UCLA STAT 10
 Introduction to Statistical Reasoning

-Instructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology

- Teaching Assistants: Yan Xiong, Will Anderson, UCLA Statistics

University of California, Los Angeles, Winter 2002
http://www.stat.ucla.edu/~dinov/

Approaches for modeling data relationships

 Regression and Correlation- There are random and nonrandom variables
- Correlation applies if both variables (X/Y) are random (e.g., We saw a previous example, systolic vs. diastolic blood pressure SISVOL/DIAVOL) and are treated symmetrically.
- Regression applies in the case when you want to single out one of the variables (response variable, Y) and use the other variable as predictor (explanatory variable, X), which explains the behavior of the response variable, Y.

A note of caution!

In observational data, strong relationships are not necessarily causal. It is virtually impossible to conclude a cause-and-effect relationship between variables using observational data!

Essential Points

1. What essential difference is there between the correlation and regression approaches to a relationship between two variables? (In correlation independent variables; regression response var depends on explanatory variable.)
2. What are the most common reasons why people fit regression models to data? (predici Y or unavel resosonscauses of fehavior.)
3. Can you conclude that changes in X caused the changes in Y seen in a scatter plot if you have data from an observational study? (No, there could be lurking variables, hidden effects/predictors, also associated with the predictor X , itself, e.g, time is often a lurking variable, or may be that changes in Y cause changes in X , instead of the other way around).

Correlation Coefficient

Correlation coefficient ($-1<=R<=1$): a measure of linear association, or clustering around a line of multivariate data.
Relationship between two variables (X, Y) can be summarized by: $\left(\mu_{\mathrm{X}}, \sigma_{\mathrm{X}}\right),\left(\mu_{\mathrm{Y}}, \sigma_{\mathrm{Y}}\right)$ and the correlation coefficient, $R . R=1$, perfect positive correlation (straight line relationship), $R=0$, no correlation (random cloud scatter), $R=-1$, perfect negative correlation.
Computing $R(\mathrm{X}, \mathrm{Y})$: (standardize, multiply, average)

Correlation Coefficient

Example:

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}}\right)
$$

$$
\boldsymbol{\mu}_{x}=\frac{966}{6}=161 \mathrm{~cm}, \quad \boldsymbol{\mu}_{\mathrm{r}}=\frac{332}{6}=55 \mathrm{~kg}
$$

$$
\sigma_{x}=\sqrt{\frac{216}{5}}=6.573, \quad \sigma_{x}=\sqrt{\frac{215.3}{5}}=6.563
$$

$$
\operatorname{Corr}(X, Y)=R(X, Y)=0.904
$$

Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y

$$
\begin{aligned}
& R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x k-\mu x}{\sigma x}\right)\left(\frac{y k-\mu y}{\sigma y}\right)= \\
& R(a X+b, c Y+d), \quad \text { since } \\
& \left(\frac{a x k+b-\mu a x+b}{\sigma a x+b}\right)=\left(\frac{a x k+b-(a \mu x+b)}{a \times \sigma x}\right)= \\
& \left(\frac{a(x k-\mu)+b-b}{a \times \sigma x}\right)=\left(\frac{x k-\mu x}{\sigma x}\right)
\end{aligned}
$$

Correlation Coefficient - Properties

$R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x k-\mu x}{\sigma x}\right)\left(\frac{y k-\mu y}{\sigma y}\right)=R(Y, X)$

1. R measures the extent of linear association between two continuous variables.
2. Association does not imply causation - both variables may be affected by a third variable - age was a confounding variable.

