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Markov's inequalityMarkov's inequality:: (Markov was a student of (Markov was a student of ChebyshevChebyshev))

MarkovMarkov’’s & s & ChebyshevChebyshev’’ss InequalitiesInequalities
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Let k’=k/σ k=k’σ

ChebyshevChebyshev’’ss TheoremTheorem

Applies to all Applies to all 
distributions, where mean distributions, where mean 
exists (exists (σσ, , μμ<<∞∞))

σμ 3±
σμ 2±

1-1/32 = 0.89
1-1/22 = 0.75

Distance from 
the Mean

Minimum Proportion
of Values Falling 
Within Distance

Number of
Standard
Deviations

K = 2

K = 3

K = 4 1-1/42 = 0.94
σμ 4±

Coefficient of VariationCoefficient of Variation

Ratio of the standard deviation to the mean, Ratio of the standard deviation to the mean, 
expressed as a percentageexpressed as a percentage
Measurement of Measurement of relativerelative dispersiondispersion
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Coefficient of Variation Coefficient of Variation –– an an 
exampleexample

OutlineOutline
Probability TheoryProbability Theory

AxiomsAxioms
Basic Principles for probability modeling and computationBasic Principles for probability modeling and computation
Law of Total Probability & Bayesian TheoremLaw of Total Probability & Bayesian Theorem
Data Summaries and EDAData Summaries and EDA
Distributions Distributions 

((http://www.socr.ucla.edu/htmls/SOCR_Distributions.htmlhttp://www.socr.ucla.edu/htmls/SOCR_Distributions.html))
Experiments & Demos Experiments & Demos 

((http://http://www.socr.ucla.edu/htmls/SOCR_Experiments.htmlwww.socr.ucla.edu/htmls/SOCR_Experiments.html))
Statistical InferenceStatistical Inference

Parameter Estimation Parameter Estimation 
Hypothesis Testing & Confidence intervalsHypothesis Testing & Confidence intervals
Parametric vs. NonParametric vs. Non--parametric inference parametric inference 

((http://http://www.socr.ucla.edu/htmls/SOCR_Analyses.htmlwww.socr.ucla.edu/htmls/SOCR_Analyses.html))
CLTCLT

Linear modelingLinear modeling
Simple linear regression, Multiple linear regressionSimple linear regression, Multiple linear regression
ANOVA & GLMANOVA & GLM

Parameters, Estimators, EstimatesParameters, Estimators, Estimates ……

A A parameterparameter is a characteristic of process, is a characteristic of process, 
population or distributionpopulation or distribution

•• E.g., mean, 1E.g., mean, 1stst quartile, SD, min, max, range, quartile, SD, min, max, range, 
skewnessskewness, 97, 97thth percentile, etc.percentile, etc.

An An estimatorestimator is an abstract is an abstract rulerule for for 
calculating a quantity (or parameter) calculating a quantity (or parameter) from from 
sample datasample data..

An An estimateestimate is the value obtained when real is the value obtained when real 
data are pluggeddata are plugged--in the estimator rule.in the estimator rule.
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Parameters, Estimators, EstimatesParameters, Estimators, Estimates ……

E.g., We are interested in the E.g., We are interested in the population mean response population mean response 
timetime ((parameterparameter) of a cognitive experiment. The ) of a cognitive experiment. The samplesample--
average formulaaverage formula represents represents an estimatoran estimator we can use, we can use, 
where as the (value of the)where as the (value of the) sample averagesample average for a for a 
particular dataset is the particular dataset is the estimateestimate (for the (for the meanmean
parameter).parameter).
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Two Ways of Proposing Point Estimators 

Method of Moments (MOMs): 
Set your k parameters equal to your first k moments.
Solve. (e.g., Binomial, Exponential and Normal)

Method of Maximum Likelihood (MLEs):
1. Write out likelihood for sample of size n.
2. Take natural log of the likelihood.
3. Take partial derivatives with respect to your k parameters.
4. Take second derivatives to check that a maximum exists(f ”>0).
5. Set 1st derivatives equal to zero and solve for MLEs. e.g., 
Binomial, Exponential and Normal

Parameter (Point) EstimationParameter (Point) Estimation

Suppose we flip a coin n=8 times and observe 
{T,H,T,H,H,T,H,H}. Estimate the value p = P(H).
Method of Moments Estimate p^:

Set your k parameters equal to your first k moments.
Let X = {# H’s} np=8p=E(X)= Sample#H’s = 5 p^=5/8.

Method of Maximum Likelihood Estimate p^:
1. f(x | p) =                      likelihood function.

2.

3.

Parameter (Point) EstimationParameter (Point) Estimation
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Example Example –– Maximum Likelihood EstimateMaximum Likelihood Estimate

Let {X1, …, Xn}={0.5, 0.3, 0.6, 0.1, 0.2}, weights, be IID N(μ, 1) 
f(x;μ). Joint density is f(x1,…,xn; μ)=f(x1;μ)x… xf(xn;μ). 

The likelihood function L(p) = f(X1,…,Xn; p) 
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Suppose we have a sample {X1, …, Xn} IID D(θ) with 
probability density function p = p(X | θ). Then the joint 
density p({X1, …, Xn} | θ) is a function of the 
(unknown) parameter θ. 

Likelihood function l(θ | {X1, …, Xn})= p({X1,…,Xn}|θ)

Log-likelihood L(θ|{X1, …, Xn})=Logel(θ|{X1, …, Xn})

Maximum-likelihood estimation (MLE):

Suppose {X1, …, Xn} IID N(μ, σ2), μ is  unknown. We 
estimate it by:MLE(μ)=μ^=ArgMaxμL(μ| ({X1,…,Xn})

(Log)Likelihood Function(Log)Likelihood Function

Suppose {X1, …, Xn} IID N(μ, σ2), μ is  unknown. We estimate it 
by:MLE(μ)=μ^=ArgMaxμL(μ| ({X1,…,Xn})

(Log)Likelihood Function(Log)Likelihood Function
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Suppose {X1, …, Xn} IID Poisson(λ), λ is  unknown. 
Estimate λ by:MLE(λ)=λ^=ArgMaxλL(λ|({X1,…,Xn})

(Log)Likelihood Function(Log)Likelihood Function
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HypothesesHypotheses
Guiding principles

We cannot rule in a hypothesized value for a 
parameter, we can only determine whether there is 
evidence to rule out a hypothesized value.

The null hypothesis tested is typically a skeptical 
reaction to a research hypothesis

Hypothesis Testing Hypothesis Testing ––
the Likelihood Ratio Principlethe Likelihood Ratio Principle

Let {X1, …, Xn} be a random sample from a density f(x; p), where 
p is some population parameter. Then the joint density is 
f(x1,…, xn; p) = f(x1; p)x… xf(xn; p). 
The likelihood function L(p) = f(X1,…, Xn; p) 
Testing: Ho: p is in Ω vs. Ha: p is in Ωa, where Ω Ωa= 0

Find max of L(p) in Ω.
Find max of L(p) in Ωa.
Find likelihood ratio
Reject Ho if likelihood-ratio statistics λ is small (λ<k)
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Hypothesis Testing Hypothesis Testing ––
the Likelihood Ratio Principle Examplethe Likelihood Ratio Principle Example
Let {X1, …, Xn}={0.5, 0.3, 0.6, 0.1, 0.2} be IID N(μ, 1) f(x;μ). 
The joint density is f(x1,…,xn; μ)=f(x1;μ)x… xf(xn;μ). 
The likelihood function L(p) = f(X1,…,Xn; p)
Testing: Ho: μ>0 is in Ω vs Ha: μ<=0.
Reject Ho if likelihood-ratio statistics λ is small (λ<k)

ln(numer) = quadratic in μ!
ln(deno) = quadratic in μ!
Maximize both find ratio

Let P(Type I) = α
to~1/λο ~ tα,df=4

one-sample T-test
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Hypothesis Testing Hypothesis Testing ––
the Likelihood Ratio Principle Examplethe Likelihood Ratio Principle Example

