Markov’s & Chebyshev’s Inequalities

n . (Markov was a student of Chebyshev)

If Y>20& d>0 = P()"ZJ)S@

|' d, if Y>d
I 0, otherwise

Then: E(Y)>E(X)>dxP{Y>d|

Since, if X =1 Note Y >0, X >0

LetY = ‘X —E(X)| andd =k® withk >0=
P(Y>d)=P(X - EX)>k?) <

P( X -E(X) 2 k) < %:P(\x-u(xn; kxn)i%

Coefficient of Variation

= Ratio of the standard deviation to the mean,
expressed as a percentage

= Measurement of relative dispersion

cr.=2(100)
Y7,

Outline
Probability Theory
xioms
Basic Principles for probability modeling and computation
Law of Total Probability & Bayesian Theorem
Data Summaries and EDA
Distributions
NW.S!

Statistical Inference
Parameter Estimation
Hypothesis Testing & Confidence intervals
Para(metric vs. Non-parametric inference

CLT

Linear modeling
Simple linear regression, Multiple linear regression
ANOVA & GLM

Chebyshev’s Theorem

= Applies to all
distributions, where mean

NEies <) num o
Semekml Distance from alues Falling

Deviations the Mean Within Distance

) UE20 1-1/22=0.75
UE3o 1-1/32=10.89
utdo

Minimum Pro

1-1/42

Coefficient of Variation - an
example

s A is a characteristic of process,
population or distribution
» E.g., mean, 15t quartile, SD, min, max, range

skewness, 97t percentile, etc.

= An is an abstract rule for
calculating a quantity (or parameter) from
sample data.

= An is the value obtained when real
data are plugged-in the estimator rule. (s

)

>
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= E.g., We are interested in the
(parameter) of a cognitive experiment. The
represents an estimator we can use,
where as the (value of the) for a
particular dataset is the estimate (for the
parameter).

. = 1
parameter = 4, ; estimator=Y = NZ Y,

Data: Y ={0.1896, 0.1913, 0.1900}
estimate =y = 13(0.1896+0.1913+0.1900)

¥ =0.1903. How about 3 = 3 (0,1806 +0.1913 + 0.1900)

Parameter (Point) Estimation

se we flip a coin n=8 times and observe
I, H,H,T,H,H}. Estimate the value p = P(H).

likelihood function.

\

1“" [i‘ +5xIn(p)+3xIn(l- p)
\\s))

‘|+5><1n(p)+3- lnllfp)l
) D)

dp

S1-p)-3p=0=p

(Log)Likelihood Function

Suppose we have a sample {X X, 1ID D6 with
probability density function p = p ). Then the joint
density p({X|, ..., X,,} | @)is a function of the
(unknown) parameter 6.

Likelihood function /(8| {X,, ..., X, })=p({X,,....X,}| &)
Log-likelihood L(H{X,, ..., X, })=Log /(A{X,, ..., X,})
Maximum-likelihood estimation (MLE):

Suppose {X,, ..., X,} ID N(u, 6?), pis unknown. We
estimate it by: MLE(p)=p ""ﬂ\rg]\luxul_(m ({2

Parameter (Point) Estimation

of Proposing Point Estimators
(MOMs):
Set your k parameters equal to your first k moments.
Solve. (e.g., Binomial, Exponential and Normal)
(MLEs):
1. Write out likelihood for sample of size n.
. Take natural log of the likelihood.
ake partial d atives with respect to your k parameters.
k that a maximum exists(f ”>0).

| 0 and solve for MLEs. e.g.,
Binomial, Exponential and Normal

0= (”;LL) =(05-1)+(03-)+(0.6— ) +(0.1- )+ (02— p) =
4

=s5u+1.7=>pu=034=

(Log)Likelihood Function

of IID N(p, 62), pis unknown. We estimate it
Max, L(p| ({X,-. . X, })

Ay 7(“_’ 71[1)

=14

20°

n

N 5 DR
S 0=2%"(x, — 1) & 1=~

,
o

X; /
i/

/n’