Essential Points

7. What theories can you explore using regression methods?
Prediction, explanation/causation, testing a scientific hypothesis/mathematical model:
a. Hooke's spring law: amount of stretch in a spring, Y , is related to the applied weight X by $\mathrm{Y}=\alpha+\beta \mathrm{X}, \mathrm{a}, \mathrm{b}$ are spring constants.
b. Theory of gravity: force of gravity F between 2 objects is given by $F=\alpha / D^{\beta}$, where $D=$ distance between objects, a is a constant related to the masses of the objects and $\beta=2$, according to the inverse square law.
c. Economic production function: $\mathrm{Q}=\alpha^{\beta} \mathrm{K}^{\gamma}, \mathrm{Q}=$ production, $\mathrm{L}=$ quantity of labor, $\mathrm{K}=$ capital, α, β, γ are constants specific to the market studied.

Correlation Coefficient - Properties

Correlation is Associative
$R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x k-\mu x}{\sigma x}\right)\left(\frac{y k-\mu y}{\sigma y}\right)=R(Y, X)$
Correlation measures linear association, NOT an association in general!!! So, Corr(X,Y) could be misleading for X \& Y related in a non-linear fashion.

Essential Points

6. If the experimenter has control of the levels of X used, how should these levels be allocated to the available experimental units?
At random! Example, testing hardness of concrete, Y, based on levels of cement, X, incorporated. Factors effecting Y: amount of $\mathrm{H}_{2} \mathrm{O}$, ratio stone-chips to sand, drying conditions, etc. To prevent uncontrolled differences in batches of concrete in confounding our impression of cement effects, we should choose which batch ($\mathrm{H}_{2} 0$ levels, sand, dry-conditions) gets what amount of cement at random! Then investigate for Xeffects in Y observations. If some significance test indicates observed trend is significantly different from a random pattern \rightarrow we have evidence of causal relationship, which may strengthen even further if the results are replicable.

Essential Points

8. People fit theoretical models to data for three main purposes.
a. To test the model, itself, by checking if the data is reasonably close agreement with the relationship predicted by the model.
b. Assuming the model is correct, to test if theoretically specified values of a parameter are consistent with the data ($\mathrm{y}=2 \mathrm{x}+1$ vs. $\mathrm{y}=2.1 \mathrm{x}-0.9$).
c. Assuming the model is correct, to estimate unknown constants in the model so that the relationship is completely specified $(y=a x+5, a=$?)

Comments

1. In statistics what are the two main approaches to summarizing trends in data? (model liting; smoothing - done by the eye!)
2. In $y=5 \mathrm{x}+2$, what information do the 5 and the 2 convey? (slope, y-intercept)
3. In $y=7+5 x$, what change in y is associated with a 1 -unit increase in x ? with a 10 -unit increase? $(5 ; 50)$ How about for $y=7-5 x .(-5 ;-50)$

Review

1. The least-squares line $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{x} x$ passes through the points $(x=0, \hat{y}=$?) and ($x=\bar{x}, \hat{y}=$?). Supply the missing values.

$$
\hat{\boldsymbol{\beta}}_{1}=\frac{\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} ; \quad \hat{\boldsymbol{\beta}}_{0}=\bar{y}-\hat{\boldsymbol{\beta}}_{i} \bar{x}
$$

RMS Error for regression

- Error $=$ Actual value - Predicted value

- The RMS Error for the regression line $Y=\beta_{0}+\beta_{1} X$ is
$\sqrt{\frac{\left(y_{1}-\hat{y}_{1}\right)^{2}+\left(y_{2}-\hat{y}_{2}\right)^{2}+\left(y_{3}-\hat{y}_{3}\right)^{2}+\left(y_{4}-\hat{y}_{4}\right)^{2}+\left(y_{5}-\hat{y}_{5}\right)^{2}}{5-1}}$
where $\quad \hat{y}_{k}=\hat{\boldsymbol{\beta}}_{0}+\hat{\boldsymbol{\beta}}_{1} x_{k}, \quad 1 \leq k \leq 5$
$\xrightarrow{2}$
STATIO. UCLU Who Dinov

Review

1. What are the quantities that specify a particular line?
2. Explain the idea of a prediction error in the context of fitting a line to a scatter plot. To what visual feature on the plot does a prediction error correspond?
3. What property is satisfied by the line that fits the data best in the least-squares sense?
4. The least-squares line $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$ passes through the points $(x=0, \hat{y}=$?) and ($x=\bar{x}, \hat{y}=$?). Supply the missing values.