Testing: Ho: μ>0 is in Ω vs Ha: μ<=0. Reject Ho if 
likelihood-ratio statistics λ is small (λ<k)
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λλ Let P(Type I) = α
to~1/λο ~ tα,df=4

one-sample T-test

Inference and Hypothesis TestingInference and Hypothesis Testing

1. Identify your design & appropriate statistical technique
http://www.socr.ucla.edu/htmls/SOCR_ChoiceOfStatisticalTest.html

2. Validate your Data/Model Assumptions

3. Calculate a Test Statistic (Example: zo)

4. Specify a Rejection Region (Example:                 )

5. Inference: The null hypothesis is rejected iff the computed 
value for the statistic falls in the rejection region

2
αzzo >
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Type I and Type II ErrorsType I and Type II Errors

 true}is HHReject Pr{ 00=α
False} is HHReject   toFailPr{ 00=β

• The value of α is specified by the experimenter

• The value of β is a function of α, n, and δ (the 
difference between the null hypothesized mean and the true 
mean).  For a two sided hypothesis test of a normally 
distributed population 

• It is not true that α =1- β (RHS=this is the test power!)
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Type I, Type II Errors & Power of TestsType I, Type II Errors & Power of Tests
Suppose the true MMSE score for AD subjects is ~ N(23, 1Suppose the true MMSE score for AD subjects is ~ N(23, 122).).

A new cognitive test is proposed, and itA new cognitive test is proposed, and it’’s assumed that its s assumed that its 
values are ~ N(25, 1values are ~ N(25, 122). A sample of 10 AD subjects take the ). A sample of 10 AD subjects take the 
new test.new test.

Hypotheses are: HHypotheses are: Hoo: : μμtesttest=25 vs. H=25 vs. Haa: : μμtesttest<25 (one<25 (one--sided, sided, more more 

powerpower))

αα = P(false= P(false--positive, Type I, error) = 0.05.positive, Type I, error) = 0.05.

Critical ValueCritical Value for for αα is is ZZscorescore= = --1.64. Thus, 1.64. Thus, XXavgavg
criticalcritical = = ZZcriticalcritical**σ+μσ+μ

XXavgavg
criticalcritical = 25= 25--1.64=23.4, And our conclusion, from {X1.64=23.4, And our conclusion, from {X11, , ……, X, X1010} } 

which yields which yields XXavgavg will be will be rejectreject HHoo, if , if XXavgavg < 23.4.< 23.4.

ββ=P(fail to reject H=P(fail to reject Hoo|H|Hoo is false)=is false)=P(XP(Xavgavg>=23.4|X>=23.4|Xavg avg 

~N(23,1~N(23,122/10))/10))

Note: Note: XXavgavg ~N(23,1~N(23,122/10)), when it/10)), when it’’s given that Xs given that X ~N(23,1~N(23,122))))

Standardize: Z = (23.4 Standardize: Z = (23.4 –– 23)/(1/10) = 4.023)/(1/10) = 4.0

Type I, Type II Errors & Power of TestsType I, Type II Errors & Power of Tests

Suppose the true MMSE score for AD subjects is ~ N(23, 1Suppose the true MMSE score for AD subjects is ~ N(23, 122).).

A new cognitive test is proposed, and itA new cognitive test is proposed, and it’’s assumed that its values are ~ s assumed that its values are ~ 
N(25, 1N(25, 122). A sample of 10 AD subjects take the new test.). A sample of 10 AD subjects take the new test.

ββ=P(fail to reject H=P(fail to reject Hoo|H|Hoo is false)=is false)=P(XP(Xavgavg>=23.4|X>=23.4|Xavg avg ~N(23,1~N(23,122/10))/10))

Note: Note: XXavgavg ~N(23,1~N(23,122/10)) when it/10)) when it’’s given that Xs given that X ~N(23,1~N(23,122))))

Standardize: Z = (23.4 Standardize: Z = (23.4 –– 23)/(1/10) = 4.0.23)/(1/10) = 4.0.

ββ=P(fail to reject H=P(fail to reject Hoo|H|Hoo is false)=is false)=P(Z>4.0) = 0.00003P(Z>4.0) = 0.00003

Power (New Test) = 1 Power (New Test) = 1 –– 0.00003 = 0.999970.00003 = 0.99997

How does Power(Test) depend on:How does Power(Test) depend on:

•• Sample size, n=10: nSample size, n=10: n--increase increase power increasepower increase

•• SizeSize--ofof--studiedstudied--effect:  effecteffect:  effect--size increase size increase power increasepower increase

•• Type of Alternative hypothesis: 1Type of Alternative hypothesis: 1--sized tests are more powerfulsized tests are more powerful

∃different β for each different
α, true mean μ, alternative Ha

Another Example Another Example ––Type I and II Errors & PowerType I and II Errors & Power

About 75% of all 80 year old humans are free of About 75% of all 80 year old humans are free of amyloidamyloid
plaques and tangles, markers of AD. A new AD vaccine is plaques and tangles, markers of AD. A new AD vaccine is 
proposed that is supposed to increase this proportion. Let proposed that is supposed to increase this proportion. Let 
p be the new proportion of subjects with no AD p be the new proportion of subjects with no AD 
characteristics following vaccination.      Hcharacteristics following vaccination.      Hoo: p=0.75, H: p=0.75, H11: : 
p>0.75. p>0.75. 

X = number of AD tests with no pathology findings in n=20 X = number of AD tests with no pathology findings in n=20 
8080--y/o vaccinated subjects. Under Hy/o vaccinated subjects. Under Hoo we expect to get we expect to get 
about about n*p=15 no AD resultsn*p=15 no AD results.. Suppose weSuppose we’’d invest in the d invest in the 
new vaccine if we get >= 18 no AD tests new vaccine if we get >= 18 no AD tests rejection rejection 
region R={18, 19, 20}.region R={18, 19, 20}.

Find Find αα and and ββ. How powerful is this test?. How powerful is this test?

Another Example Another Example ––Type I and Type II ErrorsType I and Type II Errors
HHoo: p=0.75, H: p=0.75, H11: p>0.75. X = number of test with no AD findings : p>0.75. X = number of test with no AD findings 
in n=20 experiments. in n=20 experiments. 

X~Binomial(20, 0.75). X~Binomial(20, 0.75). Rejection region R={18, 19, 20}.Rejection region R={18, 19, 20}.

Find Find αα =P(Type I) = P(X>=18 =P(Type I) = P(X>=18 whenwhen X~Binomial(20, 0.75)).X~Binomial(20, 0.75)).

