Homework 03 Solution

Stats 13, Section 1, Spring 2013

1. Suppose a family has 2 children. Let D be the event that an offspring has the disease. Further, let M be the event that the offspring is male. Then

- $P(M)=0.51 \quad$ and $\quad P\left(M^{c}\right)=0.49$,
- $P(D \mid M)=0.5 \quad$ and $\quad P\left(D^{c} \mid M\right)=0.5$,
- $P\left(D \mid M^{c}\right)=0.0 \quad$ and $\quad P\left(D^{c} \mid M^{c}\right)=1.0$.
- By the law of total probability (Hint: Draw a tree diagram if you want to visually see how to do the following calculation),

$$
\begin{aligned}
P(D) & =P(D \mid M) \cdot P(M)+P\left(D \mid M^{c}\right) \cdot P\left(M^{c}\right) \\
& =0.5 \cdot 0.51+0.0 \cdot 0.49 \\
& =0.255
\end{aligned}
$$

which implies

$$
P\left(D^{c}\right)=1-P(D)=0.745
$$

(a) What is the probability that both sibling are affected, if there are one male and one female?

$$
\begin{aligned}
P\left[(D \mid M) \cap\left(D \mid M^{c}\right)\right] & =P(D \mid M) \cdot P\left(D \mid M^{c}\right) \\
& =0.5 \cdot 0 \\
& =0
\end{aligned}
$$

(b) What is the probability that exactly one sibling is affected?

Let X : Number of children that have the disease. Then

$$
X \sim \operatorname{Bin}(2,0.255)
$$

and

$$
P(X=1)=\binom{2}{1}(0.255)^{1}(0.745)^{1}=0.37995
$$

(c) What is the probability that neither sibling is affected?

$$
P(X=0)=\binom{2}{0}(0.255)^{0}(0.745)^{2}=0.555 .
$$

2. Let + be the event that a person tests positive for the disease and let D be the event that a person is diseased. Then

- $P(+\mid D)=0.73 \quad$ and $\quad P\left(+^{c} \mid D\right)=0.27$.
- $P\left(+\mid D^{c}\right)=0.11 \quad$ and $\quad P\left(+^{c} \mid D^{c}\right)=0.89$.
- $P(D)=0.15 \quad$ and $\quad P\left(D^{c}\right)=0.85$.
(a) What is the probability that a randomly chosen person will test positive?

By the law of total probability (Hint: Draw a tree diagram if you want to visually see how to do the following calculation),

$$
\begin{aligned}
P(+) & =P(+\mid D) P(D)+P\left(+\mid D^{c}\right) P\left(D^{c}\right) \\
& =0.73 \cdot 0.15+0.11 \cdot 0.86 \\
& =0.2041
\end{aligned}
$$

(b) Suppose that a randomly chosen person does test positive. What is the probability that the person does have the disease?

By Baye's rule (Hint: Draw a tree diagram if you want to visually see how to do the following calculation),

$$
\begin{aligned}
P(D \mid+) & =\frac{P(+\mid D) P(D)}{P(+)} \\
& =\frac{0.73 \cdot 0.15}{0.2041} \\
& =0.5365
\end{aligned}
$$

3. We start with the following table for 5,000 European Starlings. Let Y : Size of the brood.

Brood Size	Brood Number
1	90
2	230
3	610
4	1300
5	1810
6	800
7	130
8	26
9	3
10	1
Total	5000

(a)

$$
P(Y=4)=\frac{1300}{5000}=0.26
$$

(b)

$$
\begin{aligned}
P(Y \geq 8) & =P(Y=8)+P(Y=9)+P(Y=10) \\
& =\frac{26+3+1}{5000} \\
& =0.006
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(2<=Y<8) & =P(Y<8)-P(Y<2) \\
& =[1-P(Y \geq 8)]-P(Y=1) \\
& =(1-0.006)-\frac{90}{5000} \\
& =0.976
\end{aligned}
$$

4. Let B be the event that the fruit fly is colored black. Then

$$
P(B)=0.35 \quad \text { and } \quad P\left(B^{c}\right)=0.65
$$

Let Y : The number of 3 randomly selected fruit flies that are black. Then Y has probability distribution:

Y (Number of flies)	$P(Y=y)$
0	0.275
1	0.444
2	0.239
3	0.043
Total	1.000

(a)

$$
\begin{aligned}
P(Y \geq 1) & =1-P(Y<1) \\
& =1-P(Y=0) \\
& =1-0.275 \\
& =0.725
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(Y<3) & =1-P(Y \geq 3) \\
& =1-P(Y=3) \\
& =1-0.043 \\
& =0.957
\end{aligned}
$$

(c)

$$
\begin{aligned}
E(Y) & =\sum_{y=0}^{3} y \cdot P(Y=y) \\
& =0 \cdot 0.275+1 \cdot 0.444+2 \cdot 0.239+3 \cdot 0.043 \\
& =1.051
\end{aligned}
$$

5. (a) Let A : Outcome of a fair coin flip (Heads $=1$, Tails $=0$), and let B : Outcome of a fair dice roll. By simulating 100 coin flips and dice rolls we obtain the following probability distribution for the outcome of our experiment (Y) :

Y	Distribution	Data
1	0.16667	0.12
2	0.16667	0.14
3	0.16667	0.18
4	0.16667	0.19
5	0.16667	0.2
6	0.16667	0.17

First note that

$$
\begin{aligned}
P(B=4) \cdot P(A=0) & \\
& =0.19 \cdot 0.5 \\
& =0.095 \\
& \approx 0.0833 \\
& =P(B=4 \mid A=0) P(A=0) \\
& =P(A=0 \cap B=4)
\end{aligned}
$$

Since our simulation shows that $P(A=0 \cap B=4)$ is close to $P(A=0) \cdot P(B=4)$ then our data provide evidence that A and B are theoretically independent from one another.
(b) We now let A : Outcome of a fair coin flip (Heads $=1$, Tails $=0$), and let B : Outcome of a dice roll where the probabilities of the dice roll change depending on the outcome of the
coin flip. That is

$$
\begin{aligned}
& P(B=b \mid A=1)= \begin{cases}0.167, & \text { when } b=1 \\
0.167, & \text { when } b=2 \\
0.167, & \text { when } b=3 \\
0.167, & \text { when } b=4 \\
0.167, & \text { when } b=5 \\
0.167, & \text { when } b=6\end{cases} \\
& P(B=b \mid A=0)= \begin{cases}0.1 & \text { when } b=1 \\
0.1, & \text { when } b=2 \\
0.1, & \text { when } b=3 \\
0.5, & \text { when } b=4 \\
0.1, & \text { when } b=5 \\
0.1, & \text { when } b=6\end{cases}
\end{aligned}
$$

By simulating 100 coin flips and dice rolls we obtain the following probability distribution for our experiment (Y) :

Y	Distribution	Data
1	0.13333	0.1
2	0.13333	0.2
3	0.13333	0.13
4	0.33333	0.32
5	0.13333	0.08
6	0.13333	0.17

Now, since

$$
\begin{aligned}
P(A=0 \cap B=4) & =P(B=4 \mid A=0) P(A=0) \\
& =0.5 \cdot 0.5 \\
& =0.25
\end{aligned}
$$

but from out data, we have

$$
\begin{aligned}
P(A=0) \cdot P(B=4) & =0.5 \cdot 0.32 \\
& =0.16
\end{aligned}
$$

then clearly A and B are not independent since

$$
P(A=0 \cap B=4)=0.25 \not \approx 0.16=P(A=0) \cdot P(B=4) .
$$