Slide 46

Compute the RMS Error for this regression line

Compute the RMS Error for this regression line

Compute the RMS Error for this regression line

Plotting the Residuals

- The Residuals=Observed -Predicted for the regression line $Y=\beta_{0}+\beta_{1} X$ (just like the error).
- Residuals average to zero, mathematically, and the regression line for the residuals is a horizontal line

When $X=x, \quad Y \sim \operatorname{Normal}\left(\mu_{Y}, \sigma\right) \quad$ where $\mu_{Y}=\beta_{0}+\beta_{1} x, \quad$ OR

Compute the RMS Error for this regression line

- The RMS Error for the regression line $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}$ says how far away from the (model/predicting) regression line is each observation.
- Observe that the $\mathrm{SD}(\mathrm{Y})$ is also a RMS Error measure of another specific line - horizontal line through the average of the Y values. This line may also be taken for a regression line, but often it's not the best linear

Plotting the Residuals - patterns?

- The Residuals=Observed -Predicted for the regression line $Y=\beta_{0}+\beta_{1} X+U$ should show no clear trend or pattern, for our linear model to be a good and useful approximation to the unknown process.

Is there always an $\mathrm{X} Y$ relationship? Linear Relationship?

Concepts

Relationships between quantitative variables should be explored using scatter plots.
■ Usually the Y variable is continuous
(or behaves like one in that there are few repeated values)
\square and the X variable is discrete or continuous.

- Regression singles out one variable (\boldsymbol{Y}) as the response and uses the explanatory variable (\boldsymbol{X}) to explain or predict its behavior.
- Correlation treats both variables symmetrically as random.

Concepts cont.

In practical problems, regression models may be fitted for any of the following reasons:

- To understand a causal relationship better. Ex?
- To find relationships which may be causal. Ex?
- To make predictions. Ex?
- But be cautious about predicting outside the range of the data
- To test theories. Ex?
- To estimate parameters in a theoretical model.

Concepts cont.

In observational data, strong relationships are not necessarily causal.

- We can only have reliable evidence of causation from controlled, randomized, designed experiments.
- Be aware of the possibility of lurking variables which may effect both X and Y.

Linear Relationship

- We fit the linear relationship $\hat{y}=\beta_{0}+\beta_{1} x$.
- The slope β_{1} is the change in \hat{y} associated with a one-unit increase in x.

Least-squares estimates

- The least-squares estimates, $\hat{\boldsymbol{\beta}}_{0}$ and $\hat{\boldsymbol{\beta}}_{1}$ are chosen to minimize $\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$.
- The least-squares regression line is $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$.

Residuals and outliers

These assumptions should be checked using residual plots. The i-th residual (or prediction error) is

$$
y_{i}-\hat{y}_{i}=\text { observed }- \text { predicted }
$$

\square An outlier is a data point with an unexpectedly large residual (positive or negative).
The two main approaches to summarizing trends in data are using smoothing and fitting models (e.g., regression lines).

- The least-squares criterion for fitting a mathematical curve is to choose the values of the parameters (e.g. β_{0} and β_{1}) to minimize the sum of squared prediction errors, $\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$.

Correlation coefficient

The correlation coefficient r is a measure of linear association with $-1 \leq r \leq 1$.

- If $r=1$, then X and Y have a perfect positive linear relationship.
- If $\mathbf{r}=\mathbf{- 1}$, then X and Y have a perfect negative linear relationship.
- If $\mathbf{r}=\mathbf{0}$, then there is no linear relationship between X and Y.
- Correlation does not necessarily imply causation.

Textbook vs. Lecture Notation ...

1. Note that there is a slight difference in the formula for the slope of the Least-Squares Best-Linear Fit line:

Redo the problem from last time using:

Redo the problem from last time using:

