clearly a nominal level variable. There are two basic
methodL by which Gender can be coded into one or more (non-offensive)
predictor variables, and maly7ed using the general linear model.
tande ml model uf oredictors. Males and females can be assigned
predictor variable. Typically, the values
acilitate interpretation of

nclat@d\ ith the predictor variable. F ample,

the two grour gned values of 1 and -1 on the predictor variable, so
that if the regression coefficient for the variable is positive, the group coded
1 on the predictor variable will have a higher predicted value (i.e., a higher
up mean) on the dependent variable, and if the regression coefficient is
negative, the group LOdF‘d as -1 on the predictor variable will have a higher
predi value on the dependent variable. An advant: that since each
group is coded with a value one away from zero - helps in interpreting the
magnitude of differences in predicted values between grou L
g reflect the units of change in the de
for each unit change in the predictor variable.

GML

The second basic method for recoding categorical predictors is the indicator
varlable approach. In th method pamte predmtor val dble is coded for
f

m|ght be a igned a value of 1 and males a value of 0 on a fir
variable identifying membership in the female Gender g

gned a value of 1 and females a value of 0 on a second pledl(tul
variable identifying membership in the male Gender group.

This method of recoding categorical predictor variables will almost always lead
' indant columns, and thus require a generalized
for aOIVlﬂQ the normal equations. As such, this method is often called
|zed mud@l for repres g

detmmmmg thp relatlonkhlp\ of cate gorical mmm‘m variables to responses
endent variabl

The general lin
| \/dnable‘ which ale mded using elthel Stanm
ameterized models.

GML - Calculations

- § ~ . Example: Y1=Systolic
The general linear model can be expressed as Y2=Diastolic Pressure
MAP=(Y1+2*Y2)/3

YM=Xb + e ean Arterial Pressure

, b, and e are multivariate respo ing matrix, parameter
matrix, residual matrix and M of coefficients defining s
linear transformation of the de; de bles. The normal equations are

b = X'YM
and a solution for the normal equations is given by b =
The inverse of X'X is a generalized inverse if X'X contains redundant columns

Allows for analyzing linear combinations of multiple d
a method for dealing with redundant predictor val
C r variables, and the major limitations of multlple
gression are overcome by the general linear model.

GML - Calculations

nxm M mxs — X]nxk [b o1 +1€ o1




GML — ANOVA example Least Squares Estimates of b
A design with a single categorical predictor variable is called a one-way ANOVA
design. For example, a study of 4 different populations (NC, MCI, AD-1, AD-2),
with four levels for the factor disease.
In general, consider a single categorical predictor variable A with 1 case in
each of its 4 categories. Using the Standard model coding of A into 3
quantitative contrast variab the matrix X defining the between design is

-1
xx) 1 xy

That is, ¢ in gro 1, A igned values of 1 on Xi
(the intercept), the in group Al is assigned a value of 1 on X1 and a value
0 on othel the e in group A2 igned a value of 1 on X2 and a value
0 on other and the case in group igned a value of -1 on X1 and_

GML — ANOVA example 4 Elaboration of Matrix Elements

If there were 1 case in group Al group
A2, 1 case in group A3, and 3 ca:
the X matrix would be

st subscript for A identi the group and the second gives the replicate
ally replicates are not shown when d ibing ANOVA designs

One-way designs with an equal number of cases in each group, d
Model ling yields X1 ... Xk variables all of which have means of 0.

GML — ANOVA example DeSign Matrix

= Using the Un rameterized model to represent A, the X matrix defining the
between design is just

00
10
01

= The X matrix serves two purposes:

pecifies the coding for the levels of the original predictor variables on the 0---1 0---1 0---0---0--- Nxr
variables used in the analy: X7

hows the between variable design. ich column of the design matrix corresponds with the

appropriate element of the parameter vector.




Assumptions of ANOVA
P Full Model

s Normal distribution
= Independence of residuals
= Homoscedasticity of Variances

= Variances are ~ Equal

s referred to as an: Error or Residual

Regression Analysis Properties of Population Model

= Most widely applied technique for assessing relationships among Postulates the condition means are linear functions of
variables ,

) ) ) ) ) the X..

= Used to investigate relationship between a response (dependent) )
variable and one or more predi i -nde : ['he ’s are known as regression coefficients.

= Regression analysis is concerned with estimating and predicting
the population mean value of the response variable Y on the - i R . .
basis of known (fixed) values of one or more p o ((ox I'he slope describes the change in Y for a fixed unit

planatory) vatiable(s)

The interc gives E(Y | X=0)

nge in X

The Population-based Regression Model Assumptions of Regression Analy

E(Y/Xl ) = ﬁo + ﬂle = Y’s are normally distributed

s X’s are fi

= Residuals (€;) are normal, independent random
= vatiables.
B, B, are unknown, but fixed parameters :
B,, - intercept

B,— slope

Y, =E(Y/X




Matrix Notation for Linear

Sample-based Regression Model
Regression

E(Y;/X,)=by+b X Y:Xﬂ+8

L We can estimate the regression parameters using

the simple e

: arn TMRI
How to estimate b, and i

» Use Ordinary Least Squates approach.

* ie., minimize error sum of squares.

A2 @ uss e o
121 31 41 51 61 71 81 91 101111121

n

minimize Ze i

of General Lincar Model
ation with squ wave function
fficient describes match bef 1 observation and expectation, -1 <R < 1. R is “almost”

t

~Limited by choice of HDR
~Poorly chosen HDR can significantly impair po
ariation around HDR
ability contributing to noise (e.g., scanner drift) - suct

variability is usually e
/

1
removed in prepro steps
*Does not model interactions be St vents

ANOVA Table for Regression Form of the GLM

Model Functions Model Functions

SOUCE OfF S Vican:

N Time Points
N Time Points




Implementation of GLM in SPM

Model Parameters

The Problem of Multiple Comparisons

et o

P
1 i-i;-‘ X

Original fMRI data

The Problem of Multiple
Comparisons

General Linear Model for fMRI

of
plus residu
(what predictors P
can’t account for).

n X
b m I{Un
+ +
. By x .
fMRI signal Trial residuals
+
5 % m Group (AbYoung)

+

Adapted from Biai

Advantages of General Linear Model (GLM)

Can perform data
without the need to
average the data itself
Allows you to counterbalance
orders
Allows you to

Can perform more

(e.g., 2 factor ANOVA with interactions)
Easier to work with (do one GLM vs. many T-
tests and/or correlations) b

image data G [_M ameter Estimates

smoothing <
= design

matrix

corrected p-values

realignment & =
8 random field theory

motion
correction




General Linear Model Approach

Voxel timeseries GLM design matrix  parameters error vector
data vector Examp|
Stimulus

Subject
Run
Trial
Group
+
ROI

Hand

Hemi

| Tissue

Options for Multiple Comparisons

= Statistical Correction
e Gaussian Field Theory (Worsley, et al.)
» False discovery rate (Taylor, et al.)
» Bonferroni (Dinov, et al.)
e Tukey (Mills, et al.)
= Cluster Analyses (Muller, et al.)
= ROl Approaches (e.g., CCB Probabilistic Atlas; Mega, et al.)

Why Use
Nonparametric Statistics?

Parametric tests are based upon assumptions that
may include the following:

= What happens when we are not sure that these
assumptions have been satisfied?
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