STAT 13, section 1, Winter 2012, UCLA Statistics HW 7; Problem Solution

7.1
$\hat{b}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{(0-30)(0.02-0.83)+(10-30)(0.25-0.83)+\cdots+(60-30)(1.74-0.83)}{(0-30)^{2}+(10-30)^{2}+\cdots+(60-30)^{2}}$
$\quad=0.02925$
$\hat{a}=\bar{y}-\hat{b} \bar{x}=0.83-0.02925 * 30=-0.0475$
$\hat{y}=-0.0475+0.02925 x$ $\begin{aligned} & \text { Mean of Time }=30.000 \\ & \text { Mean of Leucine }=.830 \\ & \text { Regression Line: } \\ & \text { Leucine }=-.047+0.02924999999999999 \text { Time } \\ & \text { Correlation(Time, Leucine })=.993 \\ & \text { R-Square }=.986\end{aligned}$

Intercept:
Parameter Estimate: -. 047
Standard Error: . 057
T-Statistics: -. 831
P-Value: . 444
Slope:
Parameter Estimate: . 029
Standard Error: . 002
T-Statistics: $\quad 18.440$
P-Value: $\quad 000$

Time	Leucine	Predicted	Residual
.000	.020	-.047	.067
10.000	.250	.245	.005
20.000	.540	.538	.002
30.000	.690	.830	-.140
40.000	1.070	1.122	-.052
50.000	1.500	1.415	.085
60.000	1.740	1.707	.033

The SOCR result matches up very closely with the regression line calculated by hand.

Scatter Plot of Leucine vs Time

The amount of leucine is predicted to increase by 0.02925 units for every additional minute.

$$
\begin{aligned}
s d(e)= & \sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}=\sqrt{\frac{\sum_{i=1}^{n}\left[y_{i}-\left(\hat{a}+\hat{b} x_{i}\right)\right]^{2}}{n-2}} \\
& =\sqrt{\frac{(0.02-(-0.047))^{2}+(0.25-0.245)^{2}+\cdots+(1.74-1.707)^{2}}{7-2}}=0.08393
\end{aligned}
$$

(Because we're estimating two parameters, the degrees of freedom is now $n-2$.)

7.2

```
    Simple Linear Regression Results:
    Mean of Plant_Density_X=128.050
    Mean of Cob_Weight_Y \(=224.100\)
    Regression Line:
        Cob_Weight_Y = 316.376-0.7206262571781327 Plant_Density_X
    Correlation(Plant_Density_X, Cob_Weight_Y) \(=-.942\)
    R-Square \(=.887\)
```

$\hat{y}=316.376-0.7206 x$

Slope: For each additional plant in a plot, the predicted mean cob weight will drop by 0.72 grams.
Intercept: In the context of this problem, it doesn't make sense to talk about cob weight when there are zero plants in a plot.
Correlation: This is very close to -1 , meaning these two variables are very highly correlated. As the number of plants in a plot goes up, the mean cob weight decreases.
http://www.stat.ucla.edu/~dinov/courses_students.dir/12/Winter/STAT13.1.dir/HWs.dir/HW07.html

With a P-value of 0.18 , there is not enough evidence to show the levels of sodium differ significantly between the different types of hot dog meat.

Independent Variable = Type					
Dependent Variable = Calories					
Results of One-Way Analysis of Variance:					
Standard 1-Way ANOVA Table. See:					
http://wiki.stat.ucla.edu/socr/index.php/AP_Statistics_Curriculum_2007_ANOVA_1Way					
VarianceSource	DF	RSS	MSS	F-Statistics	P-value
TreatmentEffect (B/w Groups)	2	17692.195	8846.098	16.074	3.862071838667269E-6
Error	51	28067.138	550.336		
Total:	53	45759.333			

Here, however, a P-value of 3.86×10^{-6} does provide enough evidence to suggest there is a significant difference in calories among the different types of hot dog meat.
http://www.stat.ucla.edu/~dinov/courses_students.dir/12/Winter/STAT13.1.dir/HWs.dir/HW07.html

We can see from the boxplot that the calories from poultry hot dogs are significantly different from those of beef and meat hot dogs. A 2-sample t-test can then be applied between poultry and either of the other two to verify that they are significantly different.

7.4

```
Independent Variable = CPI_Item
Dependent Variable =CPI_Value
```

Results of One-Way Analysis of Variance:
Standard 1-Way ANOVA Table. See:
http://wiki.stat.ucla.edu/socrlindex.php/AP_Statistics_Curriculum_2007_ANOVA_1Way

VarianceSource	DF	RSS	MSS	F-Statistics	P-value
TreatmentEffect (B/w Groups)	3	1078702.865	359567.622	155.285	<1E-15
Error	1292	2991663.170	2315.529		
Total:	1295	4070366.035			

A P-value of basically zero here shows that there is a significant difference of CPI-values among the various CPI items.

We can see from the boxplot that Medical Care seems to be significantly different from the other three groups. A 2-sample t-test can then be applied between Medical Care and any of the other three categories to show their CPI-values are significantly different.