Similarly show that: MLE (o) = iz \ i ‘u)j{l/_ I
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(Log)Likelihood Function

Suppose {X;, ..., X i A), A is unknown.
Estimate MLE(L)=A

:—/M + Log(A)X"

S 2=

Hypothesis Testing -
the Likelihood Ratio Principle

Let {X,, ..., X} be a random sample from a density f(x; p
p is some p(,wpu]atwn parameter. Then the joint density is

Testing: H: p is in Q vs. H,: p is in €),, where Q=0

Find max of L(p) in Q. max L(p)
Find max of L(p) in Q2,. X)) = peQ
e . ax L

Find likelihood ratio l:]e];; (P)

Reject H,, if likelihood-ratio statistics A is small (A

Hypothesis Testing -
the Likelihood Ratio Prmc1ple Example

Testing: H : u>0is in Q vs u/:() Ru,]u,l H, if
likelihood- 1atm stics <k

Let P(Type I) = a
ty~1/h, ~t,
eonc—sumpls T-test

max| €
u=0

Hypotheses

We cannot rule in a hypothesized value for a
parameter, we can only determine whether there is
evidence fo rule out a hypothesized value.

The null hypothesis tested is typically a ske
reaction to a research hypothesis

Hypothesis Testing -
the Likelihood Ratio Principle Example

).5,0.3,0.6,0.1,0.2} be IID N(u, 1) = f(x
n

(x—p)
2

f(x)=

ellhood mtlo stati small (A<k)
In(numer) = quadratic in p!
In(deno) = quadratic in p!
= Maximize both - find ratio

Inference and Hypothesis Testing

Identify your design & appropriate statistical technique

Validate your Data/Model Assumptions
Calculate a Test Statistic (Example: z,)
Sp a Rejection Region (E3

Inference: The null h rejected iff the computed
value for the statistic falls in thc‘ rejection region

12



Type | and Type Il Errors

a =Pr{Reject H(,‘H(, is true}
f = Pr{Fail to Reject HO‘HO is False}

* The value of a is specified by the experimenter

1 function of o, N, and & (the
en the null hypothesized mean and the true
mean). For a two sided hypothesis test of a normally
distributed population
M]—(D[—Zu +ﬂ]
2 o |

B=0|Z, +

7 o

« It is not true that o =1- B (RHS=this is the test power!)

Type |, Type Il Errors & Power of Tests

Suppose the true MMSE score for AD subjects is ~ N(23, 12).

A new cognitive test is proposed, and it’s assumed that its values are ~
N(25, 12). A sample of 10 AD subjects take the new test.

=P(fail to reject H,|H, is false)=
Note: N(23,12/10)) when it’s given that X ~N(23,12))
Standardize: Z = (23.4 - 23)/(1/10) = 4.0.

=P(fail to reject H,|H, is false)=

How does Power(Test) depend on:

« Sample size, n=10: n-increase =» power increase

« Size-of-studied-effect: effect-size increase = power increase
« Type of Alternative hypothesis: 1-sized tests are more powerful

Another Example -Type | and Type Il Errors

: p=0.75, H;: p>0.75. X = number of test with no AD findings
in n=20 experiments.
X~Binomial(20, 0.75). Rejection region R={18, 19, 203.
Find o =P(Type |) = P(X>=18 when X~Binomial(20, 0.75)).
Use SOCR resource =
Find B(p=0.85) =P (Type Il) =

« P(fail to reject H, | X~Binomial(20, 0.85))=P(X<18 |
X~Binomial (20, 0.85))

 Use SOCR resource = B =0.595=>Power of test = 1- B =0.405
Find B(p=0.95) =P (Type Il) =

 P(fail to reject H, | X~Binomial(20, 0.95))=P(X<18 |
X~Binomial(20,0.95))

» Use SOCR resource = B =0.076 =»Power of test=1- 3 =0

Type |, Type Il Errors & Power of Tests
Suppose the true MMSE score for AD subjects is ~ N(23, 12).