Use SOCR resource Use SOCR resource αα =1=1--0.91= 0.090.91= 0.09
Find Find β(β(pp=0.85)=0.85) =P (Type II) = =P (Type II) = 

•• P(fail to reject P(fail to reject HHoo | | X~Binomial(20, 0.85))=X~Binomial(20, 0.85))=P(X<18 | P(X<18 | 
X~Binomial(20, 0.85))X~Binomial(20, 0.85))

•• Use SOCR resource Use SOCR resource ββ =0.595=0.595 Power of test = 1Power of test = 1-- ββ =0.405=0.405
Find Find β(β(pp=0.95)=0.95) =P (Type II) = =P (Type II) = 

•• P(fail to reject P(fail to reject HHoo | | X~Binomial(20, 0.95))=X~Binomial(20, 0.95))=P(X<18 | P(X<18 | 
X~Binomial(20,0.95))X~Binomial(20,0.95))

•• Use SOCR resource Use SOCR resource ββ =0.076 =0.076 Power of test = 1Power of test = 1-- ββ = 0.924= 0.924

How does Power(Test)
depend on n, effect-size?

A 95% confidence intervalA 95% confidence interval

A type of interval that contains the A type of interval that contains the true value of a true value of a 
parameterparameter for 95% of samples taken is called a for 95% of samples taken is called a 95%95%
confidence intervalconfidence interval for that parameter, the ends of for that parameter, the ends of 
the CI are called the CI are called confidence limitsconfidence limits..
(For the situations we deal with)(For the situations we deal with) a a confidence interval (CI)confidence interval (CI)
for the true value of a for the true value of a parameterparameter is given byis given by

estimate      estimate      tt standard errors (SE)standard errors (SE)±

TABLE 8.1.1  Value of the Multiplier, t ,  for a 95% CI

df  : 7 8 9 10 11 12 13 14 15 16 17
t  : 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110

df  : 18 19 20 25 30 35 40 45 50 60  
t  : 2.101 2.093 2.086 2.060 2.042 2.030 2.021 2.014 2.009 2.000 1.960

∞
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(General)  Confidence Interval  (CI)(General)  Confidence Interval  (CI)

A A level level LL confidence intervalconfidence interval for a parameter (for a parameter (θθ), is  an ), is  an 
interval (interval (θθ11^ ,  ^ ,  θθ22^), where ^), where θθ11^  &  ^  &  θθ22^, are estimators of ^, are estimators of 

θθ, such that  , such that  P(P(θθ11^  < ^  < θ <θ < θθ22^) = ^) = LL. . 

E.g., E.g., C+E modelC+E model: Y = : Y = μ+εμ+ε. Where . Where ε ∼ Ν(0, σε ∼ Ν(0, σ22)),, then by CLT we have then by CLT we have 

Y_bar ~ Y_bar ~ Ν(μ, σΝ(μ, σ22/n) /n) 

nn½½(Y_bar (Y_bar -- μμ)/)/σσ ~  ~  Ν(0, σΝ(0, σ22))..

L = P ( zL = P ( z(1(1--L)/2L)/2 <   n<   n½½(Y_bar (Y_bar -- μμ)/)/σ σ <  z<  z(1+L)/2  (1+L)/2  ),),

where where zzqq is the is the qqthth quartile.quartile.

E.g.,  0.95 = P ( zE.g.,  0.95 = P ( z0.0250.025 <   n<   n½½(Y_bar (Y_bar -- μμ)/)/σσ <  z<  z0.975  0.975  ),),

Area=?

CI are constructed using the sample     and s=SE. But different 
samples yield different estimates and diff. CI’s?!?
Below is a computer simulation showing how the process of 
taking samples effects the estimates and the CI’s.

x

24.83

3rd
2nd
1st

100%
100%
100%

Sample
Coverage

to date

True mean

24.83

o1000th
999th

95.2%
95.2%

True mean

24.8424.82

Figure 8.1.2 Samples of size 10 from a Normal(µ=24.83, s=.005)
                            distribution and their 95% confidence intervals for µ..
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True mean almost always captured in the CI.

Confidence Interval (CI) Experiment
http://socr.ucla.edu/htmls/SOCR_Experiments.html

CI Activity:
http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_ConfidenceIntervals

Confidence IntervalConfidence Interval
Suppose we have 2 samples/means/distributions as Suppose we have 2 samples/means/distributions as 

follows: {                  } and {                    }. Wefollows: {                  } and {                    }. We’’ve seen ve seen 
before that to make inference about              we can before that to make inference about              we can 
use a use a TT--test for Htest for H00:: with with 

And And CI(        )CI(        ) ==
If the 2 samples are If the 2 samples are independentindependent we use the SE formulawe use the SE formula

with                                .with                                .

This gives a conservative approach for hand calculation of an This gives a conservative approach for hand calculation of an 
approximation to the what is known as the approximation to the what is known as the Welch procedureWelch procedure, which , which 
has a complicated exact formula.has a complicated exact formula.
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Comparing two means for independent samplesComparing two means for independent samples

Pooled TPooled T--testtest is used for samples with assumed equal is used for samples with assumed equal 
variances. Under data Normal assumptions and equal variances. Under data Normal assumptions and equal 
variances of   variances of   

is is exactlyexactly StudentStudent’’s t distributeds t distributed withwith
Here Here sspp is called the is called the pooled estimate of the variancepooled estimate of the variance, since , since 

it pools info from the 2 samples to form a combined it pools info from the 2 samples to form a combined 
estimate of the single variance estimate of the single variance σσ11

22= σ= σ22
22 =σ=σ22. The book . The book 

recommendsrecommends routine use of the routine use of the Welch unequal variance Welch unequal variance 
methodmethod.  .  
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Means for independent samples Means for independent samples ––
equal or unequal variances?equal or unequal variances? Single Sample: Testing/CISingle Sample: Testing/CI

ExampleExample:: Suppose a researcher is interested in Suppose a researcher is interested in 
studying the effect of aspirin in studying the effect of aspirin in reducing heart reducing heart 
attacksattacks. He randomly recruits . He randomly recruits 500500 subjects with subjects with 
evidence of early heart disease and has them take evidence of early heart disease and has them take 
one aspirin daily for two years.  At the end of the one aspirin daily for two years.  At the end of the 
two years he finds that during the study only two years he finds that during the study only 1717
subjects had a heart attack.subjects had a heart attack.
Calculate a Calculate a 95% confidence interval95% confidence interval for the true for the true 

proportion of subjects with early heart disease that proportion of subjects with early heart disease that 
have a heart attack while taking aspirin daily.have a heart attack while taking aspirin daily.
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ExampleExample:: Heart Attacks (contHeart Attacks (cont’’))

First, we need to find zFirst, we need to find zαα/2/2

•• because this is a 95% CI, this means that because this is a 95% CI, this means that αα will be will be 
0.05 and z0.05 and zαα/2/2 will be zwill be z0.0250.025

•• in this case    zin this case    zαα/2/2 = 1.96= 1.96

Z

0.0250.95

Z0.025-Z0.025

0.025

Single Sample: Testing/CISingle Sample: Testing/CI

Next, solve forNext, solve for

•• thatthat’’s just the formula for     , now we s just the formula for     , now we 
actually have to find actually have to find 

p~
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Single Sample: Testing/CISingle Sample: Testing/CI
Often rounded to
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Next, solve forNext, solve for

Finally the 95% CI for pFinally the 95% CI for p

pSE~

( )( ) 0085.0
84.3500
962.0038.0

~ =
+

=pSE

( ) ( )
)0547.0  ,0213.0(0167.0038.0

0085.096.1038.0~
~

2

=±=

±=± pSEzp α

Single Sample: Testing/CISingle Sample: Testing/CI

What is our interpretation of this interval?What is our interpretation of this interval?
CONCLUSION:  We are highly confident, at the CONCLUSION:  We are highly confident, at the 

0.05 level0.05 level (95% confidence), (95% confidence), that the that the true proportiontrue proportion
of of subjects with early heart diseasesubjects with early heart disease who have a heart who have a heart 
attack after taking aspirin dailyattack after taking aspirin daily is between is between 0.0213 0.0213 
and 0.0547and 0.0547..

