Markov's \& Chebyshev's Inequalities

- Markov's inequallty: (Markov was a student of Chebyshev)

If $Y \geq 0 \& d>0 \Rightarrow P(Y \geq d) \leq \frac{E(Y)}{d}$
Since, if $X=\left\{\begin{array}{ll}d, & \text { if } Y \geq d \\ 0, & \text { otherwise }\end{array}\right.$, Note $Y \geq 0, \Rightarrow X \geq 0$
Then : $\quad E(Y) \geq E(X) \geq d \times P\{Y \geq d\}$

Let $\mathrm{Y}=|\mathrm{X}-\mathrm{E}(\mathrm{X})|^{2}$ and $d=\mathrm{k}^{2}$ with $\mathrm{k}>0 \Rightarrow$
$\mathrm{P}(\mathrm{Y} \geq d)=\mathrm{P}\left(|\mathrm{X}-\mathrm{E}(\mathrm{X})|^{2} \geq \mathrm{k}^{2}\right) \leq \frac{\mathrm{E}\left(|\mathrm{X}-\mathrm{E}(\mathrm{X})|^{2}\right)}{\mathrm{k}^{2}} \Rightarrow$
$\mathrm{P}(|\mathrm{X}-\mathrm{E}(\mathrm{X})| \geq \mathrm{k}) \leq \frac{\operatorname{Var}(\mathrm{X})}{\mathrm{k}^{2}}=\frac{\sigma^{2}}{\mathrm{k}^{2}} \Rightarrow \mathrm{P}(|\mathrm{X}-\mathrm{E}(\mathrm{X})| \geq \mathrm{k} \times \sigma) \leq \frac{1}{\mathrm{k}^{2}}$
Let $k^{\prime}=k / \sigma \Rightarrow k=k^{\prime} \sigma$

Chebyshev's Theorem

- Applies to all
distributions, where mean
Naxifite (бf $\mu<\infty$)
Standard Distance from
Deviations
$\mathrm{K}=2$ \qquad
Minimum Proportion of Values Falling

20
$\mathrm{K}=3 \quad \mu \pm 3 \sigma$
$\mathrm{K}=4$
$\mu \pm 4 \sigma$

Within Distance
$1-1 / 2^{2}=0.75$
$1-1 / 3^{2}=0.89$
$1-1 / 4^{2}=0.94$

Coefficient of Variation

- Ratio of the standard deviation to the mean, expressed as a percentage
- Measurement of relative dispersion

$$
C . V .=\frac{\sigma}{\mu}(100)
$$

$$
\begin{array}{rlrl}
\mu_{1} & =29 \\
\sigma_{1} & =4.6 \\
C . V_{.1} & =\frac{\sigma_{1}}{\mu_{1}}(100) & \sigma_{2} & =10 \\
& =\frac{4.6}{29}(100) \\
& =15.86
\end{array} \quad \begin{aligned}
\sigma_{.2} & =\frac{\sigma_{2}}{\mu_{2}}(100) \\
& =\frac{10}{84}(100) \\
& =11.90
\end{aligned}
$$

Parameters, Estimators, Estimates ...

- A parameter is a characteristic of process, population or distribution
- E.g., mean, $1^{\text {st }}$ quartile, SD, min, max, range, skewness, $97^{\text {th }}$ percentile, etc.
- An estimator is an abstract rule for calculating a quantity (or parameter) from sample data.
- An estimate is the value obtained when real data are plugged-in the estimator rule.

Parameters, Estimators, Estimates ...

- E.g., We are interested in the population mean response time (parameter) of a cognitive experiment. The sample average formula represents an estimator we can use, where as the (value of the) sample average for a particular dataset is the estimate (for the mean parameter).
parameter $=\mu_{r} ; \quad$ estimator $=\bar{Y}=\frac{1}{N} \sum_{k=1}^{N} Y_{k}$
Data : $Y=\{0.1896,0.1913,0.1900\}$
estimate $=\overline{\mathrm{y}}=1 / 3(0.1896+0.1913+0.1900)$
$\bar{y}=0.1903$. How about $\bar{y}=2 / 3(0.1896+0.1913+0.1900)$

Parameter (Point) Estimation

Two Ways of Proposing Point Estimators
Method of Moments (MOMs):

- Set your k parameters equal to your first k moments.
- Solve. (e.g., Binomial, Exponential and Normal)
- Method of Maximum Likelihood (MLEs):
- 1. Write out likelihood for sample of size n .
- 2. Take natural \log of the likelihood.
- 3. Take partial derivatives with respect to your k parameters.
- 4. Take second derivatives to check that a maximum exists(f " >0).

5. Set $1^{\text {st }}$ derivatives equal to zero and solve for MLEs. e.g. Binomial, Exponential and Normal

Parameter (Point) Estimation

- Suppose we flip a coin $n=8$ times and observe
$\{\mathrm{T}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{H}\}$. Estimate the value $\mathrm{p}=\mathrm{P}(\mathrm{H})$.
- Method of Moments Estimate p ${ }^{\wedge}$:
- Set your k parameters equal to your first k moments.

Let $\mathrm{X}=\{\# \mathrm{H}$'s $\} \rightarrow \mathrm{np}=8 \mathrm{p}=\mathrm{E}(\mathrm{X})=$ Sample\#H's $=5 \rightarrow \mathrm{p} \wedge=5 / 8$.

- Method of Maximum Likelihood Estimate p^
- 1. $\mathrm{f}(\mathrm{x} \mid \mathrm{p})=\binom{8}{5}^{(}(1-p)^{3} \quad$ likelihood function.

2. $\left.\left.\ln \binom{8}{5} p^{5}(1-p)^{3}\right)=\ln \binom{8}{5}\right)+5 \times \ln (p)+3 \times \ln (1-p)$
3. $\frac{d\left(\ln \left(\binom{8}{5}\right)+5 \times \ln (p)+3 \times \ln (1-p)\right)}{d p}=\frac{5}{p}-\frac{3}{1-p}=0$

$$
5(1-p)-3 p=0 \Rightarrow p=5 / 8
$$

(Log)Likelihood Function

Suppose we have a sample $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ IID $\mathrm{D}(\theta)$ with probability density function $\mathrm{p}=\mathrm{p}(\mathrm{X} \mid \theta)$. Then the joint density $\mathrm{p}\left(\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\} \mid \theta\right)$ is a function of the (unknown) parameter θ.

