
UCLA Stat 130D
Statistical Computing and Visualization in C++

Instructor: Ivo Dinov, Asst. Prof. in
Statistics / Neurology

University of California, Los Angeles, Winter 2007
http://www.stat.ucla.edu/~dinov/courses_students.html

7

Templates for More Abstraction

Templates for Algorithm
Abstraction

Templates for Functions

Templates for Data Abstraction
Syntax for Class Templates

8

Templates for More Abstraction
The C++ template facility provides the ability to
define functions and classes that have parameter
that carry type information. This is the generic
facility of C++.
A generic facility allows code to be written once
then reused with different types.
The classes and functions you will define in this
chapter are much more general than before.
It is widely held that a generic facility is one of the
most important ideas in programming.

9

Templates for Algorithm Abstraction(1 of 2)

In many functions that are written, the algorithm is more
general than the implementation.
This swap algorithm only works for int values:
void swap (int & v1, int & v2)

{

int temp = v1;

v1 = v2;

v2 = temp

}

If int is replaced by double, we have another valid swap
routine.
In fact, any type can be used if the type has a copy
constructor and assignment defined.
Do you see where these are needed?

10

Templates for Algorithm Abstraction(2 of 2)

In many functions that are written, the algorithm is
more general than the implementation.
This swap algorithm only works for int values:
void swap (int & v1, int & v2)

{

int temp = v1;

v1 = v2;

v2 = temp

}

If int is replaced by double, we have another valid
swap routine.
In fact, any type can be used if the type has a copy
constructor and assignment defined.
Do you see where these are needed?

//A Function Template - Program to demonstrate a function template.
#include <iostream>
using namespace std;
//Interchanges the values of variable1 and variable2.
template<class T>
void swap_values(T& variable1, T& variable2)
{ T temp;

temp = variable1;
variable1 = variable2;
variable2 = temp;

}
int main()
{ int integer1 = 1, integer2 = 2;

cout << "Original integer values are " << integer1 << " " << integer2 <<
endl;

swap_values(integer1, integer2);
cout << "Swapped integer values are " << integer1 << " " << integer2 <<
endl;

char symbol1 = 'A', symbol2 = 'B';
cout << "Original character values are " << symbol1 << " " << symbol2 <<
endl;

swap_values(symbol1, symbol2);
cout << "Swapped character values are " << symbol1 << " " << symbol2 <<
endl;

t 0

12

Templates for Functions(1 of 3)

shows the syntax for a C++ template function,
swap_values.
The definition and prototype begin with the line

template<class T>
This is called the template prefix. It tells the compiler that
the definition that follows is a template. It also provides a
definition for the type parameter T within the template
definition.
The word class in the template prefix means type.
The template definition provides a definition of the
function for every possible type from which only the
required definition is selected.

13

Templates for Functions(2 of 3)

Calling a template function is easy. Write code as if the
needed definition were present.
When the compiler sees a function call, it searches for a
ordinary function name with a sequence of types in the
parameter list. If a definition that matches the name and
parameter list types is found, that one is used.
If no matches are present, then the compiler uses a
template function definition with the correct number of
parameters. If the compiler can deduce the types of the
type parameters, then the compiler uses the template to
produce a function with the deduced types.
The rules are more complicated, but this is sufficient in
most simple situations.

14

Templates for Functions(3 of 3)
We put the template definition above before the main
function, and used no prototype.
A template function may have a template prototype, but
separating the prototype from the definition is not
usually possible with today's compiler technology.
The safest strategy is to put the template definition in
the same file where it is used, prior to use of the
template.
Most template functions need only one template
parameter.
Use of more than one type parameter is always
possible. Consider, for example:

template <class T1, class T2> 15

Function Template (1 of 2)
The function definition and the function prototype for a function
template are each prefaced with the following:

template<class Type_Parameter>
The prototype (if used) and definition are then the same as
any ordinary function prototype and definition, except that the
Type_Parameter can be used in place of a type.

Example,
template<class T>
void show_stuff(int stuff1, T stuff2, T stuff3);
template<class T>
void show_stuff(int stuff1, T stuff2, T stuff3)
{ cout << stuff1 << endl << stuff2 << endl << stuff3 <<

endl;
}

16

Function Template (2 of 2)

The function given in this example is equivalent to having one function
prototype and one function definition for each possible type name. The
type name is substituted for the type parameter (which is
T in the example here.) For instance consider the following function
call:

show_stuff(2, 3.3, 4.4);
When this function call is executed, the compiler uses the function
definition obtained by replacing T with the type name double. A
separate definition will be produced for each different type for which
you use the template, but not for any types you do not use. Only one
definition should be generated regardless of the number of times you
use the template.
NOTE: Some compilers require special instructions to ensure that only
one copy of the function is generated. You won't see that problem in
this course. 17

Algorithm Abstraction(1 of 2)

As we saw in our discussion of the swap_values function, there is a very

general algorithm for interchanging the values of two variables and this

more general algorithm applies to variables of any type.