•• Is this meaningful?Is this meaningful?

Single Sample: Testing/CISingle Sample: Testing/CI

Comparison of Two Independent SamplesComparison of Two Independent Samples

Two Approaches for ComparisonTwo Approaches for Comparison
••What seems like a reasonable way to compare two What seems like a reasonable way to compare two 
groups?groups?

What parameter are we trying to estimate?What parameter are we trying to estimate?

Comparison of Two Independent SamplesComparison of Two Independent Samples
RECALL:  The sampling distribution of    was centered RECALL:  The sampling distribution of    was centered 
atat μμ, and had a standard deviation of, and had a standard deviation of

WeWe’’ll start by describing the sampling distribution of ll start by describing the sampling distribution of 
•• Mean: Mean: μμ11 –– μμ22

•• Standard deviation of Standard deviation of 

What seems like appropriate estimates for these What seems like appropriate estimates for these 
quantities?quantities?

21 yy −
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2
2

1

2
1

nn
σσ +
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Standard Error ofStandard Error of

We know              estimatesWe know              estimates
What we need to describe next is the precision of our What we need to describe next is the precision of our 
estimate,estimate,

21 yy −

21 yy −
21 μμ −

( )21 yySE −

( )
2
2

2
1

2

2
2

1

2
1

21
SESE

n
s

n
sSE yy +=+=−

Standard Error ofStandard Error of
ExampleExample:  A study is conducted to quantify the benefits :  A study is conducted to quantify the benefits 
of a new cholesterol lowering medication.  Two groups of a new cholesterol lowering medication.  Two groups 
of subjects are compared, those who took the of subjects are compared, those who took the 
medication twice a day for 3 years, and those who took medication twice a day for 3 years, and those who took 
a placebo.  Assume subjects were randomly assigned to a placebo.  Assume subjects were randomly assigned to 
either group and that both groups data are normally either group and that both groups data are normally 
distributed.  Results from the study are shown below:distributed.  Results from the study are shown below:

21 yy −

 Medication Placebo 
y  209.8 224.3 
n 10 10 
s 44.3 46.2 

SE 14.0 14.6 
 

Standard Error ofStandard Error of
ExampleExample:  Cholesterol medicine (cont:  Cholesterol medicine (cont’’))
(e.g., (e.g., ftp://ftp.nist.gov/pub/dataplot/other/reference/CHOLEST2.DATftp://ftp.nist.gov/pub/dataplot/other/reference/CHOLEST2.DAT))
Calculate an estimate of the true mean difference Calculate an estimate of the true mean difference 
between treatment groups and this estimatebetween treatment groups and this estimate’’s precision. s precision. 

•• First, denote medication as group 1 and placebo as First, denote medication as group 1 and placebo as 
group 2group 2

21 yy −

 Medication Placebo 
y  209.8 224.3 
n 10 10 
s 44.3 46.2 

SE 14.0 14.6 
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Pooled vs. Pooled vs. UnpooledUnpooled

( ) ( )
2

11

21

2
22

2
112

−+
−+−

=
nn

snsn
s pooled

is know as an is know as an unpooledunpooled version of the version of the 
standard errorstandard error

•• there is also a there is also a ““pooledpooled”” SESE
First we describe a First we describe a pooledpooled variance, which can be variance, which can be 
thought of as a weighted thought of as a weighted 

average of      average of      andand
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Pooled vs. Pooled vs. UnpooledUnpooled

Then we use the pooled variance to calculate the pooled version Then we use the pooled variance to calculate the pooled version of of 
the standard errorthe standard error

•• NOTE:  If (nNOTE:  If (n11 = n= n22) and (s) and (s11 = s= s22) the pooled and ) the pooled and unpooledunpooled will will 
give the same answer for give the same answer for 

•• It is when nIt is when n11 nn22 that we need to decide whether to use that we need to decide whether to use 
pooled or pooled or unpooledunpooled::

if                then use pooled (if                then use pooled (unpooledunpooled will give similar will give similar 
answer)answer)

if               then use if               then use unpooledunpooled (pooled will NOT give similar (pooled will NOT give similar 
answer) answer) 

⎟⎟
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nn

sSE pooledpooled

( )21 yySE −

≠

21 ss =

21 ss ≠

Pooled vs. Pooled vs. UnpooledUnpooled

RESULT:  Because both methods are similar when  RESULT:  Because both methods are similar when  
ss11=s=s22 and and nn11=n=n22, and the pooled version is not valid , and the pooled version is not valid 
whenwhen

Why all the torture?  This will come up again in Why all the torture?  This will come up again in 
chapter 11.chapter 11.
Because the Because the dfdf increases a great deal when we do increases a great deal when we do 

pool the variance.pool the variance.
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CI for CI for μμ11 -- μμ22

RECALL: We described a CI earlier as:RECALL: We described a CI earlier as:
the estimate the estimate ++ (an appropriate multiplier)x(SE)(an appropriate multiplier)x(SE)

A 100(1A 100(1-- αα)% confidence interval for )% confidence interval for μμ11 -- μμ22
((p.227p.227))

where where dfdf = = 

( ) ( )
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Example: Cholesterol medication (contExample: Cholesterol medication (cont’’))

Calculate a 95% confidence interval for Calculate a 95% confidence interval for μμ11 -- μμ22

We know             and                  from the previous We know             and                  from the previous 
slides.  Now we need to find the t multiplierslides.  Now we need to find the t multiplier

••NOTE: Calculating that NOTE: Calculating that dfdf is not really that fun, a quick is not really that fun, a quick 
rule of thumb for checking your work is: rule of thumb for checking your work is: 

nn11 + n+ n22 --22

( )21 yySE −21 yy −
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9056.167411
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Round down to be 
conservative

CI for CI for μμ11 -- μμ22
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CONCLUSION:  We are highly confident at the 0.05 level, that the 
true mean difference in cholesterol between the medication and 
placebo groups is between -57.02 and 28.02 mg/dL.

Note the change in the conclusion of the parameter that we are 
estimating.  Still looking for the 5 basic parts of a CI conclusion (see 
slide 38 of lecture set 5).

CI for CI for μμ11 -- μμ22
WhatWhat’’s so great about this type of confidence interval?s so great about this type of confidence interval?
In the previous example our CI contained zeroIn the previous example our CI contained zero

•• This interval isn't telling us much because:This interval isn't telling us much because:
the true mean difference could be more than zero (in which the true mean difference could be more than zero (in which 

case the mean of group 1 is larger than the mean of group 2)case the mean of group 1 is larger than the mean of group 2)
or the true mean difference could be less than zero (in or the true mean difference could be less than zero (in 

which case the mean of group 1 is smaller than the mean of which case the mean of group 1 is smaller than the mean of 
group 2)group 2)

or the true mean difference could even be zero!or the true mean difference could even be zero!
••The ZERO RULE!The ZERO RULE!
•• Suppose the CI came out to be (5.2, 28.1), would this indicate Suppose the CI came out to be (5.2, 28.1), would this indicate a a 
true mean difference?true mean difference?