Likelihood function $l\left(\theta \mid\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}\right)=\mathrm{p}\left(\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\} \mid \theta\right)$

- Log-likelihood $L\left(\theta\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}\right)=\log _{\mathrm{e}} l\left(\theta\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}\right)$
- Maximum-likelihood estimation (MLE):
- Suppose $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\} \operatorname{IID} \mathrm{N}\left(\mu, \sigma^{2}\right), \mu$ is unknown. We estimate it by:MLE $(\mu)=\mu^{\wedge}=\operatorname{ArgMax}_{\mu} L\left(\mu \mid\left(\left\{X_{1}, \ldots, X_{n}\right\}\right)\right.$

Example - Maximum Likelihood Estimate

Let $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}=\{0.5,0.3,0.6,0.1,0.2\}$, weights, be IID $\mathrm{N}(\mu, 1)$ $\Rightarrow f(x ; \mu)$. Joint density is $f\left(x_{1}, \ldots, x_{n} ; \mu\right)=f\left(x_{1} ; \mu\right) x_{\ldots}, x_{f}\left(x_{n} ; \mu\right)$. - The likelihood function $L(p)=f\left(X_{1}, \ldots, X_{n} ; p\right)$
$L(\mu)=\lambda\left(x_{1}, \ldots, x_{n}\right)=$
$=e^{-\frac{(0.5-\mu)^{2}+(0.3-\mu)^{2}+(0.6-\mu)^{2}+(0.1-\mu)^{2}+(0.2-\mu)^{2}}{2}}$
$\ln (L)=(-1 / 2)\left[(0.5-\mu)^{2}+(0.3-\mu)^{2}+(0.6-\mu)^{2}+(0.1-\mu)^{2}+(0.2-\mu)^{2}\right]$
$0=\frac{d \ln (L)}{d \mu}=(0.5-\mu)+(0.3-\mu)+(0.6-\mu)+(0.1-\mu)+(0.2-\mu)=$
$=-5 \mu+1.7 \Rightarrow \mu=0.34 \Rightarrow \frac{d^{2} \ln (L)}{d \mu^{2}}=-5 \Rightarrow L(\mu=0.34)=\max$

(Log)Likelihood Function

Suppose $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ IID $\mathrm{N}\left(\mu, \sigma^{2}\right), \mu$ is unknown. We estimate it by $: \operatorname{MLE}(\mu)=\mu^{\wedge}=\operatorname{ArgMax}_{\mu} L\left(\mu \mid\left(\left\{X_{1}, \ldots, X_{n}\right\}\right)\right.$

$$
\begin{aligned}
& \operatorname{MLE}(\mu)=\log \left(\prod_{i=1}^{n} \frac{e^{-(x} i^{-\mu)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}\right)=L(\mu) \\
& 0=L^{\prime}(\hat{\mu})=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}}\left(e^{-\sum_{i=1}^{n}\left(x i-\hat{\mu^{2}} / 2 \sigma^{2}\right.}\right) \frac{\sum_{i=1}^{n} 2\left(x_{i}-\hat{\mu}\right)}{2 \sigma^{2}} \\
& \Leftrightarrow 0=2 \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right) \Leftrightarrow \hat{\mu}=\sum_{i=1}^{n} x_{i} / n .
\end{aligned}
$$

Similarly show that : $\operatorname{MLE}(\sigma)=\hat{\sigma}=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} / n-1$.

(Log)Likelihood Function

Suppose $\left\{X_{1}, \ldots, X_{n}\right\}$ IID Poisson $(\lambda), \lambda$ is unknown. Estimate λ by: $\operatorname{MLE}(\lambda)=\lambda^{\wedge}=\operatorname{ArgMax}_{\lambda} L\left(\lambda \mid\left(\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}\right)\right.$
$\operatorname{MLE}(\lambda)=\log \left(\prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_{i}}}{\left(x_{i}\right)!}\right)=L(\lambda)$
$0=L^{\prime}(\hat{\lambda})=\frac{\partial}{\partial \lambda} \log \left(\frac{e^{-n \lambda} \lambda^{\sum_{i=1}^{n} x_{i}}}{\prod_{i=1}^{n}\left(x_{i}\right)!}\right)=$
$=\frac{\partial}{\partial \lambda}\left(-n \lambda+\log (\lambda) \sum_{i=1}^{n} x_{i}\right)=-n+\frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \Leftrightarrow \hat{\lambda}=\sum_{i=1}^{n} x_{i}$

Hypotheses

Guiding principles

We cannot rule in a hypothesized value for a parameter, we can only determine whether there is evidence to rule out a hypothesized value.

The null hypothesis tested is typically a skeptical reaction to a research hypothesis

Hypothesis Testing

 the Likelihood Ratio PrincipleLet $\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample from a density $f(x ; p)$, where p is some population parameter. Then the joint density is
$f\left(x_{1}, \ldots, x_{n} ; p\right)=f\left(x_{1} ; p\right) x \ldots f_{f}\left(x_{n} ; p\right)$.

- The likelihood function $L(p)=f\left(X_{1}, \ldots, X_{n} ; p\right)$
- Testing: $\mathrm{H}_{\mathrm{o}}: \mathrm{p}$ is in Ω vs. $\mathrm{H}_{\mathrm{a}}: \mathrm{p}$ is in Ω_{a}, where $\Omega \Omega_{\mathrm{a}}=0$
- Find max of $\mathrm{L}(\mathrm{p})$ in Ω.