A new cognitive test is proposed, and it’s assumed that its
values are ~ N(25, 12). A sample of 10 AD subjects take the
new test.
Hypotheses are: Hy: piest=25 VS. H,: pier<25 (One-sided, more
DOWET)

= P(false-positive, Type I, error) = 0.05.

- _ - _ *
for o is Z o= -1.64. Thus, Xa¥8_ .. - = Z ritical O+1L

X8 _itical = 25-1.64=23.4, And our conclusion, from {X;, ..., X;o}
which yields Xa¢ will be H,, if Xa8< 23.4.

=P(fail to reject H,| H, is false)=
Note: ~N(23,12/10)), when it’s given that X ~N(23,12)) -;"
Standardize: Z = (23.4 - 23)/(1/10) = 4.0

Another Example -Type | and Il Errors & Power

About 75% of all 80 year old humans are free of amyloid
plaques and tangles, markers of AD. A new AD vaccine is
proposed that is supposed to increase this proportion. Let
p be the new proportion of subjects with no AD
characteristics following vaccination. H,: p=0.75, H,:
p>0.75.

X = number of AD tests with no pathology findings in n=20
80-y/o vaccinated subjects. Under H, we expect to get
about . Suppose we’d invest in the
new vaccine if we get >= 18 no AD tests = rejection
region R={18, 19, 20}.

= Find o and B. How powerful is this test?

A 95% confidence interval

= A type of interval that contains the true value of a
parameter for 95% of samples taken is called a
for that parameter, the ends of
the Cl are called
= (For the situations we deal with) a
for the true value of a is given by
estimate . t standard errors (SE)

I Value of the Multiplier, t, for a 95% CI

df: 7 8 9 10 11 12 13 14 15 16 17
t: 2365 2306 2262 2228 2201 2179 2160 2.145 2131 2120 2.110

df: 18 19 20 25 30 35 40 45 50 60 ©
t: 2101 2.093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 1.9‘607
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(General) Confidence Interval (Cl)

= A for a parameter (0), is an
interval (6," , 6,"), where 6, & 6,", are estimators of

0, such that

= E.g., C+E model: Y = p+e. Where then by CLT we have

Area=?
A

> n*(Y_bar - w)/G ~

where z is the g*" quartile.

s E.g., 0.95=P (Z505 < n*Y_bar-p)/c < 2545 ).

Confidence Interval

Confidence Interval (CI) Experiment

CI Activity:

Means for independent samples -

is used for samples with assumed equal
variances. Under data Normal assumptions and equal
variances of

(%1—x2—0)/ SE(x1 — X2), where

| i
|y = i +(ny=Ds

SE = spl/n +1/n
oy 1 \} 111+I12—_

is exactly with 4= (”1 +”2 =2)
Here s, is called the pooled estimate of the variance, since
it pools info from the 2 samples to form a combined
estimate of the single variance . The book
routine use of the Welch unequal variance:
method. :

CI are constructed using the sample

and =2 d

Below is a computer simulation showing how the process of
taking samples effects the estimates and the CI’s.

True mean

11 SE(X)= X% 2.262SE(X) N
9 24.83 Coverage

Sample L L L L ) to date
Ist  — o o @6 o o o 100%
2nd — oooé o o o o 100%
3rd -~ o o @ ® o0 o o o 100%
999th — o o M %m0’ o 95.29
1000th — 0o &6 % 8'oo 95.29

24.82 24.83 24.84
True mean almost always captured in Tthe CL
True mean
_ Samples of siz@ from &Normal(x=24.83, s=.005
distribution and their 95% confidence intervals for p..

Comparing two means for independent samples

Suppose we have 2 samples/means/distributions as
follows: %"V #1293 and {5 V(4:9.)1 We've seen
before that to make inference about ﬂl —H wecan
use a —#_=0 with

S L _E=7)=0

And CIty™#y) = Xi—Xa2tx SE(Xi—X3) SE(x%—x2)

we use the SE formula

with df =Min(n] —1;)17 -1

If the 2 samples are

|2, 2,
SE=_[s“/n +s°/n
V 1 2 2
This gives a conservative approach for hand calculation of an
approximation to the what is known as the , which
has a complicated exact formula.