CI for CI for μμ11 -- μμ22

Hypothesis Testing: The independent t testHypothesis Testing: The independent t test

The idea of a hypothesis test is to formulate a The idea of a hypothesis test is to formulate a 
hypothesis that nothing is going on and then to see if hypothesis that nothing is going on and then to see if 
collected data is consistent with this hypothesis (or if the collected data is consistent with this hypothesis (or if the 
data shows something different)data shows something different)

•• Like innocent until proven guiltyLike innocent until proven guilty
There are four main parts to a hypothesis test:There are four main parts to a hypothesis test:

•• hypotheseshypotheses
•• test statistictest statistic
•• pp--valuevalue
•• conclusionconclusion

Hypothesis Testing: #1 The HypothesesHypothesis Testing: #1 The Hypotheses

There are two hypotheses:There are two hypotheses:
•• Null hypothesis (aka the Null hypothesis (aka the ““status quostatus quo”” hypothesis)hypothesis)

denoted by Hdenoted by Hoo

•• Alternative hypothesis (aka the research hypothesis)Alternative hypothesis (aka the research hypothesis)
denoted by Hdenoted by Haa
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Hypothesis Testing: #1 The HypothesesHypothesis Testing: #1 The Hypotheses

If we are comparing two group means nothing going on If we are comparing two group means nothing going on 
would imply no difference would imply no difference 

•• the means are "the same"  the means are "the same"  
••

For the independent tFor the independent t--test the hypotheses are: test the hypotheses are: 
••HHoo:              :              
••(no statistical difference in the population means)(no statistical difference in the population means)
••HHaa:                 :                 
••(a statistical difference in the population means)(a statistical difference in the population means)

( ) 021 =− μμ

( ) 021 =− μμ
( ) 021 ≠− μμ

( ) 021 ≠− μμ

Hypothesis Testing: #1 The HypothesesHypothesis Testing: #1 The Hypotheses

Example:  Cholesterol medication (contExample:  Cholesterol medication (cont’’))
Suppose we want to carry out a hypothesis test to see if the Suppose we want to carry out a hypothesis test to see if the 
data show that there is enough evidence to support a difference data show that there is enough evidence to support a difference 
in treatment means.  in treatment means.  
Find the appropriate null and alternative hypotheses.Find the appropriate null and alternative hypotheses.

HHoo:               :               
(no statistical difference the true means of the medication and (no statistical difference the true means of the medication and 
placebo groups)placebo groups)
HHaa:                 :                 
(a statistical difference in the true means of the medication an(a statistical difference in the true means of the medication and d 
placebo groups, medication has an effect on cholesterol)placebo groups, medication has an effect on cholesterol)

( ) 021 =− μμ

( ) 021 ≠− μμ

Hypothesis Testing: #2 Test StatisticHypothesis Testing: #2 Test Statistic

A test statistic is calculated from the sample dataA test statistic is calculated from the sample data
•• it measures the it measures the ““disagreementdisagreement”” between the data and the null between the data and the null 
hypothesishypothesis

if there is a lot of if there is a lot of ““disagreementdisagreement”” then we would think that then we would think that 
the data provide evidence that the null hypothesis is falsethe data provide evidence that the null hypothesis is false

if there is little to no if there is little to no ““disagreementdisagreement”” then we would think then we would think 
that the data do not provide evidence that the null that the data do not provide evidence that the null 
hypothesis is falsehypothesis is false

subtract 0 because the null says the difference is zerosubtract 0 because the null says the difference is zero
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Hypothesis Testing: #2 Test StatisticHypothesis Testing: #2 Test Statistic

On a t distribution On a t distribution ttss could fall anywhere  could fall anywhere  
•• If the test statistic is close to 0, this shows that the data aIf the test statistic is close to 0, this shows that the data are re 
compatible with Hcompatible with Hoo (no difference) (no difference) 

the deviation can be attributed to chance  the deviation can be attributed to chance  
•• If the test statistic is far from 0 (in the tails, upper or lowIf the test statistic is far from 0 (in the tails, upper or lower), this er), this 
shows that the data are shows that the data are inincompatible to Hcompatible to Hoo (there is a (there is a 
difference) difference) 

deviation does not appear to be attributed to chance (deviation does not appear to be attributed to chance (ieie. If . If 
HHoo is true then it is unlikely that is true then it is unlikely that ttss would fall so far from 0)would fall so far from 0)

0 ts 0 ts

Hypothesis Testing: #2 Test StatisticHypothesis Testing: #2 Test Statistic
Example:  Cholesterol medication (contExample:  Cholesterol medication (cont’’))

Calculate the test statisticCalculate the test statistic

•• Great, what does this mean?Great, what does this mean?
and        differ by about 0.72 SE's and        differ by about 0.72 SE's 

this is because this is because ttss is the measure of difference is the measure of difference 
between the sample means expressed in terms of the between the sample means expressed in terms of the 
SE of the differenceSE of the difference
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Hypothesis Testing: #2 Test StatisticHypothesis Testing: #2 Test Statistic

How do we use this information to decide if the data How do we use this information to decide if the data 
support Hsupport Hoo??

•• Perfect agreement between the means would indicate Perfect agreement between the means would indicate 
that  that  ttss = 0= 0, but logically we expect the means do differ , but logically we expect the means do differ 
by at least a little bit.  by at least a little bit.  

The question is how much difference is statistically The question is how much difference is statistically 
significant?significant?

•• If HIf Hoo is true, it is unlikely that is true, it is unlikely that ttss would fall in either of would fall in either of 
the far tailsthe far tails
•• If HIf Hoo is false it is unlikely that is false it is unlikely that ttss would fall near 0would fall near 0
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Hypothesis Testing: #3 PHypothesis Testing: #3 P--valuevalue

How far is far? How far is far? 
For a two tailed test (i.e. HFor a two tailed test (i.e. Haa:                       ) The p:                       ) The p--value of the test value of the test 

is the area under the Student's T distribution in the double taiis the area under the Student's T distribution in the double tails ls 
beyond beyond --ttss and and ttss. . 

•• Definition (p. 238): The pDefinition (p. 238): The p--value for a hypothesis test is the value for a hypothesis test is the 
probability, computed under the condition that the null probability, computed under the condition that the null 
hypothesis is true, of the test statistic being at least as extrhypothesis is true, of the test statistic being at least as extreme eme 
or more extreme as the value of the test statistic that was or more extreme as the value of the test statistic that was 
actually obtained [from the data].actually obtained [from the data].

0 ts-ts

( ) 021 ≠− μμ

Hypothesis Testing: #3 PHypothesis Testing: #3 P--value value 
What this means is that we can think of the pWhat this means is that we can think of the p--value as a measure of value as a measure of 
compatibility between the data and Hcompatibility between the data and Hoo

•• a a large plarge p--valuevalue ((close to 1) indicates that close to 1) indicates that ttss is near the center is near the center 
(data support H(data support Hoo) ) 

•• a a small psmall p--valuevalue (close to 0) indicates that (close to 0) indicates that ttss is in the tail (data do is in the tail (data do 
not support Hnot support Hoo))

Hypothesis Testing: #3 PHypothesis Testing: #3 P--valuevalue

Where do we draw the line?Where do we draw the line?
•• how small is small for a phow small is small for a p--value?value?

