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Sample spaces and events

= A sample space, S, for a random experiment is the set of

of the experiment.

» E.g., Roll a pair of fair Hexagonal dice, S=?
= Aneventis a
« E.g., E = {an even sum turns up}

= An event occurs if

making up that event

« E.g., E occurs if total sum is one of: {2, 4, 6, 8, 10 or

12}

» P(E)=?
eRV.: X=D;+D,:S >R
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Axioms of Probability

= Let P(.) be a function, that
has these 3 properties

1. for any event E, 0<P(E) <1.
2.P(S) =1, where S is the
sample space.

PIU
3. For any finite (or infinite)
collection of mutuall
y P U

exclusive events =2

N

k=1

= Any function that satisfies
the above three axioms is a
probability function.




The complement of an event Properties of Probability Functions

= The of an event A, denoted 4, A, A", 1.P(E€) = 1- P(E)

if and only if A d t . . .
R 08 Not occlr 2.I1f E1 and E2 are logically equivalent, then

B P(E1)=P(E2).

@ @ @ « E1: Not all cars are worth > $20K.

(a) Sample space con- (b) Event A shaded (©) 4 shaded  E2: Some cars are worth < $20K.
taining event 4
Then P(E1)=P(E2).
3.P(E1 N E2) < min (P(E1), P(E2)).

Probability and Venn diagrams - type of skin cancer -
an example of laws of conditional probabilities

P(A,UA,U...UA )=

SUPA)-Y P4 N4,)+
Y PANAN N4 )+

+-1 P4 N4.N -NA4)

Contingency table based on Melanoma histological type and its location

Remarks ...
= In pr(A | B), how should the symbol “ | ” is read

Conditional Probability

The conditional probability of A occurring given that

R = How do we interpret the fact that: The event A always
B occurs is given by

occurs when B occurs? What can you say about )?

(A and B)

pr(-
pl'( B)

Suppose we select one out of the 400 patients in the study and we
want to find the probability that the ca on the

given that it is of type : P ="73/125 = P(C. on Extremities | Nodular)

= When drawing a for a particular problem,
how do you know what events to use for the first fan of
branches and which events to use for the subsequent
branching? (at each branching stage condition on all the info a\/awlable‘f__?

to here. E.g., at first branching use all simple events, no prior is availablet At
3-rd branching condition of the previous 2 events, etc.).

#nodular patients with cancer on extremities
#nodular patients




Statistical independence

= Events A and B are if
knowing whether B has occurred gives no new
information about the chances of A occurring,

i.e. if pr(A | B) =pr(A)
= Similarly, P(B | A) = P(B), since
P(BIA)=P(B & A)/P(A) = P(AMB)P(B)/P(A) = P(B)
= If Aand B are , then

Formula summary cont.

Multiplication Rule under independence:

= If A and B are independent events, then
P(A N B) = P(A) P(B)

= If A, A, ..., A, are mutually independent,

P(A, N A, N...NA)=P(A)PA,) .. P(A)

Bayesian Rule

If {A;, A,, ..., A} are a non-trivial partition of the
sample space (mutually exclusive and UA;=S,
P(A;)>0) then for any non-trivial event and B (
P(B)>0)

P(A; | B) = P(A;(1B)/ P(B) = [P(B | A;) xP(A)]/
i _ P(B|A4)xP(4)
> P(B|4)P(4,)

Inverting Conditional Probabilities

Law of Total Probability

= If {A, A,, ..., A} are a partition of the sample space
(mutually exclusive and UA;=S) then for any event B

P(B) = P(B|A1)P(Ay) + P(B|Ay)P(A)) +...+ P(B|A,)P(A;)

Bayesian Rule
M D = the test person has the disease.

- P(B| A )P(Ak) T = the test result is positive.
Ex: (Laboratory blood test)

P(4;) =

P(DOT) _ P(T| D)x P(D)
P(T)  P(T| Dyx P(D)+ P(T| D°)x P(D")

_ 0.95%0.005 _0.00475_ o
0.95%0.005+0.01x0.995 0.02465

P(D|T)=




Classes vs. Evidence Conditioning

® Classes: healthy(NC), cancer

® Evidence: positive mammogram (pos), negative
mammogram (neg)

® [fa woman has a positive mammogram result, what is the
probability that she has breast cancer?