Single Sample: Testing/Cl

sExample: Suppose a researcher is interested in
studying the effect of aspirin in reducing heart
attacks. He randomly recruits 500 subjects with
evidence of early heart disease and has them take
one aspirin daily for two years. At the end of the
two years he finds that during the study only 17
subjects had a heart attack.

=Calculate a 95% confidence interval for the true
proportion of subjects with early heart disease that
have a heart attack while taking aspirin daily.

14



Single Sample: Testing/Cl
Example: Heart Attacks (cont’)
First, we need to find z

« because this is a 95% ClI, this means that « will be
0.05 and z,, will be zy o5

einthiscase 1z, =1.96

Single Sample: Testing/Cl

Next, solve for SE;;

Finally the 95% CI for p

tz,,(SE,)=0.038£1.96(0.0085)

=0.038%£0.0167 =(0.0213, 0.0547)

Comparison of Two Independent Samples

= Two Approaches for Comparison
*What seems like a reasonable way to compare two
groups?

= What parameter are we trying to estimate?

Single Sample: Testing/Cl

Often rounded to r+2

Next, solve for P ood

I%

+0.5(1.96°)  y+1.92

n+196°  n+3.84

e that’s just the formula for 7 , now we
actually have to find ?

02
174192 _ 1 03g

Single Sample: Testing/Cl

What is our interpretation of this interval?
CONCLUSION: We are highly confident, at the

* |s this meaningful?

Comparison of Two Independent Samples

RECALL: The sampling distribution of y was centered
at », and had a standard deviation of

We'll start by describing the sampling distribution of
* Mean: u,- i,
« Standard deviation of

What seems like appropriate estimates for these
quantities?

15



Standard Error of Y=

We know J,—J; estimates y, — u,
What we need to describe next is the precision of our
estimate,

SE (5,5,

Standard Error of » -7,

Example: Cholesterol medicine (cont’)

(e.9.,

Calculate an estimate of the true mean difference

between treatment groups and this estimate’s precision.
« First, denote medication as group 1 and placebo as
group 2

209.8 2243
10 10

44.3 46.2
14.0 14.6

Pooled vs. Unpooled

Then we use the pooled variance to calculate the pooled version of
the standard error

*NOTE: If (n, =n,) and (s, = s,) the pooled and unpooled will
give the same answer for
OL (5 5,)
«Itis when n, # n,that we need to decide whether to use
pooled or unpooled:
if s, =s, then use pooled (unpooled will give similar
answer)

if 8 #5, then use unpooled (pooled will NOT give similar ";',

answer)

Medication Placebo

Standard Error of » -7,

Example: A study is conducted to quantify the benefits
of a new cholesterol lowering medication. Two groups
of subjects are compared, those who took the
medication twice a day for 3 years, and those who took
a placebo. Assume subjects were randomly assigned to
either group and that both groups data are normally
distributed. Results from the study are shown below:
Medication Placebo

209.8 224.3

10 10
44.3 46.2
14.0 14.6

Pooled vs. Unpooled

is know as an unpooled version of the
n, n, standard error
« there is also a “pooled” SE

First we describe a pooled variance, which can be
thought of as a weighted

average of  and

(mn, =1)s2 +(n, — 1),

n +n,—=2

S pooled =

Pooled vs. Unpooled

= RESULT: Because both methods are similar when
s,=s, and n;=n,, and the pooled version is not valid
when

= Why all the torture? This will come up again in
chapter 11.

sBecause the df increases a great deal when we do
pool the variance.

r
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Cl for u - 1,

RECALL: We described a Cl earlier as:
the estimate + (an appropriate multiplier)x(SE)

A 100(1- 2)% confidence interval for s - 1,
(p.227)

where df

Cl for w4 - 1,

=(-57.21, 28.21)

Note the change in the conclusion of the parameter that we are

estimating. Still looking for the 5 basic parts of a Cl conclusion (se€ 7 &

slide 38 of lecture set 5).

Hypothesis Testing: The independent t test

= The idea of a hypothesis test is to formulate a
hypothesis that nothing is going on and then to see if
collected data is consistent with this hypothesis (or if the
data shows something different)

« Like innocent until proven guilty
= There are four main parts to a hypothesis test:
 hypotheses
« test statistic
* p-value
* conclusion

Cl for u, - 1

Example: Cholesterol medication (cont’)

Calculate a 95% confidence interval for 144 - (4,
We know 71 =72 and SEG-%) from the previous
slides. Now we need to find the t multiplier

_167411.9056 _
9317.021

Round down to be
conservative

*NOTE: Calculating that df is not really that fun, a quick
rule of thumb for checking your work is:
n, +n,-2

Cl for 1 - 1

= What's so great about this type of confidence interval?
= In the previous example our Cl contained zero
« This interval isn't telling us much because:
the true mean difference could be more than zero (in which
case the mean of group 1 is larger than the mean of group 2)
or the true mean difference could be less than zero (in
which case the mean of group 1 is smaller than the mean of
group 2)
or the true mean difference could even be zero!
*The ZERO RULE!
» Suppose the Cl came out to be (5.2, 28.1), would this indicate a
true mean difference?

Hypothesis Testing: #1 The Hypotheses

= There are two hypotheses:
* Null hypothesis (aka the “status quo” hypothesis)
denoted by H,
« Alternative hypothesis (aka the research hypothesis)
denoted by H,

17



Hypothesis Testing: #1 The Hypotheses

.If we are comparing two group means nothing going on
would imply no difference

« the means are "the same”
o (4—u,)=0
= For the independent t-test the hypotheses are:
Hy:  (—-1)=0
«(no statisticai aifference in the population means)
Hy (1, —1,)#0
«(a statistical difference in the population means)

Hypothesis Testing: #2 Test Statistic

A test statistic is calculated from the sample data

« it measures the “disagreement” between the data and the null
hypothesis

if there is a lot of “disagreement” then we would think that
the data provide evidence that the null hypothesis is false

if there is little to no “disagreement” then we would think
that the data do not provide evidence that the null
hypothesis is false

SE_

N=r

subtract 0 because the null says the difference is zero

Hypothesis Testing: #2 Test Statistic

Example: Cholesterol medication (cont’)

Calculate the test statistic

* Great, what does this mean?
y, and y, differ by about 0.72 SE's
this is because t is the measure of difference

between the sample means expressed in terms of the ___..
)

SE of the difference

Hypothesis Testing: #1 The Hypotheses

Example: Cholesterol medication (cont’)

Suppose we want to carry out a hypothesis test to see if the
data show that there is enough evidence to support a difference
in treatment means.

Find the appropriate null and alternative hypotheses.

be (w-m)=0

(no statistical difference the true means of the medication and
placebo groups)

Ha: (/‘1 H, ) =0

(a statistical difference in the true means of the medication and
placebo groups, medication has an effect on cholesterol)

Hypothesis Testing: #2 Test Statistic

at distribution t, could fall anywhere
« |f the test statistic is close to 0, this shows that the data are
compatible with H, (no difference)

the deviation can be attributed to chance
« If the test statistic is far from O (in the tails, upper or lower), this
shows that the data are incompatible to H, (there is a
difference)

deviation does not appear to be attributed to chance (ie. If

H, is true then it is unlikely that t; would fall so far from 0)

Hypothesis Testing: #2 Test Statistic

How do we use this information to decide if the data
support H,?

 Perfect agreement between the means would indicate
that t, = 0, but logically we expect the means do differ
by at least a little bit.
The question is how much difference is statistically
significant?
* If H, is true, it is unlikely that t; would fall in either of
the far tails

« If H, is false it is unlikely that t; would fall near O

18



Hypothesis Testing: #3 P-value Hypothesis Testing: #3 P-value

What this means is that we can think of the p-value as a measure of
How far is far? compatibility between the data and H,
For a two tailed test (i.e. H,: (ﬂl —H, )¢ O) The p-value of the test ea close to 1) indicates that t_ is near the center
is the area under the Student's T distribution in the double tails (data support H_) =
beyond -t, and t..