The threshold value on the pThe threshold value on the p--value scale is called the significance value scale is called the significance 
level, and is denoted by level, and is denoted by aa

•• The significance level is chosen by whomever is making the The significance level is chosen by whomever is making the 
decision (BEFORE THE DATA ARE COLLECTED!)decision (BEFORE THE DATA ARE COLLECTED!)
•• Common values for  include 0.1, 0.05 and 0.01Common values for  include 0.1, 0.05 and 0.01

Rules for making a decision:Rules for making a decision:
If p If p << aa then reject Hthen reject Hoo (statistical significance)(statistical significance)

If p > If p > aa then fail to reject Hthen fail to reject Hoo (no statistical significance)(no statistical significance)

Hypothesis Testing: #3 PHypothesis Testing: #3 P--valuevalue

ExampleExample: Cholesterol medication (cont: Cholesterol medication (cont’’))

Find the pFind the p--value that corresponds to the results of value that corresponds to the results of 
the cholesterol lowering medication experiment the cholesterol lowering medication experiment 
We know from the previous slides that t = We know from the previous slides that t = --0.716 0.716 
(which is close to 0) (which is close to 0) 
This means that the pThis means that the p--value is the area under the value is the area under the 
curve beyond curve beyond ++ 0.716 with 18 0.716 with 18 dfdf..

Hypothesis Testing: #3 PHypothesis Testing: #3 P--valuevalue

Example: Cholesterol medication (contExample: Cholesterol medication (cont’’))

Using Using SOCRSOCR we can find the area under the curve we can find the area under the curve 
beyond beyond ++ 0.716 with 18 0.716 with 18 dfdf to be:to be:

p > 2(0.2) = 0.4p > 2(0.2) = 0.4

NOTE, when Ha is      , 
the p-value is the area 
beyond the test 
statistic in BOTH tails.

≠

Hypothesis Testing: #4 ConclusionHypothesis Testing: #4 Conclusion
Example: Cholesterol medication (contExample: Cholesterol medication (cont’’))

Suppose the researchers had set   Suppose the researchers had set   αα = 0.05= 0.05
Our decision would be to fail to reject Ho because p > 0.4 Our decision would be to fail to reject Ho because p > 0.4 
which is > 0.05which is > 0.05
(#4)  CONCLUSION: Based on this data there is (#4)  CONCLUSION: Based on this data there is no no 
statistically significantstatistically significant difference between true meandifference between true mean
cholesterolcholesterol of of the medication and placebo groupsthe medication and placebo groups (p > 0.4).(p > 0.4).

In other words the cholesterol lowering medication does In other words the cholesterol lowering medication does 
not seem to have a significant effect on cholesterol.not seem to have a significant effect on cholesterol.

•• Keep in mind, we are saying that we couldn't provide Keep in mind, we are saying that we couldn't provide 
sufficient evidence to show that there is a significant sufficient evidence to show that there is a significant 
difference between the two difference between the two populationpopulation means.means.
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1. 1. How sensitive is the twoHow sensitive is the two--sample sample tt--test to nontest to non--
Normality in the data?Normality in the data? (The 2(The 2--sample Tsample T--tests and tests and 
CICI’’s are even more robust than the 1s are even more robust than the 1--sample tests, sample tests, 
against nonagainst non--Normality, particularly when the Normality, particularly when the 
shapesshapes of the 2 distributions are similar and of the 2 distributions are similar and 
nn11=n=n22=n, even for small n, remember =n, even for small n, remember dfdf= = nn11+n+n22--2.2.

3. Are there 3. Are there nonparametricnonparametric alternatives to the alternatives to the twotwo--
sample tsample t--testtest? ? ((WilcoxonWilcoxon rankrank--sumsum--test, Manntest, Mann--WitneyWitney test, test, 
equivalent tests, same Pequivalent tests, same P--values.)values.)

4. What 4. What differencedifference is there between the is there between the quantities quantities 
tested and estimatedtested and estimated by the by the twotwo--sample sample tt--
proceduresprocedures and the and the nonparametricnonparametric equivalent? equivalent? 
(Non(Non--parametric tests are based on ordering, not size, of parametric tests are based on ordering, not size, of 
the data and hence use median, not mean, for the the data and hence use median, not mean, for the 
average. The equality of 2 means is tested and CI(average. The equality of 2 means is tested and CI(μμ11

~~-- μμ11
~~).).

Comparing two means for independent samplesComparing two means for independent samples

An fMRI study of N subjectsAn fMRI study of N subjects: The point in the time : The point in the time 
course of maximal activation in the course of maximal activation in the rostralrostral and and 
caudal medial caudal medial premotorpremotor cortex was identified, cortex was identified, 
and the percentage changes in response to the and the percentage changes in response to the gogo
and and nono--gogo tasks from the rest state measured. tasks from the rest state measured. 
Similarly the points of maximal activity during Similarly the points of maximal activity during 
thethe gogo and and nono--gogo task were identified in the task were identified in the 
primary motor cortex. Paired tprimary motor cortex. Paired t--test comparisons test comparisons 
between the between the gogo and and nono--gogo percentage changes percentage changes 
were performed across subjects for these regions were performed across subjects for these regions 
of maximum activity. of maximum activity. 

Paired ComparisonsPaired Comparisons

Paired dataPaired data

We have to distinguish between We have to distinguish between independentindependent
and and relatedrelated samples because they require samples because they require 
different methods of analysisdifferent methods of analysis..
Paired data is an example of related data. Paired data is an example of related data. 
With paired data, we analyze the differencesWith paired data, we analyze the differences
•• this converts the initial problem into a onethis converts the initial problem into a one--

sample problem.sample problem.
The The sign testsign test and and WilcoxonWilcoxon rankrank--sumsum test are test are 
nonparametric nonparametric alternativesalternatives to the andto the and paired paired tt--
testtest, and , and independent independent tt--testtest, , respectively.respectively.

The The WilcoxonWilcoxon--MannMann--WhitneyWhitney
Also known as the Also known as the rank sum testrank sum test
http://http://www.socr.ucla.edu/Applets.dir/WilcoxonRankSumTable.htmlwww.socr.ucla.edu/Applets.dir/WilcoxonRankSumTable.html

This hypothesis test is This hypothesis test is also used to compare two independent also used to compare two independent 
samplessamples

•• This procedure is different from the This procedure is different from the independent t testindependent t test
because it is because it is valid even if the population distributions are valid even if the population distributions are 
not normalnot normal
•• In other words, we can use this test as a fair substitute when In other words, we can use this test as a fair substitute when 
we cannot not meet the required normality assumption of the t we cannot not meet the required normality assumption of the t 
test test 

WMW is called a WMW is called a distributiondistribution--freefree type of test or a nontype of test or a non--
parametric test parametric test 

•• This test doesn't focus on a parameter like the mean, instead This test doesn't focus on a parameter like the mean, instead 
it examines the distributions of the two groupsit examines the distributions of the two groups

The The WilcoxonWilcoxon--MannMann--WhitneyWhitney
Keep in mind that this is another hypothesis test, there are fouKeep in mind that this is another hypothesis test, there are four major r major 
parts to considerparts to consider
#1 The hypotheses:#1 The hypotheses:

•• HHoo:  The population distributions of Y:  The population distributions of Y11 and Yand Y22 are the sameare the same
•• HHaa: The population distributions of Y: The population distributions of Y11 and Yand Y22 are the differentare the different

This could also be directional: distribution of YThis could also be directional: distribution of Y11 is less than Yis less than Y22; ; 
OR distribution of YOR distribution of Y11 is greater than Yis greater than Y22