Find max of $\mathrm{L}(\mathrm{p})$ in $\Omega_{\mathrm{a}} \cdot \lambda\left(x_{1}, \ldots, x_{n}\right)=\frac{p \in \Omega}{\max _{p \in \Omega_{a}} L(p)}$

- Reject H_{0} if likelihood-ratio statistics λ is small $(\lambda<\overline{\mathrm{k}})$

Hypothesis Testing

the Likelihood Ratio Principle Example
Testing: $H_{0}: \mu>0$ is in Ω vs $H_{a}: \mu<=0$. Reject H_{0} if likelihood-ratio statistics λ is small $(\lambda<\mathrm{k})$

$$
\lambda_{0}=\lambda\left(x_{1}, \ldots, x_{n}\right)=\frac{\max _{p \in \Omega} L(p)}{\max _{p \in \Omega} L(p)}=
$$

$$
\begin{aligned}
& \max _{\mu>0}\left(e^{-\frac{(0.5-\mu)^{2}+(0.3-\mu)^{2}+(0.6-\mu)^{2}+(0.1-\mu)^{2}+(0.2-\mu)^{2}}{2}}\right) \\
& \max _{\mu \leq 0}\left(e^{-\frac{(0.5-\mu)^{2}+(0.3-\mu)^{2}+(0.6-\mu)^{2}+(0.1-\mu)^{2}+(0.2-\mu)^{2}}{2}}=\right. \\
& \frac{e^{-(0.5-\mu)^{2}+(0.3-\mu)^{2}+(0.6-\mu)^{2}+(0.1-\mu)^{2}+(0.2-\mu)^{2}}}{2} / \mu \text { one-sample T-test } \\
& e^{-(0.5-\mu)^{2}+(0.3-\mu)^{2}+(0.6-\mu)^{2}+(0.1-\mu)^{2}+(0.2-\mu)^{2}} / \mu=0.34 \\
& 2
\end{aligned} e_{\mu=0}^{e^{-0.086}=e^{-0.269}=0.68,}
$$

Inference and Hypothesis Testing

1. Identify your design \& appropriate statistical technique http://www.socr.ucla.edu/htmls/SOCR_ChoiceOfStatisticalTest.html
2. Validate your Data/Model Assumptions
3. Calculate a Test Statistic (Example: z_{0})
4. Specify a Rejection Region (Example:
5. Inference: The null hypothesis is rejected iff the computed value for the statistic falls in the rejection region

Type I and Type II Errors

$$
\begin{aligned}
& \alpha=\operatorname{Pr}\left\{\text { Reject } \mathrm{H}_{0} \mid \mathrm{H}_{0} \text { is true }\right\} \\
& \beta=\operatorname{Pr}\left\{\text { Fail to Reject } \mathrm{H}_{0} \mid \mathrm{H}_{0} \text { is False }\right\}
\end{aligned}
$$

- The value of α is specified by the experimenter
- The value of β is a function of $\underline{\alpha, n}$, and δ (the difference between the null hypothesized mean and the true mean). For a two sided hypothesis test of a normally distributed population

$$
\beta=\Phi\left(Z_{\frac{\alpha}{2}}+\frac{\delta \sqrt{n}}{\sigma}\right)-\Phi\left(-Z_{\frac{\alpha}{2}}+\frac{\delta \sqrt{n}}{\sigma}\right)
$$

- It is not true that $\alpha=1-\beta$ (RHS=this is the test power!)

Type I, Type II Errors \& Power of Tests

- Suppose the true MMSE score for AD subjects is $\sim N\left(23,1^{2}\right)$.
- A new cognitive test is proposed, and it's assumed that its values are $\sim N\left(25,1^{2}\right)$. A sample of 10 AD subjects take the new test.
- Hypotheses are: $H_{0}: \mu_{\text {test }}=25$ vs. $H_{a}: \mu_{\text {test }}<25$ (one-sided, more power)
- $\alpha=P($ false-positive, Type I, error $)=0.05$.
- Critical Value for α is $Z_{\text {score }}=-1.64$. Thus, $X^{\text {avg }}{ }_{\text {critical }}=Z_{\text {critical }}{ }^{*} \sigma+\mu$
- $X^{\text {avg }}{ }_{c r i t i c a l}=25-1.64=23.4$, And our conclusion, from $\left\{X_{1}, \ldots, X_{10}\right\}$ which yields $X^{\text {avg }}$ will be reject H_{0}, if $X^{\text {avg }}<23.4$.
- $\beta=P\left(\right.$ fail to reject $H_{0} \mid H_{0}$ is false $)=P\left(X^{\text {avg }}>=23.4 \mid X^{\text {avg }}\right.$ ~N(23,1²/10))
- Note: $\left.X^{\text {avg }} \sim N\left(23,1^{2 / 10}\right)\right)$, when it's given that $\left.X \sim N\left(23,1^{2}\right)\right)$
- Standardize: Z = (23.4-23)/(1/10)=4.0

Type I, Type II Errors \& Power of Tests

- Suppose the true MMSE score for AD subjects is $\sim N\left(23,1^{2}\right)$.
- A new cognitive test is proposed, and it's assumed that its values are $\mathrm{N}\left(25,1^{2}\right)$. A sample of 10 AD subjects take the new test.
- $\beta=P\left(\right.$ fail to reject $H_{0} \mid H_{0}$ is false $)=P\left(X^{\text {avs }}>=23.4 \mid X^{\text {avg }}-N\left(23,1^{2} / 10\right)\right)$
- Note: $X^{\text {avg }} \sim N\left(23,1^{2} / 10\right)$) when it's given that $\left.X \sim N\left(23,1^{2}\right)\right)$
- Standardize: $Z=(23.4-23) /(1 / 10)=4.0$.
- $\beta=P\left(\right.$ fail to reject $H_{0} \mid H_{0}$ is false $)=P(Z>4.0)=0.00003$
- \Rightarrow Power (New Test) $=1-0.00003=0.99997$ Idifferent β for each different
- How does Power(Test) depend on: $\quad \alpha_{0}$ true mean μ_{1} alternative H_{1}
- Sample size, $\mathrm{n}=10$: n -increase \rightarrow power increase
- Size-of-studied-effect: effect-size increase \rightarrow power increase
- Type of Alternative hypothesis: 1 -sized tests are more powerful