I
L 0 L ca (close to 0) indicates that t_ is in the tail (data do
« Definition (p. 238): The p-value for a hypothesis test is the not support H,)
probability, computed under the condition that the null :
hypothesis is true, of the test statistic being at least as extreme
or more extreme as the value of the test statistic that was
actually obtained [from the data].

Hypothesis Testing: #3 P-value Hypothesis Testing: #3 P-value

Where do we draw the line? Example: Cholesterol medication (cont’)
* how small is small for a p-value?

The threshold value on the p-value scale is called the significance . » )
level, and is denoted by a Find the p-value that corresponds to the results of

« The significance level is chosen by whomever is making the the cholesterol lowering medication experiment
decision (BEFORE THE DATA ARE COLLECTED!) We know from the previous slides that t = -0.716
+ Common values for include 0.1, 0.05 and 0.01 (which is close to 0)

Rules for making a decision: This means that the p-value is the area under the
If p < athen reject H, (statistical significance) curve beyond + 0.716 with 18 df.
If p > a then fail to reject H, (no statistical significance) -

Hypothesis Testing: #3 P-value Hypothesis Testing: #4 Conclusion

Example: Cholesterol medication (cont’)
Suppose the researchers had set « = 0.05

) ) Our decision would be to fail to reject Ho because p > 0.4
Using we can find the area under the curve which is > 0.05

beyond + 0.716 with 18 df to be: (#4) CONCLUSION: Based on this data there is

Example: Cholesterol medication (cont’)

p>2(0.2) = 0.4 [ (p>0.4).
In other words the cholesterol lowering medication does
not seem to have a significant effect on cholesterol.
« Keep in mind, we are saying that we couldn't provide
sufficient evidence to show that there is a significant
difference between the two population means.

o
-0.716 +0.716




Comparing two means for independent samples

1.

3. Are there

(The 2-sample T-tests and
CI’s are even more robust than the 1-sample tests,
against non-Normality, particularly when the
of the 2 distributions are similar and
=n, even for small n, remember df= -2.

alternatives to the two-

sample t-test? (wilcoxon rank-sum-test, Mann-Witney test,
equivalent tests, same P-values.)

4. What difference is there between the quantities

tested and estimated by the
and the equivalent?
(Non-parametric tests are based on ordering, not size, o
the data and hence use median, not mean, for the
average. The equality of 2 means is tested and CI(

Paired data

We have to distinguish between

and samples because they require
different methods of analysis.

Paired data is an example of related data.
With paired data, we analyze the differences
« this converts the initial problem into a one-

sample problem.
The and Wilcoxon rank-sum test are
nonparametric alternatives to the and
, and respectively.

The Wilcoxon-Mann-Whitney

Keep in mind that this is another hypothesis test, there are four major

parts to consider

#1 The hypotheses:
* H,: The population distributions of Y, and Y, are the same

* H,: The population distributions of Y, and Y, are the different
This could also be directional: distribution of Y, is less than Y,;
OR distribution of Y, is greater than Y,
#2 The test statistic
« denoted by U,
» measures the degree of separation between the two samples
a large value of U, indicates that the two samples are well
separated with little overlap
a small value of U indicates that the two samples are not wellF™_»
separated with much overlap

Paired Comparisons

= An fMRI study of N subjects: The point in the time
course of maximal activation in the rostral and
caudal medial premotor cortex was identified,
and the percentage changes in response to the
and tasks from the rest state measured.
Similarly the points of maximal activity during
the ¢o and task were identified in the
primary motor cortex. Paired t-test comparisons
between the ¢o and percentage changes
were performed across subjects for these regions
of maximum activity.