#2 The test statistic:#2 The test statistic:
•• denoted by Udenoted by Uss

•• measures the degree of separation between the two samplesmeasures the degree of separation between the two samples
a large value of Ua large value of Uss indicates that the two samples are well indicates that the two samples are well 

separated with little overlapseparated with little overlap
a small value of Ua small value of Uss indicates that the two samples are not well indicates that the two samples are not well 

separated with much overlapseparated with much overlap

The The WilcoxonWilcoxon--MannMann--WhitneyWhitney

#3 The p#3 The p--value:value:
••http://http://www.socr.ucla.edu/Applets.dir/WilcoxonRankSuwww.socr.ucla.edu/Applets.dir/WilcoxonRankSu
mTable.htmlmTable.html
•• Method very similar to using the t tableMethod very similar to using the t table

find the appropriate row and then search for a find the appropriate row and then search for a 
number closest to the test statisticnumber closest to the test statistic

•• dondon’’t need to worry about doubling the pt need to worry about doubling the p--value for a twovalue for a two--
tailed test (assuming we go to the right row header)tailed test (assuming we go to the right row header)

#4 Conclusion:#4 Conclusion:
•• Similar to the conclusion of an independent t test, but not Similar to the conclusion of an independent t test, but not 
linked to any parameter (for example the difference in linked to any parameter (for example the difference in 
means)means)
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The The WilcoxonWilcoxon--MannMann--WhitneyWhitney
The Method:The Method:

•• Step 1:  Arrange the data in increasing orderStep 1:  Arrange the data in increasing order
•• Step 2:  Determine KStep 2:  Determine K11 and Kand K22

KK11: for each observation in group 1, count the number of : for each observation in group 1, count the number of 
observations in the second group that are smaller.  Use 1/2 for observations in the second group that are smaller.  Use 1/2 for tied tied 
observations. Kobservations. K11 is the sum of these ranks.is the sum of these ranks.

KK22: for each observation in group 2, count the number of : for each observation in group 2, count the number of 
observations in the first group that are smaller.  Use 1/2 for tobservations in the first group that are smaller.  Use 1/2 for tied ied 
observations. Kobservations. K22 is the sum of these ranks.is the sum of these ranks.

CHECK:  if you have done the procedure correctly KCHECK:  if you have done the procedure correctly K11 + K+ K22 = n= n11nn22

•• Step 3:  Step 3:  If the test is nonIf the test is non--directional then Udirectional then Uss is the larger of Kis the larger of K11 and Kand K22.  .  
If the test is directional then UIf the test is directional then Uss is the K that jives with the direction of His the K that jives with the direction of Haa
((if Hif Haa is Yis Y11>Y>Y22 then Uthen Uss = K= K11, , if Hif Haa is Yis Y11<Y<Y22 then Uthen Uss = K= K22))
••Step 4:  Determine the critical valueStep 4:  Determine the critical value

n = larger of nn = larger of n11 and nand n22

n' = smaller of nn' = smaller of n11 and nand n22

•• Step 5:  Bracket the pStep 5:  Bracket the p--valuevalue

The The WilcoxonWilcoxon--MannMann--WhitneyWhitney

ExampleExample:: The urinary fluoride concentration (The urinary fluoride concentration (ppmppm) was measured both ) was measured both 
for a sample of livestock grazing in an area previously exposed for a sample of livestock grazing in an area previously exposed to fluoride to fluoride 
pollution and also for a similar sample of livestock grazing in pollution and also for a similar sample of livestock grazing in an unpolluted an unpolluted 
area.area.

Does the data suggest that the fluoride concentration for livestDoes the data suggest that the fluoride concentration for livestock grazing ock grazing 
in the polluted region is larger that for the unpolluted region?in the polluted region is larger that for the unpolluted region? Test using  Test using  
αα = 0.01. = 0.01. 

Polluted Unpolluted 
21.3 10.1 
18.7 18.3 
21.4 17.2 
17.1 18.4 
11.1 20.0 
20.9  
19.7  

 

The The WilcoxonWilcoxon--MannMann--WhitneyWhitney

Check Normality:Check Normality:
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The The WilcoxonWilcoxon--MannMann--WhitneyWhitney

Conditions for the WMW:Conditions for the WMW:
•• Data are from random samplesData are from random samples
•• Observations are independentObservations are independent
•• Samples are independentSamples are independent

Remember: normality will not matter for this testRemember: normality will not matter for this test

WilcoxonWilcoxon--MannMann--Whitney vs. Independent TWhitney vs. Independent T--TestTest

Both try to answer the same question, but treat data differentlyBoth try to answer the same question, but treat data differently..
•• WW--MM--W uses rank ordering W uses rank ordering 

Pro: doesnPro: doesn’’t depend on normality or population parameterst depend on normality or population parameters
Con: distribution free lacks power because it doesn't use all tCon: distribution free lacks power because it doesn't use all the he 

info in the datainfo in the data
•• TT--test uses actual Y valuestest uses actual Y values

Pro : Incorporates all of the data into calculationsPro : Incorporates all of the data into calculations
Con : Must meet normality assumption Con : Must meet normality assumption 

•• neither is superior neither is superior 
SoSo……

•• If your data are normally distributed use the tIf your data are normally distributed use the t--testtest
•• If your data are not normal use the WMW testIf your data are not normal use the WMW test

The Sign TestThe Sign Test
http://http://www.socr.ucla.edu/htmls/SOCR_Analyses.htmlwww.socr.ucla.edu/htmls/SOCR_Analyses.html

The The sign test is a nonsign test is a non--parametric alternative of the parametric alternative of the 
paired t testpaired t test
We use the sign test when pairing is appropriate, but we We use the sign test when pairing is appropriate, but we 
cancan’’t meet the normality assumption required for the t testt meet the normality assumption required for the t test
The sign test is not very sophisticated and therefore quite The sign test is not very sophisticated and therefore quite 
easy to understandeasy to understand
Sign test is also based on differencesSign test is also based on differences

d = Yd = Y11 –– YY22

The information used by the sign test from this The information used by the sign test from this 
difference is the sign of d (+ or difference is the sign of d (+ or --))
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The Sign TestThe Sign Test

#1 Hypotheses:#1 Hypotheses:
HHoo: the distributions of the two groups is the same: the distributions of the two groups is the same
HHaa: the distributions of the two groups is different : the distributions of the two groups is different 
or Hor Haa: the distribution of group 1 is less than group 2: the distribution of group 1 is less than group 2
or Hor Haa: the distribution of group 1 is greater than group 2: the distribution of group 1 is greater than group 2

#2 Test Statistic B#2 Test Statistic Bss

The Sign Test The Sign Test -- MethodMethod
#2 Test Statistic B#2 Test Statistic Bss::

1.  Find the sign of the differences1.  Find the sign of the differences
2.  Calculate N2.  Calculate N++ and Nand N--

3. If H3. If Haa is nonis non--directional, Bdirectional, Bss is the larger of Nis the larger of N++ and Nand N--

If HIf Haa is directional, Bis directional, Bss is the N that jives with theis the N that jives with the
direction of Ha:direction of Ha:
if Hif Haa: Y: Y11<Y<Y22 then we expect a larger Nthen we expect a larger N--,,
if Hif Haa: Y: Y11>Y>Y22 then we expect a larger Nthen we expect a larger N++..

NOTE:  If we have a difference of zero it is not included in NOTE:  If we have a difference of zero it is not included in 
NN++ or Nor N--, therefore , therefore nndd needs to be adjustedneeds to be adjusted

The Sign TestThe Sign Test

#3 p#3 p--value:value:
Similar to the WMWSimilar to the WMW
Use the number of pairs with Use the number of pairs with ““quality quality 
informationinformation””

#4 Conclusion:#4 Conclusion:
Similar to the Similar to the WilcoxonWilcoxon--MannMann--Whitney TestWhitney Test
Do NOT mention any parameters!Do NOT mention any parameters!