Another Example -Type I and Type II Errors

- $H_{0}: p=0.75, H_{1}: p>0.75 . X=$ number of test with no $A D$ findings in $\mathrm{n}=20$ experiments.
- X $\sim \operatorname{Binomial}(20,0.75)$. Rejection region $\mathrm{R}=\{18,19,20\}$.
- Find $\alpha=P($ Type $I)=P(X>=18$ when $X \sim \operatorname{Binomial}(20,0.75))$.
- Use SOCR resource $\rightarrow \alpha=1-0.91=0.09$ How does Power(Test)
- Find $\beta(\mathrm{p}=0.85)=\mathbf{P}($ Type II$)=\quad$ depend on n , effect-size?
- $P\left(\right.$ fail to reject $\left.H_{0} \mid X \sim \operatorname{Binomial}(20,0.85)\right)=P(X<18 \mid$

X~Binomial(20, 0.85))

- Use SOCR resource $\rightarrow \beta=0.595 \rightarrow$ Power of test $=1-\beta=0.405$
- Find $\beta(\mathrm{p}=0.95)=\mathrm{P}($ Type II) $=$
- $P\left(f\right.$ fail to reject $\left.H_{0} \mid X \sim \operatorname{Binomial}(20,0.95)\right)=P(X<18 \mid$ X~Binomial(20,0.95))
- Use SOCR resource $\rightarrow \beta=0.076 \rightarrow$ Power of test $=1-\beta=0.924$

Another Example -Type I and II Errors \& Power

- About 75% of all 80 year old humans are free of amyloid plaques and tangles, markers of AD. A new AD vaccine is proposed that is supposed to increase this proportion. Let p be the new proportion of subjects with no AD characteristics following vaccination. $\quad H_{0}: p=0.75, H_{1}$: $p>0.75$.
- $X=$ number of $A D$ tests with no pathology findings in $n=20$ $80-\mathrm{y} / \mathrm{o}$ vaccinated subjects. Under H_{0} we expect to get about $n^{*} p=15$ no AD results. Suppose we'd invest in the new vaccine if we get >= 18 no AD tests \rightarrow rejection region $\mathrm{R}=\{18,19,20\}$.
- Find α and β. How powerful is this test?

A 95\% confidence interval

- A type of interval that contains the true value of a parameter for 95% of samples taken is called a 95% confidence interval for that parameter, the ends of the Cl are called confidence limits.
- (For the situations we deal with) a confidence interval (Cl) for the true value of a parameter is given by
estimate $\pm t$ standard errors (SE)

Value of the Multiplier, \boldsymbol{t}, for a 95\% CI											
$d f:$	7	8	9	10	11	12	13	14	15	16	17
$t:$	2.365	2.306	2.262	2.228	2.201	2.179	2.160	2.145	2.131	2.120	2.110
$d f:$	18	19	20	25	30	35	40	45	50	60	∞
$t:$	2.101	2.093	2.086	2.060	2.042	2.030	2.021	2.014	2.009	2.000	1.960

Means for independent samples

 equal or unequal variances?Pooled T-test is used for samples with assumed equal variances. Under data Normal assumptions and equal variances of

$$
\begin{aligned}
& \left(\bar{x}_{1}-\bar{x}_{2}-0\right) / S E\left(\bar{x}_{1}-\bar{x}_{2}\right) \text {, where } \\
& S E=S p \sqrt{1 / n_{1}+1 / n_{2}} ; s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}
\end{aligned}
$$

is exactly Student's t distributed with $d f=\left(n_{1}+n_{2}-2\right)$
Here s_{p} is called the pooled estimate of the variance, since it pools info from the 2 samples to form a combined estimate of the single variance $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=\sigma^{2}$. The book recommends routine use of the Welch unequal variance method.

(General) Confidence Interval (CI)

- A level L confidence interval for a parameter (θ), is an interval $\left(\theta_{1}{ }^{\wedge}, \theta_{2} \wedge\right)$, where $\theta_{1}{ }^{\wedge} \& \theta_{2}{ }^{\wedge}$, are estimators of θ, such that $P\left(\theta_{1}{ }^{\wedge}<\theta<\theta_{2}{ }^{\wedge}\right)=L$.
- E.g., C+E model: $Y=\mu+\varepsilon$. Where $\varepsilon \sim N\left(0, \sigma^{2}\right)$, then by CLT we have Y_{-}bar $\sim N\left(\mu, \sigma^{2} / n\right)$
$\rightarrow \mathrm{n}^{1 / 2}(\mathrm{Y}$ _ bar $-\mu) / \sigma \sim \mathrm{N}\left(0, \sigma^{2}\right)$.

- $\mathrm{L}=\mathrm{P}\left(\mathrm{z}_{(1-\mathrm{L}) / 2}<\mathrm{n}^{1 / 2}\left(\mathrm{Y}_{-}\right.\right.$bar $\left.\left.-\mu\right) / \sigma<\mathrm{z}_{(1+\mathrm{L}) / 2}\right)$, where \mathbf{z}_{q} is the $\mathrm{q}^{\text {th }}$ quartile.
- E.g., $0.95=\mathbf{P}\left(\mathbf{z}_{0.025}<\mathbf{n}^{1 / 2}\left(Y_{-}\right.\right.$bar $\left.\left.\left.-\mu\right) / \sigma<\mathbf{z}_{0.975}\right)\right)_{3}$

Comparing two means for independent samples
Suppose we have 2 samples/means/distributions as follows: $\left\{{ }_{1}, N\left(\boldsymbol{\mu}_{1}, \sigma_{1}\right\}\right.$ and $\left\{{ }_{2} \bar{x}_{2}, N\left(\boldsymbol{\mu}_{2}, \sigma_{2}\right)\right\}$. We've seen before that to make inference about $\mu_{1}-\mu_{2}$ we can use a T-test for $H_{0}: \mu_{1}-\mu_{2}=0$ with

$$
t_{0}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{S E\left(\bar{x}_{1}-\bar{x}_{2}\right)}
$$

And $\left.\mathrm{Cl}_{1}^{\mu}-\mu_{2}\right)=\bar{x}_{1}-\bar{x}_{2} \pm t \times \operatorname{SE}\left(\bar{x}_{1}-\bar{x}_{2}\right)$
If the 2 samples are independent we use the SE formula $S E=\sqrt{s_{1}^{2} / n l_{1}+s_{2}^{2} / n} \quad$ with $\quad d f=\operatorname{Min}\left(n_{1}-1 ; n_{2}-.1\right)$
This gives a conservative approach for hand calculation of an

True mean almost always captured in the CI. True mean
Samples of size 10 from $\operatorname{Normal}(\mu=24.83, \mathrm{~s}=.005$ D distribution and their 95% confidence intervals for μ..
approximation to the what is known as the Welch procedure, which has a complicated exact formula.

Single Sample: Testing/Cl

-Example: Suppose a researcher is interested in studying the effect of aspirin in reducing heart attacks. He randomly recruits 500 subjects with evidence of early heart disease and has them take one aspirin daily for two years. At the end of the two years he finds that during the study only 17 subjects had a heart attack.
-Calculate a 95\% confidence interval for the true proportion of subjects with early heart disease that have a heart attack while taking aspirin daily.

Single Sample: Testing/CI

Example: Heart Attacks (cont')

First, we need to find $\mathrm{z}_{\alpha / 2}$

- because this is a $95 \% \mathrm{CI}$, this means that α will be 0.05 and $\mathrm{z}_{\alpha / 2}$ will be $\mathrm{z}_{0.025}$

Single Sample: Testing/CI

Next, solve for $S E_{\widetilde{p}}$

$$
S E_{\widetilde{p}}=\sqrt{\frac{(0.038)(0.962)}{500+3.84}}=0.0085
$$

Finally the $95 \% \mathrm{Cl}$ for p

$$
\begin{aligned}
& \tilde{p} \pm z_{\alpha / 2}\left(S E_{\tilde{p}}\right)=0.038 \pm 1.96(0.0085) \\
& =0.038 \pm 0.0167=(0.0213,0.0547)
\end{aligned}
$$

Comparison of Two Independent Samples
Comparison of Two Independent Samples
RECALL: The sampling distribution of \bar{y} was centered at μ, and had a standard deviation of σ / \sqrt{n}
We'll start by describing the sampling distribution of $\bar{y}_{1}-\bar{y}_{2}$

- Mean: $\mu_{1}-\mu_{2}$
- Standard deviation of $\sqrt{\sigma_{1}^{2} / n_{1}+\frac{\sigma_{2}^{2}}{n_{2}}}$

What seems like appropriate estimates for these quantities?

$$
S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{S E_{1}^{2}+S E_{2}^{2}}
$$

Standard Error of $\quad \bar{y}_{1}-\bar{y}_{2}$

Example: A study is conducted to quantify the benefits of a new cholesterol lowering medication. Two groups of subjects are compared, those who took the medication twice a day for 3 years, and those who took a placebo. Assume subjects were randomly assigned to either group and that both groups data are normally distributed. Results from the study are shown below:

Standard Error of $\quad \bar{y}_{1}-\bar{y}_{2}$

Example: Cholesterol medicine (cont')
(e.g., ftp://ftp.nist.gov/pub/dataplot/other/reference/CHOLEST2.DAT)

Calculate an estimate of the true mean difference
between treatment groups and this estimate's precision.

- First, denote medication as group 1 and placebo as group 2
$\left(\bar{y}_{1}-\bar{y}_{2}\right)=209.8-224.3=-14.5$

Medication	Placebo
209.8	224.3
10	10
44.3	46.2
14.0	14.6

$S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{\frac{44.3^{2}}{10}+\frac{46.2^{2}}{10}}=20.24$

Pooled vs. Unpooled

$\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$ is know as an unpooled version of the - there is also a "pooled" SE

First we describe a pooled variance, which can be thought of as a weighted

$$
\text { average of } s^{2} \text { and }
$$

$$
s_{\text {poolel }}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

Pooled vs. Unpooled

Then we use the pooled variance to calculate the pooled version of the standard error

$$
S E_{\text {pooled }}=\sqrt{S_{\text {pooled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

[^0]
Pooled vs. Unpooled

- RESULT: Because both methods are similar when $s_{1}=s_{2}$ and $n_{1}=n_{2}$, and the pooled version is not valid when
- Why all the torture? This will come up again in chapter 11.
-Because the df increases a great deal when we do pool the variance.

CI for $\mu_{1}-\mu_{2}$
RECALL: We described a CI earlier as: the estimate \pm (an appropriate multiplier) $\times(\mathrm{SE})$

A 100(1- α) $\%$ confidence interval for $\mu_{1}-\mu_{2}$
(p.227)

$$
\left(\bar{y}_{1}-\bar{y}_{2}\right) \pm t(d f)_{\alpha / 2}\left(S E_{\bar{y}_{1}-\bar{y}_{2}}\right)
$$

where df $=\frac{\left(S E_{1}^{2}+S E_{2}^{2}\right)^{2}}{S E_{1}^{4} /\left(n_{1}-1\right)^{+} S E_{2}^{4} /\left(n_{2}-1\right)}$

Cl for $\mu_{1}-\mu_{2}$

$$
\begin{aligned}
& \left(\bar{y}_{1}-\bar{y}_{2}\right) \pm t(d f)_{\alpha / 2}\left(S E_{\bar{y}_{1}-\bar{y}_{2}}\right) \\
& =-14.5 \pm t(17)_{0.025}(20.24) \\
& =-14.5 \pm 2.110(20.24) \\
& =(-57.21, \quad 28.21)
\end{aligned}
$$

CONCLUSION: We are highly confident at the 0.05 level, that the true mean difference in cholesterol between the medication and placebo groups is between -57.02 and $28.02 \mathrm{mg} / \mathrm{dL}$.