The Wilcoxon-Mann-Whitney

= Also known as the
.
= This hypothesis test is also used to compare two independent
samples
« This procedure is different from the independent t test
because it is valid even if the population distributions are
not normal
« In other words, we can use this test as a fair substitute when
we cannot not meet the required normality assumption of the t
test
WMW is called a
parametric test
« This test doesn't focus on a parameter like the mean, instead
it examines the distributions of the two groups

type of test or a non-

The Wilcoxon-Mann-Whitney

#3 The p-value:

» Method very similar to using the t table

find the appropriate row and then search for a

number closest to the test statistic
« don’t need to worry about doubling the p-value for a two-
tailed test (assuming we go to the right row header)
#4 Conclusion:

« Similar to the conclusion of an independent t test, but not
linked to any parameter (for example the difference in
means)
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The Wilcoxon-Mann-Whitney

The Method:
« Step 1: Arrange the data in increasing order
* Step 2: Determine K, and K,

K,: for each observation in group 1, count the number of
observations in the second group that are smaller. Use 1/2 for tied
observations. K, is the sum of these ranks.

or each observation in group 2, count the number of
observations in the first group that are smaller. Use 1/2 for tied
observations. K, is the sum of these ranks.

CHECK: if you have done the procedure correctly K, + K, = n,n,
« Step 3: If the test is non-directional then Uy is the larger of K, and K.
If the test is directional then Uy is the K that jives with the direction of H,
(if Hyis Y;>Y, then U , )
*Step 4: Determine the critical value

n = larger of n, and n,

n' = smaller of n, and n,
« Step 5: Bracket the p-value

The Wilcoxon-Mann-Whitney

Check Normality:

Probability Plot of Polluted Probability Plot of Unpolluted
Normal Normal

Vean 186
Stoev 3655

A0 osz2
P-vake 0062

w5 BusEsaE B8

o 2 1 16 B 0 2 2 % B
Polted

i )
et Unpoluted

Wilcoxon-Mann-Whitney vs. Independent T-Test

Both try to answer the same question, but treat data differently.
* W-M-W uses rank ordering
Pro: doesn’t depend on normality or population parameters

Con: distribution free lacks power because it doesn't use all the
info in the data

« T-test uses actual Y values
Pro : Incorporates all of the data into calculations
Con : Must meet normality assumption
* neither is superior
So...
« If your data are normally distributed use the t-test
« If your data are not normal use the WMW test

The Wilcoxon-Mann-Whitney

Example: The urinary fluoride concentration (ppm) was measured both
for a sample of livestock grazing in an area previously exposed to fluoride
pollution and also for a similar sample of livestock grazing in an unpolluted
area.

Polluted Unpolluted
21.3 10.1
18.7 18.3
21.4 17.2
17.1 18.4
11.1 20.0
20.9
19.7

Does the data suggest that the fluoride concentration for livestock grazing
in the polluted region is larger that for the unpolluted region? Test using ]
a =0.01. /

The Wilcoxon-Mann-Whitney

Conditions for the WMW:
 Data are from random samples
» Observations are independent
» Samples are independent
Remember: normality will not matter for this test

The Sign Test

The

We use the sign test when pairing is appropriate, but we
can’t meet the normality assumption required for the t test

The sign test is not very sophisticated and therefore quite
easy to understand

Sign test is also based on differences
d=Y,-Y,
The information used by the sign test from this
difference is the sign of d (+ or -)
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The Sign Test

#1 Hypotheses:

H,: the distributions of the two groups is the same

H,: the distributions of the two groups is different

or H,: the distribution of group 1 is less than group 2

or H,: the distribution of group 1 is greater than group 2
#2 Test Statistic B,

The Sign Test

#3 p-value:
Similar to the WMW

Use the number of pairs with “quality
information”

#4 Conclusion:
Similar to the Wilcoxon-Mann-Whitney Test
Do NOT mention any parameters!

The Sign Test (cont’)

=Do the data provide sufficient evidence to indicate that
the first born of a set of twins is more aggressive than the
second? Test using o = 0.05.