P(evidence | class) x P(class)

P(evidence| class) x P(class)
P (cancer ) =0.01 classes

P(class | evidence) =

P(pos | cancer )= 0.8

P( pos | healthy) =0.1 PCP)=PPIOP(C)/P(PIC)xP(C)+ P(P[H)xP(H)
P(C|P)=0.8x0.01 / [0.8x0.01 + 0.1x0.99] = ?
P(cancer | pos)="?

4 Factors affecting the power

The Big Three: Center, Spread and Shape!

*
value of parameter value of parameter

-1 .
value of parameter value of parameter

AN

(a) Unimodal (b) Bimodal (c) Trimodal

A\NEVANVAN

(@) Symmetric (¢) Positively skewed (1) Negatively skewed
(long upper tail) (long lower tail)

JAANVANIAN .

(g) Symmetric (h) Bimodal with gap (i) Exponential shape

Bayesian Rule (diffe
data/example!)

True Disease lec

= 1- P(TC | D) = 0.00025/
TP/(TP+FN) =
TN/(TN+FP) =

EDA
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Center: Central tendency, the middle, as a single number

® Mode: The most frequent score in the distribution.

® Median: The centermost score if there are an odd
number of scores or the average of the two centermost
scores if there are an even number of scores.

® Mean: The sum of all (numeric) observations divided
by the number of scores (arithmetic average).




Variability

Not only interested in a distribution’s middle.
Also interested in its spread (deviation or variability).

Fundamental characteristics of distributions (as models):
- Central tendency

- Variability

- Shape

How can we describe variability with a single number?

Shape: Skewness & Kurtosis

= What do we mean by symmetry and positive
and negative ? Properties?!?

N

~—————; Kurtosis=-"~———-
(N-1)SD" (N-1)SD
Skewness is linearly invariant Sk(aX+b)=Sk(X)
Skewness is a measure of unsymmetry

Kurtosis is (also linearly invariant) a measure of

Skewness =

flatness
Both are used to quantify departures from StdNormal
Skewness(StdNorm)=0; Kurtosis(StdNorm)=3

Discrete Distribution Models
http://www.socr.ucla.edu/htmls/SOCR_Distributions.html

Distributions

edu.ucla.stat.SOCR.distributions.BernoulliDistribution
Basic Principles for probability modeling and computation edu.ucla.stat.SOCR. distributions.BinomialDistribution
edu.ucla.stat.SOCR.distributions.BirthdayDistribution
L edu.ucla.stat.SOCR.distributions.DieDistribution
Distributions R edu.ucla.stat.SOCR.distributions. DiscreteArcsineDistribution
(http://www.socr.ucla.edu/htmls/SOCR_Distributions.html) edu.ucla.stat.SOCR.distributions.DiscreteUniformDistribution
Experiments & Demos edu.ucla.stat.SOCR.distributions.GeometricDistribution
(http://www.socr.ucla.edu/htmls/SOCR_Experiments.html) edu.ucla.stat.SOCR.distributions. HypergeometricDistribution
edu.ucla.stat.SOCR.distributions.NegativeBinomialDistribution
edu.ucla.stat.SOCR.distributions.PointMassDistribution
+ Hypothesis Testing & Confidence intervals edu.ucla.stat.SOCR.distributions. PoissonDistribution
o Parameter Estimation edu.ucla.stat.SOCR.distributions.PokerDiceDistribution
3 . P edu.ucla.stat.SOCR.distributions. WalkMaxDistribution
+  Parametric vs. Non-parametric inference edu.ucla.stat.SOCR.distributions. WalkPositionDistribution
(http vww.socr.ucla.edu/htmls/SOCR_Analyses.html)

Law of Total Probability & Bayesian Theorem

Statistical Inference

s sodurexy
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. Linear modeling

)

» Simple linear regression, Multiple linear regression
ANOVA & GLM

Example: Hypergeometric Distribution Hypergeometric Distribution

If X is the number of S’s in a completely

random sample of size n drawn w/o

replacement from a population consisting

of M §’s and (N — M) F’s, then the

probability distribution of X, called the

. Each individual can be characterized as a success (S) or hypcrgcomctric distribution, is givcn by
failure (F), and there are M successes in the population. M\ N-M

The three assumptions that lead to a

. The population or set to be sampled consists of
individuals, objects, or elements (a finite population).