Note the change in the conclusion of the parameter that we are estimating. Still looking for the 5 basic parts of a CI conclusion (see 2 slide 38 of lecture set 5).

CI for $\mu_{1}-\mu_{2}$

Example: Cholesterol medication (cont')
Calculate a 95% confidence interval for $\mu_{1}-\mu_{2}$
We know $\bar{y}_{1}-\bar{y}_{2}$ and $S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}$ from the previous slides. Now we need to find the t multiplier
$d f=\frac{\left(14^{2}+14.6^{2}\right)^{2}}{14^{4} /(10-1)^{14.6^{4}} /(10-1)}=\frac{167411.9056}{9317.021}=17.97 \approx 17$

$$
/(10-1)^{+14.0} /(10-1) \quad \begin{aligned}
& \text { Round down to be } \\
& \text { conservative }
\end{aligned}
$$

-NOTE: Calculating that df is not really that fun, a quick rule of thumb for checking your work is:

$$
n_{1}+n_{2}-2
$$

- What's so great about this type of confidence interval?
- In the previous example our Cl contained zero
- This interval isn't telling us much because:
- the true mean difference could be more than zero (in which case the mean of group 1 is larger than the mean of group 2)
- or the true mean difference could be less than zero (in
which case the mean of group 1 is smaller than the mean of group 2)
- or the true mean difference could even be zero!
-The ZERO RULE!
- Suppose the CI came out to be (5.2, 28.1), would this indicate a true mean difference?

Hypothesis Testing: The independent t test

- The idea of a hypothesis test is to formulate a
hypothesis that nothing is going on and then to see if collected data is consistent with this hypothesis (or if the
data shows something different)
- Like innocent until proven guilty
- There are four main parts to a hypothesis test:
- hypotheses
- test statistic
- p-value
- conclusion

Hypothesis Testing: \#1 The Hypotheses

- There are two hypotheses:
- Null hypothesis (aka the "status quo" hypothesis) - denoted by H_{0}
- Alternative hypothesis (aka the research hypothesis) - denoted by H_{a}

Hypothesis Testing: \#1 The Hypotheses
. If we are comparing two group means nothing going on would imply no difference

- the means are "the same"
- $\left(\mu_{1}-\mu_{2}\right)=0$
- For the independent t-test the hypotheses are:
- $\mathrm{H}_{0}: \quad\left(\mu_{1}-\mu_{2}\right)=0$
\cdot-(no statisticai difference in the population means)
- $\mathrm{H}_{\mathrm{a}}:\left(\mu_{1}-\mu_{2}\right) \neq 0$
\bullet (a statistical difference in the population means)

Hypothesis Testing: \#1 The Hypotheses

Example: Cholesterol medication (cont')
Suppose we want to carry out a hypothesis test to see if the data show that there is enough evidence to support a difference in treatment means.
Find the appropriate null and alternative hypotheses.
$H_{0}: \quad\left(\mu_{1}-\mu_{2}\right)=0$
(no statistical difference the true means of the medication and placebo groups)
$\mathrm{H}_{\mathrm{a}}: \quad\left(\mu_{1}-\mu_{2}\right) \neq 0$
(a statistical difference in the true means of the medication and placebo groups, medication has an effect on cholesterol)

Hypothesis Testing: \#2 Test Statistic

A test statistic is calculated from the sample data

- it measures the "disagreement" between the data and the null hypothesis
- if there is a lot of "disagreement" then we would think that the data provide evidence that the null hypothesis is false
- if there is little to no "disagreement" then we would think that the data do not provide evidence that the null
hypothesis is false

$$
t_{s}=\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)-0}{S E_{\bar{y}_{1}-\bar{y}_{2}}}
$$

subtract 0 because the null says the difference is zero

Hypothesis Testing: \#2 Test Statistic

On a t distribution t_{s} could fall anywhere

- If the test statistic is close to 0 , this shows that the data are compatible with H_{0} (no difference)
- the deviation can be attributed to chance
- If the test statistic is far from 0 (in the tails, upper or lower), this shows that the data are incompatible to H_{0} (there is a difference)
- deviation does not appear to be attributed to chance (ie. If H_{0} is true then it is unlikely that t_{s} would fall so far from 0)

Hypothesis Testing: \#2 Test Statistic

Hypothesis Testing: \#2 Test Statistic

Example: Cholesterol medication (cont')

Calculate the test statistic
$t_{s}=\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)-0}{S E_{\bar{y}_{1}-\bar{y}_{2}}}=\frac{(209.8-224.3)-0}{20.24}=-0.716$

- Great, what does this mean?
- \bar{y}_{1} and \bar{y}_{2} differ by about 0.72 SE's
- this is because t_{s} is the measure of difference
between the sample means expressed in terms of the SE of the difference

How do we use this information to decide if the data support H_{0} ?

- Perfect agreement between the means would indicate
that $\boldsymbol{t}_{\mathrm{s}}=\boldsymbol{0}$, but logically we expect the means do differ
by at least a little bit.
- The question is how much difference is statistically significant?
- If H_{0} is true, it is unlikely that $\boldsymbol{t}_{\mathrm{s}}$ would fall in either of the far tails
- If H_{0} is false it is unlikely that $\boldsymbol{t}_{\mathrm{s}}$ would fall near 0

Hypothesis Testing: \#3 P-value

How far is far?
For a two tailed test (i.e. $\left.H_{a}:\left(\mu_{1}-\mu_{2}\right) \neq 0\right)$ The p-value of the test is the area under the Student's T distribution in the double tails beyond $-\mathrm{t}_{\mathrm{s}}$ and t_{s}.

- Definition (p. 238): The p-value for a hypothesis test is the probability, computed under the condition that the null hypothesis is true, of the test statistic being at least as extreme or more extreme as the value of the test statistic that was actually obtained [from the data].

Hypothesis Testing: \#3 P-value

Where do we draw the line?

- how small is small for a p-value?