*H,: The aggressiveness is the same for 15t born and
2d horn twins

*H,: The aggressiveness of the 15t born twin tends to
be more than 2" born.

« NOTE: Directional Ha (we’re expecting higher
scores for the 1t born twin), this means we predict that
most of the differences will be positive

*N, = number of positive = 7
*N_ = number of negative = 4
*n, = number of pairs with useful info = 11

The Sign Test - Method

#2 Test Statistic Bg:

1. Find the sign of the differences

2. Calculate N, and N_

3. If H, is non-directional, By is the larger of N, and N_
If H, is directional, By is the N that jives with the
direction of Ha:
if H,: Y,<Y, then we expect a larger N,
if H,: Y;>Y, then we expect a larger N,.

NOTE: If we have a difference of zero it is not included in
N, or N, therefore n, needs to be adjusted

The Sign Test

1*'born 2" born  Sign of d

7
ol

=sExample: 12 sets of identical
twins are given psychological
tests to determine whether the
first born of the set tends to
be more aggressive than the
second born. Each twin is
scored according to
aggressiveness, a higher
score indicates greater
aggressiveness.

= Because of the natural
pairing in a set of twins these
data can be considered
paired.

e
RBoo~Nonsrwnk

I
N

The Sign Test

B;=N,=7 (because of directional alternative)
P >0.10, Fail to reject H,

CONCLUSION: These data show that the
(P >0.10).

X~B(11, 0.5)

P(X>=7)=0.2744140625

http:/so _edu/htmls/SOCR_Distributions.htm! (Binomial Distribution)
http://soct la.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm
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Phonological vs. Rapid-Naming differences using fMRI

Thickness A PHONO A interaction

Approximation of the Fisher Sign Test using the normal

distribution

Pos
remont | w0 | naw)

Medial dorsofrontal 3,484

Using the Sample Mean

Let X},..., X, be a random sample from a
distribution with mean value x and standard

deviation 0 .Then

2.V(X)= 2 = 4

In addition, with 7,= X, +...+ X,
E(T,))=nu, V (7:,):110 ,and o7 =+/no.

£, — unique
contribution
of PHONO

f> — unique
contribution
of RAN

CLT

Sampling Distribution

of the Sample Mean

Normal Population Distribution

Let X, be a random sample from a
normal distribution with mean value x and
standard deviation o Then for any n, X is
normally distributed, as is 7.
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The Central Limit Theorem

Let X,.. X, be a random sample from a

dis butlon with mean value M and variance o>
Then if n sufficiently large, X has
approximately a normal distribution with

t = and O_; =0 / ,and T, also has

aj 10\1matel\' a nolmal distribution with
ur =nu, o =no?. The larger the value of
n, the better the roximation.

Central Limit Theorem - heuristic formulation

Central Limit Theorem:

When sampling from almost any distribution,

X is approximately

Show Sampling Distribution Simulation Applet:

Recall we looked at the sampling distribution of X

For the sample mean calculated fr a random
sample, E(X) = pand SD( X) \/; ,
provided

= (X1+X2 .. +X,)/n, and Then
A ~ N(w, 777 )- And variability from sample to sample in
the is given by the variability of the

individual observations divided by the square root of the
sample-size. In a way,

in large samples.

The Central Limit Theorem

Central Limit Theorem -
theoretical formulation

Let iX XX . } be a sequence of independent
observatlons from one specific random process. Let

and E(X)=pu and SD(X):q- nandbothbe

finite (0< o <oo; |pu|<o0). If X =— ¥ X, sample-avg,
no np_q é

Then X has a distribution which approaches
N(u, 6?/n) ,asn—>o .

Law of Large Numbers (LLN)

... is an infinite sequence
the same expected value
i und variance ¢7; and are unc d (i.e., the correlation between any two of

X X, 4+ X)

n
converges in probability to z. Somewhat less tersely: For any positive number &, no

them is zero), then the sample av

matter how small, we have

Lim P(‘Z—y‘< £ ):1

n—-— o
Proof by Chebyshev’s inequality!

LLN Activity:
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