. A sample of n individuals is selected without replacement , X n—x
. I . . plac P(X=x)=h(x;n,M,N)=~——>—2
in such a way that each subset of size 7 is equally likelym, N
to be chosen.
n




Hypergeometric
Mean and Variance

N

E(X):n~% V(X):[]}\\[/_”j-n-M

— HyperGeometric Distribution &
Binomia proximation to HyperGeometric

Hypergeometric Distribution & Binomial
= Binomial approximation to Hypergeometric

}’\1] is small (usually < 0.1), then %z P
approaches
M/N=p

Ex: 4,000 out of 1 residents are against a new tax.
15 residents are selected at random and sur

HyperGeom(x;N,n,M) Bin(x;n, p)

P(at most 7 favor the new tax) = ?
http://socr.stat.ucla.edu/Applets.dir/Normal T Chi2 F Tables.htm

HyperGeometric and Binomial Experiment/Distributions

Functional Brain Imaging - Positron Emission
Tomography (PET)

Annihilation detection

ucmed.buffalo.edu

Computation of a
Binomial pmf

b, p) =1 1= )"~
0<x<n

Used to model counts - number of arrivals (i)
on a given interval ...

The Poisson distribution is also sometimes
referred to as the .
Examples of Poisson distributed variables are
number of accidents per person, number of
sweepstakes won per person, or the number of
catastrophic defects found in a production
process.

Functional Brain Imaging -
Positron Emission Tomography (PET)

Isotope Energy (MeV) Range(mm) 1/2-life Appl.
0.96 1.1 20 min receptors
1.7 1.5 2 min 2
0.6 1.0 110min ne gy
~2.0 1.6 4.5days oncology




Poisson Distribution - Mean

Used to model counts - number of arrivals (k) .
on a given interval ... = A ), then =Ae”
k!

1

= Variance of Y, 2, since
/1/\ -1
;(Y):Z(l— =..=4
Mean of Y, , since k=0
= o 7 o s F le, that Y d tes th
Jre Ak . 2+ or example, suppose tha enotes the

k=0 . i k! o (k=1)! for the UCLA Bruins men's

i ] N o basketball team. Then a Poisson distribution
=Je Z 1! =Je Z = e =1 7 with mean=4 may be used to model Y .
n— .

k=1 k=0 ]‘

is that approximation is good if:
Suppose we have a sequence of

models, with lim(n p,) = A, as n->infinity.
For each O<=y<=n, if Y ~ then

n>=100
p<=0.01

P(Y, =)= (ij,,“’(l— p)"” =h p <=20

e But this converges to: Then, - Poisson(A)
—A Validate using:

n p "(1 Py —)/17 http://www.socr.ucla.edu/htmls/SOCR_Experiments.ht
v n n 1——>%0 )" ml

Binomial, HyperGeometric and Poisson Experiments

nx py——>si

Thus, - Poisson(A)

Why bother discussing distributions?
= Provide a rich source of (analytical)

= General may be
studies without regard to the underlying
S molecular, physiological, genotypic or
n Y= , find P(Y>2). Note phenotypic properties or characteristics of
that Z~Poisson() =n p =25,000 x 0.0001=2.5) the phenomenon.