The threshold value on the p-value scale is called the significance level, and is denoted by a

- The significance level is chosen by whomever is making the decision (BEFORE THE DATA ARE COLLECTED!)
- Common values for include 0.1, 0.05 and 0.01

Rules for making a decision:
If $\mathrm{p} \leq \mathrm{a}$ then reject H_{0} (statistical significance)
If $p>a$ then fail to reject H_{0} (no statistical significance)

Hypothesis Testing: \#3 P-value

Example: Cholesterol medication (cont')

- a large p-value (close to 1) indicates that $\boldsymbol{t}_{\mathrm{s}}$ is near the center
(data support H_{0})

- a small p-value (close to 0) indicates that t_{s} is in the tail (data do not support H_{0})

Hypothesis Testing: \#4 Conclusion

Example: Cholesterol medication (cont')
Suppose the researchers had set $\alpha=0.05$
Our decision would be to fail to reject Ho because $p>0.4$ which is > 0.05
(\#4) CONCLUSION: Based on this data there is no statistically significant difference between true mean
cholesterol of the medication and placebo groups ($p>0.4$).

- In other words the cholesterol lowering medication does
not seem to have a significant effect on cholesterol.
- Keep in mind, we are saying that we couldn't provide sufficient evidence to show that there is a significant difference between the two population means.

Comparing two means for independent samples

1. How sensitive is the two-sample t-test to nonNormality in the data? (The 2 -sample T-tests and Cl's are even more robust than the 1 -sample tests, against non-Normality, particularly when the shapes of the 2 distributions are similar and $n_{1}=n_{2}=n$, even for small n, remember $d f=n_{1}+n_{2}-2$.
2. Are there nonparametric alternatives to the twosample t-test? (Wilcoxon rank-sum-test, Mann-Witney test, equivalent tests, same P-values.)
3. What difference is there between the quantities tested and estimated by the two-sample t procedures and the nonparametric equivalent? (Non-parametric tests are based on ordering, not size, of the data and hence use median, not mean, for the average. The equality of 2 means is tested and Cl (μ

Paired data

- We have to distinguish between independent and related samples because they require different methods of analysis.
- Paired data is an example of related data.
- With paired data, we analyze the differences
- this converts the initial problem into a onesample problem.
- The sign test and Wilcoxon rank-sum test are nonparametric alternatives to the and paired ttest, and independent t-test, respectively.

The Wilcoxon-Mann-Whitney

Keep in mind that this is another hypothesis test, there are four major parts to conside
\#1 The hypotheses:

- H_{0} : The population distributions of Y_{1} and Y_{2} are the same
- H_{a} : The population distributions of Y_{1} and Y_{2} are the different
- This could also be directional: distribution of Y_{1} is less than Y_{2}; OR distribution of Y_{1} is greater than Y_{2}
\#2 The test statistic:
- denoted by U_{s}
- measures the degree of separation between the two samples - a large value of U_{s} indicates that the two samples are well separated with little overlap
- a small value of U_{s} indicates that the two samples are not well separated with much overlap

Paired Comparisons

- An fMRI study of N subjects: The point in the time course of maximal activation in the rostral and caudal medial premotor cortex was identified, and the percentage changes in response to the go and no-go tasks from the rest state measured. Similarly the points of maximal activity during the go and no-go task were identified in the primary motor cortex. Paired t-test comparisons between the go and no-go percentage changes were performed across subjects for these regions of maximum activity.

The Wilcoxon-Mann-Whitney

- Also known as the rank sum test
nhttp://www.socr.ucla.edu/Applets.dir/WilcoxonRankSumTable.html
- This hypothesis test is also used to compare two independent samples
- This procedure is different from the independent t test
because it is valid even if the population distributions are not normal
- In other words, we can use this test as a fair substitute when
we cannot not meet the required normality assumption of the t test
WMW is called a distribution-free type of test or a nonparametric test
- This test doesn't focus on a parameter like the mean, instead
it examines the distributions of the two groups

The Wilcoxon-Mann-Whitney
Example: The urinary fluoride concentration (ppm) was measured both for a sample of livestock grazing in an area previously exposed to fluoride pollution and also for a similar sample of livestock grazing in an unpolluted area.
Polluted
21.3
18.7
21.4
17.1
11.1
20.9
19.7

Does the data suggest that the fluoride concentration for livestock grazing in the polluted region is larger that for the unpolluted region? Test usingen $\alpha=0.01$.

The Wilcoxon-Mann-Whitney

Check Normality:

Wilcoxon-Mann-Whitney vs. Independent T-Test

Both try to answer the same question, but treat data differently.

- W-M-W uses rank ordering
- Pro: doesn't depend on normality or population parameters
- Con: distribution free lacks power because it doesn't use all the info in the data
- T-test uses actual Y values
- Pro : Incorporates all of the data into calculations
- Con : Must meet normality assumption
- neither is superior

So..

- If your data are normally distributed use the t-test
- If your data are not normal use the WMW test

The Wilcoxon-Mann-Whitney
Conditions for the WMW:

- Data are from random samples
- Observations are independent
- Samples are independent

Remember: normality will not matter for this test

The Sign Test

http://www.socr. ucla.edu/htmls/SOCR_Analyses.html

The sign test is a non-parametric alternative of the paired t test
We use the sign test when pairing is appropriate, but we can't meet the normality assumption required for the t test
The sign test is not very sophisticated and therefore quite easy to understand
Sign test is also based on differences

$$
d=Y_{1}-Y_{2}
$$

The information used by the sign test from this difference is the sign of d (+ or -)

The Sign Test

\#1 Hypotheses:
H_{0} : the distributions of the two groups is the same H_{a} : the distributions of the two groups is different or H_{a} : the distribution of group 1 is less than group 2 or H_{a} : the distribution of group 1 is greater than group 2 \#2 Test Statistic B_{s}

The Sign Test - Method

\#2 Test Statistic B_{s} :

1. Find the sign of the differences
2. Calculate N_{+}and N
3. If H_{a} is non-directional, B_{s} is the larger of N_{+}and N If H_{a} is directional, B_{s} is the N that jives with the direction of Ha :
if $\mathrm{H}_{\mathrm{a}}: \mathrm{Y}_{1}<\mathrm{Y}_{2}$ then we expect a larger N ,
if $H_{a}: Y_{1}>Y_{2}$ then we expect a larger N_{+}.
NOTE: If we have a difference of zero it is not included in N_{+}or $N_{\text {- }}$, therefore n_{d} needs to be adjusted

The Sign Test

\#3 p-value:
Similar to the WMW
Use the number of pairs with "quality
information"
\#4 Conclusion:
Similar to the Wilcoxon-Mann-Whitney Test
Do NOT mention any parameters!