The Sign TestThe Sign Test
ExampleExample: 12 sets of : 12 sets of identical identical 

twinstwins are given psychological are given psychological 
tests to determine whether the tests to determine whether the 
first born of the set tends to first born of the set tends to 
be more aggressive than the be more aggressive than the 
second born.  Each twin is second born.  Each twin is 
scored according to scored according to 
aggressiveness, a higher aggressiveness, a higher 
score indicates greater score indicates greater 
aggressiveness.  aggressiveness.  

Because of the natural Because of the natural 
pairing in a set of twins these pairing in a set of twins these 
data can be considered data can be considered 
paired.paired.

Set 1st born 2nd born Sign of d
1 86 88 - 
2 71 77 - 
3 77 76 + 
4 68 64 + 
5 91 96 - 
6 72 72 Drop 
7 77 65 + 
8 91 90 + 
9 70 65 + 

10 71 80 - 
11 88 81 + 
12 87 72 + 

 

The Sign Test (contThe Sign Test (cont’’))
Do the data provide sufficient evidence to indicate that Do the data provide sufficient evidence to indicate that 

the first born of a set of twins is more aggressive than the the first born of a set of twins is more aggressive than the 
second?  Test using second?  Test using αα = 0.05.= 0.05.

••HHoo:  The aggressiveness is the same for 1:  The aggressiveness is the same for 1stst born and born and 
22ndnd born twinsborn twins
••HHaa:  The aggressiveness of the 1:  The aggressiveness of the 1stst born twin tends to born twin tends to 
be more than 2be more than 2ndnd born.born.
•• NOTE: Directional Ha (weNOTE: Directional Ha (we’’re expecting higher re expecting higher 
scores for the 1scores for the 1stst born twin), this means we predict that born twin), this means we predict that 
most of the differences will be positivemost of the differences will be positive
••NN++ = number of positive = 7= number of positive = 7
••NN-- = number of negative = 4= number of negative = 4
••nndd = number of pairs with useful info = 11 = number of pairs with useful info = 11 

The Sign TestThe Sign Test

BBss = N= N+ + = 7= 7 (because of directional alternative) (because of directional alternative) 
P > 0.10, Fail to reject HP > 0.10, Fail to reject Hoo

CONCLUSION:  These data show that the CONCLUSION:  These data show that the aggressivenessaggressiveness of of 11stst born born 
twinstwins is is not significantly greaternot significantly greater than the than the 22ndnd born twinsborn twins (P > 0.10).(P > 0.10).

X~B(11, 0.5)
P(X>=7)=0.2744140625
http://socr.stat.ucla.edu/htmls/SOCR_Distributions.html (Binomial Distribution)
http://socr.stat.ucla.edu/Applets.dir/Normal_T_Chi2_F_Tables.htm
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Phonological vs. RapidPhonological vs. Rapid--Naming differences using fMRINaming differences using fMRI

Y = βo + β1X1 + β2X2 + β3X1X2 + ε
↑ ↑ ↑ ↑

Thickness Δ PHONO Δ RAN Δ interaction

β1 – unique 
contribution 
of PHONO

β2 – unique 
contribution 
of RAN

Approximation of the Fisher Sign Test using the normal Approximation of the Fisher Sign Test using the normal 
distributiondistribution

<0.002<0.002--3.453.45620620353353267267Medial occipitalMedial occipital

0053533,5683,5681991993,3693,369Medial parietalMedial parietal

0046464,6274,6277627623,8643,864Medial Medial 
ventrofrontalventrofrontal

0058583,5203,52036363,4843,484Medial Medial dorsofrontaldorsofrontal

0011111113,33613,33625225213,08313,083TemporalTemporal

0042423,3813,3814754752,9052,905Lateral occipitalLateral occipital

0062629,3619,3611,7011,7017,6597,659Lateral parietalLateral parietal

00979714,30014,3001366136612,93412,934Lateral Lateral 
ventrofrontalventrofrontal

0079798,0828,0824814817,6017,601Lateral Lateral dorsofrontaldorsofrontal

ppZZTotalTotalNegNegPosPosLeftLeft ROIsROIs

Lu, L.H., Leonard, C.M., Dinov, I.D., Thompson, P.M., Kan, E., Jolley, J., Toga, A.W., & 
Sowell, E.R. (2006, February). Differentiating between phonological processing and rapid 
naming using structural MRI. Paper presented at the 34th Annual Meeting of the 
International Neuropsychological Society, Boston, MA. 

CLT

Sampling Distribution

of the Sample Mean

Using the Sample Mean

Let X1,…, Xn be a random sample from a 
distribution with mean value  μ and standard 
deviation σ .Then

( )
( ) 22

1.

2.

X

X

E X

V X n

μ μ

σσ

= =

= =

In addition, with To = X1 +…+ Xn,
( ) ( ) 2,  , and .

oo o TE T n V T n nμ σ σ σ= = =

Normal Population Distribution

Let X1,…, Xn be a random sample from a 
normal distribution with mean value   μ and 
standard deviation   σ Then for any n,        is 
normally distributed, as is To.

http://www.socr.ucla.edu/Applets.dir/SamplingDistributionApplet.html

X
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The Central Limit Theorem

Let X1,…, Xn be a random sample from a 
distribution with mean value     and variance       
Then if n sufficiently large,      has 
approximately a normal distribution with

X
μ 2.σ

22 and ,X X n
σμ μ σ= = and To also has

approximately a normal distribution with
2,  .

o oT Tn nμ μ σ σ= =
n, the better the approximation.

The larger the value of

The Central Limit Theorem

μ

Population 
distribution

small to 
moderate n
X

large nX

Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Show Sampling Distribution Simulation Applet:
http://www.socr.ucla.edu/Applets.dir/SamplingDistributionApplet.html

Central Limit Theorem Central Limit Theorem –– heuristic formulationheuristic formulation

Let                              be a sequence of independent
observations from one specific random process. Let    
and                      and                        and both be 
finite (                           ). If                    , sample-avg,

Then      has a distribution which approaches 
N(μ, σ2/n) , as            .

{ },...,...,X,XX
k21

μ=)(XE σ=)(XSD
∞<∞<< || ;0 μσ ∑
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nn
X

1

1

X
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Central Limit Theorem Central Limit Theorem ––
theoretical formulationtheoretical formulation

For the sample mean calculated from a random For the sample mean calculated from a random 
sample, E(    )  = sample, E(    )  = μ μ and SD(      ) =          , and SD(      ) =          , 
provided provided 

= (X= (X11+X+X22+ + …… + + XXnn)/n)/n, and , and XXkk~N(~N(μμ, σ, σ).). ThenThen
~ N(~ N(μ,      μ,      ). And variability from sample to sample in ). And variability from sample to sample in 

the the samplesample--meansmeans is given by the variability of the is given by the variability of the 
individual observations divided by the square root of the individual observations divided by the square root of the 
samplesample--size. In a way, size. In a way, averaging decreases variabilityaveraging decreases variability..

X n
σ

Recall we looked at the sampling distribution of

n
σ

X 

X 

X 
X 

The weak law of large numbers states that if X1, X2, X3, ... is an infinite sequence
of random variables, where all the random variables have the same expected value
μ and variance σ2; and are uncorrelated (i.e., the correlation between any two of 
them is zero), then the sample average

converges in probability to μ. Somewhat less tersely: For any positive number ε, no 
matter how small, we have

Proof by Chebyshev’s inequality!

LLN Activity:
http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_LawOfLargeNumbers
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Law of Large Numbers (LLN)Law of Large Numbers (LLN)