2 9 5 = Easy to to data and
using the model instead of limited

= Suppose P(Disease) = 0.0001=10“. Find the
probability that a village of 25,000 people has
|

P(Z>2)=1-P(Z<2)= e

R = Low computational costs ( )
| = What else?

|
o! = Example:




Continuous Distribution Models

distributions.
ributions.
ributions.
Distribution, edu.u

Continuous Uniform Di
Exponential Distributio

Definition of the

er's F Distribution, edu.ucla.:

The Normal Distribution

A normal density curve can be summarized with the
following formula:

Every normal curve uses this formula, what makes them different

is what gets plugged in for x# and o

Each normal curve is centered at x and the width depends on o

('small = tall, large = short/wide).

d-dimensional Gaussian distributions with mean vector x and
covariance matrix 2':

plx)=

, in general

The expected value:

E(X) = Z x P(x)|= [xP(x)dx
all x all X

= Sum of ( times

Relation among Distributions

Normal (X

M,0°

Normal (Z)

Weibull
7.h

Lognormal (Y)

0’

Uniform(X)
a.

Beta Uniform(U)
a,p 0,1

The Normal Distribution

= Each normal curve is characterized by it's zand o

n-3cu H-C W MO p+20u+30 H=20 u

= If random variable Y is normal with mean x and standard
deviation o, we write
. Y~N(u,o?)

Example

In the at least one of each or at most 3 children
example, where X ={number of Girls} we have:

E(X)= ZxP(x)

=O><l+l><§+2><l+3><l
8 8 8 8

Cauchy
0,1)

Y

H+20
u-3c U-0G M+o pt3o




The expected value and population

Population
mean

M= E(X) is called the of the distribution of X. The

sd(X) = YE[(X - )]

My = E(X) is usually called the

M s the point where the bar graph of P(X = x) balances. Note that if X is a RV, then is also a
RV, and so is . Hence, the expectation,

E |, makes sense.

Population For any random variable X

Expected value:
P E(X)= ZxP(X = ¥)

X

Variance ar(X )= Z(\ —E(x))P(X =x)

x

= E(aX +b) =a E(X) +b and SD(aX +b) = | a | SD(X)

Standard Deviation

SD(X) = \[Var(X) Z(,\‘ —E(x)P(X =x)

Chebyshev’s Theorem Chebyshev’s Theorem

= Givesa for the probability that a value of
= Applies to all distributions where o, u< o a random variable, with finite variance, lies within a
= Pafnuty Chebyshev (MacbHyTnii Ye6biwes) (1821 - 1894). certain distance from the variable’s mean;

AKA Chebyshov, Tchebycheff or Tschebyscheff. equivalently, the theorem provides an for
the probability that values lie outside the same
distance from the mean. The theorem applies even to

1 non "bell-shaped” distributions and puts bounds on how
X >1 much of the data is or is not "in the middle".
l((j < </l+l«ﬁ 17 5 Let X be a random variable with mean p and finite
k variance o2. Now, for any real number k > 0,
1
2
k

= Only the cases k > 1 provide useful information. Why? =

o

PQX7;1\<ka‘)217%c>P[Msz3—
k= y




Markov’s & Chebyshev’s Inequalities

n . (Markov was a student of Chebyshev)

If Y>20& d>0 = P()"ZJ)S@

|' d, if Y>d
I 0, otherwise

Then: E(Y)>E(X)>dxP{Y>d|

Since, if X =1 Note Y >0, X >0

LetY = ‘X —E(X)| andd =k® withk >0=
P(Y>d)=P(X - EX)>k?) <

P( X -E(X) 2 k) < %:P(\x-u(xn; kxn)i%

Coefficient of Variation

= Ratio of the standard deviation to the mean,
expressed as a percentage

= Measurement of relative dispersion

cr.=2(100)
Y7,
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Chebyshev’s Theorem

= Applies to all
distributions, where mean

NEies <) num o
Semekml Distance from alues Falling

Deviations the Mean Within Distance

) UE20 1-1/22=0.75
UE3o 1-1/32=10.89
utdo

Minimum Pro

1-1/42

Coefficient of Variation - an
example

s A is a characteristic of process,
population or distribution
» E.g., mean, 15t quartile, SD, min, max, range

skewness, 97t percentile, etc.

= An is an abstract rule for
calculating a quantity (or parameter) from
sample data.

= An is the value obtained when real
data are plugged-in the estimator rule. (s

)

>

10