The Sign Test

-Example: 12 sets of identical twins are given psychological tests to determine whether the first born of the set tends to be more aggressive than the second born. Each twin is scored according to aggressiveness, a higher score indicates greater aggressiveness

- Because of the natura pairing in a set of twins these data can be considered paired.

Set	$1^{\text {st }}$ born	$2^{\text {nd }}$ born	Sign of d
1	86	88	-
2	71	77	-
3	77	76	+
4	68	64	+
5	91	96	-
6	72	72	Drop
7	77	65	+
8	91	90	+
9	70	65	+
10	71	80	-
11	88	81	+
12	87	72	+

The Sign Test

$\mathrm{B}_{\mathrm{S}}=\mathrm{N}_{+}=7 \quad$ (because of directional alternative)
$P>0.10$, Fail to reject H_{0}
CONCLUSION: These data show that the aggressiveness of $1^{\text {st }}$ born twins is not significantly greater than the $2^{\text {nd }}$ born twins ($P>0.10$).
$\mathrm{X} \sim \mathrm{B}(11,0.5)$
$\mathrm{P}(\mathrm{X}>=7)=0.2744140625$
http://socr.stat.ucla.edu/htmls/SOCR_Distributions.html (Binomial Distribution) http://socr.stat.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm

Approximation of the Fisher Sign Test using the normal distribution					
Left ROIs	Pos	Neg	Total	Z	p
Lateral dorsofrontal	7,601	481	8,082	79	0
Lateral	12,934	1366	14,300	97	0
Lentrofrontal	7,659	1,701	9,361	62	0
Lateral occipital	2,905	475	3,381	42	0
Temporal	13,083	252	13,336	111	0
Medial dorsofrontal	3,484	36	3,520	58	0
Medial	3,864	762	4,627	46	0
Mentiatpanteal	3,369	199	3,568	53	0
Medial occipital	267	353	620	-3.45	<0.002
Lu, L.H., Leonard, C.M., Dinov, I.D., Thompson, P.M., Kan, E., Jolley, J., Toga, A.W., \& Sowell, E.R. (2006, February). Differentiating between phonological processing and rapid\} naming using structural MRI. Paper presented at the 34th Annual Meeting of the International Neuropsychological Society, Boston, MA.					

Using the Sample Mean

Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean value μ and standard deviation σ.Then

$$
\begin{aligned}
& \text { 1. } E(\bar{X})=\mu_{\bar{X}}=\mu \\
& \text { 2. } V(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n
\end{aligned}
$$

In addition, with $T_{\mathrm{o}}=X_{1}+\ldots+X_{n}$,

$$
E\left(T_{o}\right)=n \mu, V\left(T_{o}\right)=n \sigma^{2}, \text { and } \sigma_{T_{o}}=\sqrt{n} \sigma
$$

The Central Limit Theorem

Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean value μ and variance σ^{2}. Then if n sufficiently large, \bar{X} has approximately a normal distribution with $\mu_{\bar{X}}=\mu$ and $\sigma_{\bar{X}}^{2}=\sigma^{2} n$, and T_{o} also has approximately a normal distribution with $\mu_{T_{o}}=n \mu, \sigma_{T_{o}}=n \sigma^{2}$. The larger the value of n, the better the approximation.

Central Limit Theorem - heuristic formulation

Central Limit Theorem:

When sampling from almost any distribution,
\bar{X} is approximately Normally distributed in large samples.

Show Sampling Distribution Simulation Applet:
http://www.socr.ucla.edu/Applets.dir/SamplingDistributionApplet.html

Recall we looked at the sampling distribution of \bar{X}

- For the sample mean calculated from a random sample, $\mathrm{E}(\bar{X})=\mu$ and $\operatorname{SD}(\bar{X})=\sigma / \sqrt{n}$, provided
$\bar{X}=\left(X_{1}+X_{2}+\ldots+X_{n}\right) / n$, and $X_{k} \sim N(\mu, \sigma)$, Then
- $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. And variability from sample to sample in the sample-means is given by the variability of the individual observations divided by the square root of the sample-size. In a way, averaging decreases variability. \bar{X}

Central Limit Theorem theoretical formulation

Let $\left\{X_{1}, X_{2}, \ldots, X_{k}, \ldots\right\}$ be a sequence of independent observations from one specific random process. Let
and $E(X)=\mu$ and $S D(X)=\sigma$ and both be
finite $(0<\sigma<\infty ;|\boldsymbol{\mu}|<\infty)$. If $\overline{X_{n}}=\frac{1}{n_{k}} \sum_{k=1}^{n} X_{\vec{k}}$, sample-avg,
Then \bar{X} has a distribution which approaches $\mathrm{N}\left(\mu, \sigma^{2} / n\right)$, as $n \rightarrow \infty$.

[^0]: - NOTE: If $\left(\mathrm{n}_{1}=\mathrm{n}_{2}\right)$ and $\left(\mathrm{s}_{1}=\mathrm{s}_{2}\right)$ the pooled and unpooled will give the same answer for

 $$
 S E_{\left(\bar{y}_{1}-\bar{y}_{2}\right)}
 $$

 - It is when $n_{1} \neq n_{2}$ that we need to decide whether to use pooled or unpooled:
 - if $s_{1}=s_{2}$ then use pooled (unpooled will give similar answer)
 - if $\quad s_{1} \neq s_{2}$ then use unpooled (pooled will NOT give similar answer)