Using a function template we were able to express this more general

algorithm in C++. This is a very simple example of algorithm abstraction,

where we say we are using algorithm abstraction we mean that we are

expressing our algorithms in a very general way so that we can ignore

incidental detail and concentrate on the

substantive part of the algorithm. Function template are one feature

of C++ that supports algorithm abstraction.

// A Generic Sorting Function (1 of 2)
// This is file sortfunc.cxx
template<class T>
void swap_values(T& variable1, T& variable2)
{

T temp;
temp = variable1;
variable1 = variable2;
variable2 = temp;

}

template<class T>
int index_of_smallest(const T a[], int start_index, int number_used)
{

T min = a[start_index];
int index_of_min = start_index;
for (int index = start_index + 1; index < number_used; index++)

if (a[index] < min)
{

min = a[index];
index_of_min = index;
//min is the smallest of a[start_index] through a[index]

}
return index_of_min;

}

// A Generic Sorting Function (2 of 2)

template<class T>
void sort(T a[], int number_used)
{
int index_of_next_smallest;
for(int index = 0; index < number_used - 1; index++)

{//Place the correct value in a[index]:
index_of_next_smallest =

index_of_smallest(a, index, number_used);
swap_values(a[index], a[index_of_next_smallest]);

//a[0] <= a[1] <=...<= a[index] are the smallest of the original
array
//elements. The rest of the elements are in the remaining

positions.
}

}

// Using a Generic Sorting Function (1 of 2)
//Demonstrates a generic sorting function.
#include <iostream>
using namespace std;
//The file sortfunc.cxx defines the following function:
//template<class T>
//void sort(T a[], int number_used);
//Precondition: number_used <= declared size of the array a.
//The array elements a[0] through a[number_used - 1] have values.
//Postcondition: The values of a[0] through a[number_used - 1] have
//been rearranged so that a[0] <= a[1] <= ... <= a[number_used - 1].
#include "sortfunc.cxx"
int main()
{ int I, a[10] = {9, 8, 7, 6, 5, 1, 2, 3, 0, 4};

cout << "Unsorted integers:\n";
for (i = 0; i < 10; i++)

cout << a[i] << " ";
cout << endl;
sort(a, 10);
cout << "In sorted order the integers are:\n";
for (i = 0; i < 10; i++)

cout << a[i] << " ";
cout << endl;

// Using a Generic Sorting Function (2 of 2)

double b[5] = {5.5, 4.4, 1.1, 3.3, 2.2};
cout << "Unsorted doubles:\n";
for (i = 0; i < 5; i++) cout << b[i] << " ";
cout << endl;
sort(b, 5);
cout << "In sorted order the doubles are:\n";
for (i = 0; i < 5; i++)

cout << b[i] << " ";
cout << endl;
char c[7] = {'G', 'E', 'N', 'E', 'R', 'I', 'C'};
cout << "Unsorted characters:\n";
for (i = 0; i < 7; i++)

cout << c[i] << " ";
cout << endl;
sort(c, 7);
cout << "In sorted order the characters are:\n";
for (i = 0; i < 7; i++) cout << c[i] << " ";
cout << endl;
return 0;

}

22

Programming Tip:
How to define Templates

We created the template by writing an ordinary
function that sorts for base type int.

We created the template by replacing the base type
of the array with type parameter T.

This process has two advantages:

1. The ordinary function is concrete which is easier
to visualize.

2. You are dealing with fewer details. You don't have
to worry about template syntax rules.

23

Templates for Data Abstraction
Syntax for Class Templates

class template syntax requires a template prefix:
template<class T>

where T is a type name. As in function templates, T
can be a built-in type or a class.
Example:

template <class T>
class Pair
{public:

Pair();
Pair(T first_Value, T second_value);
void set_element(int position, T value);
T get_element(int position) const;

private:
T first;
T second;

};

24

Syntax for Class Templates(1 of 3)

Once the class template is defined, you can
define objects of the class:

Pair<int> score1;

Pair<char> seats1;

Using the parameterized constructor

Pair<int> score2(1,2);

Pair<char> seats2('A', 'B");

The Objects are like any other objects. We
apply the member function set_element:

score1.set_element(1,3);

score1.set_element(2,0); 25

Syntax for Class Templates(2 of 3)
Note the class name Pair<T> used for scope resolution, not just

Pair.
// Uses iostream and cstdlib:

template<class T>

void Pair<T>::set_element(int position, T value)

{

if (position = 1)

first = value;

else if (position = 2)

second = value;

else

{ cout << "Error: Illegal pair position.\n";

exit(1);

}

}

26

Syntax for Class Templates(3 of 3)
The constructors are:

template <class T>
Pair<T>::Pair()
{ //In the default constructor, you

first = T(); //can initialize first and second
second = T(); //using the default T's

constructor.
}
template <class T>
Pair<T>::Pair(T first_value, T second_value)
{
first = first_value;
second = second_value;

}
As in the member function, the class name for scope resolution must be

Pair<T>, not just Pair.
27

Class Template Syntax (1 of 2)

The class definition and the definitions of the member functions are
prefaced with the following:

template<class Type_Parameter>
The class and member function definitions are then the same as for any
ordinary class except that Type_Parameter can be used in p lace of a
type.
For example, the following is the beginning of a class template definition:

template <class T>
class Pair
{ public:

Pair();
Pair(T first_value, T second_value);
. . .

};

28

Class Template Syntax (2 of 2)

Member functions and overloaded operators are then
defined as function templates. For example, the
definition of the two argument constructor for the
above sample class template would begin:

template <class T>
Pair<T>::Pair(T first_value, T second_value)
{

. . .
} 29

Type Definitions

You can specialize a class template by giving a type argument to the class
name as in the following example:

Pair<int>
The specialized class name, like Pair<int>, can then be used just
like any class name. It can be used to declare objects or to specify
the type of a formal parameter.
You can define a new class type name that has the same meaning
as a specialized class template name, such as Pair<int>. The
syntax for such a defined class type name is:

typedef Class_Name<Type_argument>
New_Type_Name;
For example: typedef Pair<int> PairOfInt;
The typename PairOfInt can then be used to declare objects of
type Pair<int> as in this example:

PairOfInt pair1, pair2;

30

Programming Example: An Array Class

The interface for a class template named List whose
objects are lists of a user specified type which may be built-
in or user defined.
A demonstration program that uses the List template class.
The purpose is to illustrate syntax.
Contains the implementation of the List class template. The
data is stored internally as a dynamic array.
Members provided are the default constructor, a destructor,
length, add, full, and erase.
Notice the overloaded insertion operator, which we use to
output an object of template class List.
When we specify a parameter of List class type in a
template function, whether a member or standalone, we
use List<T>.
When we specify a template List parameter type that holds
int values, the type is specified as List<int>.

// Interface for the Class Template List (1 of 2)
// FILE: list.h.
// This is the INTERFACE for the class List. List objects can hold items of any
// type where operators << and = are defined. All the items on any one list must
// be of the same type. Declare a list of up to max items of type Type_Name as:
// List<Type_Name> the_object(max);

#ifndef LIST_H
#define LIST_H
#include <iostream>
using namespace std;
namespace savitchlist
{ template<class T>

class List
{ public:

List(int max);
//Initializes the object to an empty list that can hold up to max items of type T.

~List();
//Returns all the dynamic memory used by the object to the heap.

int length() const;
//Returns the number of items on the list.

Interface for the Class Template List (2 of 2) // FILE: list.h.

void add(T new_item);
//Precondition: The list is not full.
//Postcondition: The new_item has been added to the list.

int full() const;
//Returns true if the list is full.
void erase();
//Removes all items from the list so that the list is empty.
friend ostream& operator <<(ostream& outs, const List<T>& the_list);
//Overloads the << operator so it can be used to output the contents
// of the list. The items are output one per line.
//Precondition: If outs is a file output stream, then outs has already
//been connected to a file.

private:
T *item; //pointer to the dynamic array that holds the list.
int max_length; //max number of items allowed on the list.
int current_length; //number of items currently on the list.

};
}//list
#endif //LIST_H

Program using the List class Template
//Program to demonstrate use of the class template List.
#include <iostream>
#include "list.h"
#include "list.cxx"
using namespace std;
using namespace list;

int main()
{ List<int> first_list(2);

first_list.add(1);
first_list.add(2);
cout << "first_list = \n" << first_list;

List<char> second_list(10);
second_list.add('A');
second_list.add('B');
second_list.add('C');
cout << "second_list = \n" << second_list;

return 0;
}

Implementation of List (1 of 3)
//FILE: list.cxx This is the IMPLEMENTATION of the class template List.
//The interface for this class is list.h.
#ifndef LIST_CXX
#define LIST_CXX
#include <iostream>
#include <cstdlib>
#include "list.h" //This is not needed when used as we are using this file,

//but the #ifndef in list.h makes it safe.
using namespace std;
namespace list
{ //Uses cstdlib:

template<class T>
List<T>::List(int max)
{ max_length = max;

current_length = 0;
item = new T[max];
if (item == NULL)
{

cout << "Error: Insufficient memory.\n";
exit(1);

}
}

Implementation of List (2 of 3)
template<class T>
List<T>::~List()
{ delete [] item; }
template<class T>
int List<T>::length() const
{ return (current_length); }
//Uses iostream and cstdlib:
template<class T>
void List<T>::add(T new_item)
{ if (full())

{ cout << "Error: adding to a full list.\n";
exit(1);

}
else
{ item[current_length] = new_item;

current_length = current_length + 1;
}

}

Implementation of List (3 of 3)
template<class T>
int List<T>::full() const
{ return (current_length == max_length); }

template<class T>
void List<T>::erase()
{ current_length = 0; }
//Uses iostream:
template<class T>
ostream& operator <<(ostream& outs, const List<T>& the_list)
{ for (int i = 0; i < the_list.current_length; i++)

outs << the_list.item[i] << endl;
return outs;

}
}//list
#endif // we have enclosed all the template definitions in #ifndef... #endif.

