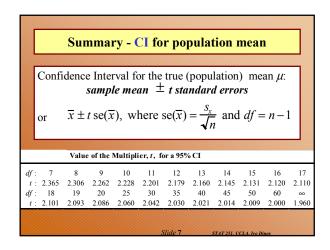
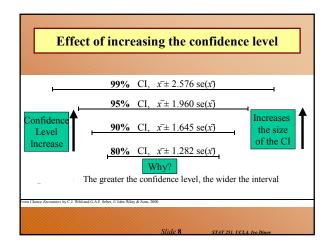
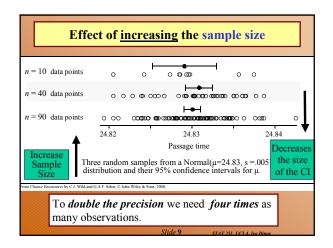
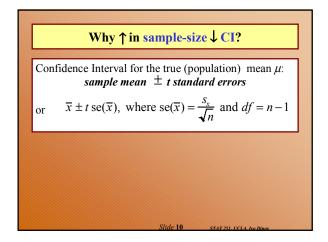
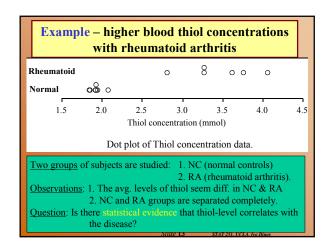

UCLA STAT 251 Statistical Methods for the Life and Health Sciences •Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology University of California, Los Angeles, Winter 2002 http://www.stat.ucla.edu/~dinov/

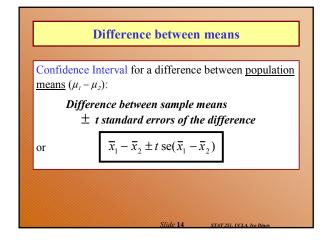


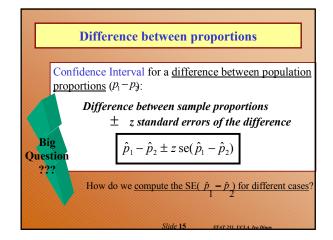


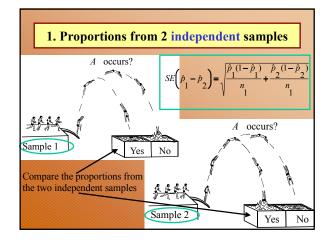


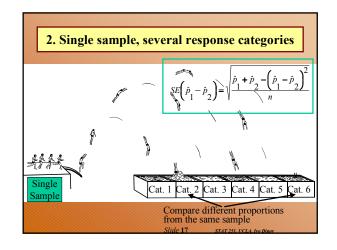


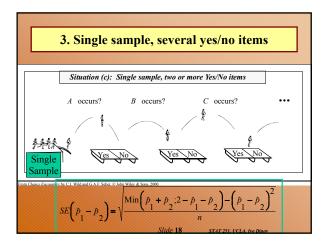







CI for a population proportion Confidence Interval for the true (population) proportion p: $sample\ proportion\ \pm\ z\ standard\ errors$ or $\hat{p}\pm z\ se(\hat{p})$, where $se(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$


Thiol Concentration (mmol)							
	Normal	Rheumatoid					
Research question:	1.84	2.81					
Is the change in the Thiol status	1.92	4.06					
in the lysate of packed blood	1.94	3.62					
cells substantial to be indicative	1.92	3.27					
of a non trivial relationship	1.85	3.27					
between Thiol-levels and	1.91	3.76					
rheumatoid arthritis?	2.07						
Sample size	7	6					
Sample mean	1.92143	3.46500					
Sample standard deviation	0.07559	0.44049					



SE's for the 3 cases of differences in proportion

(a) Proportions from two independent samples of sizes n_1 and n_2 , respectively

$$se(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

(b) One sample of size n, several response categories

$$se(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1 + \hat{p}_2 - (\hat{p}_1 - \hat{p}_2)^2}{n}}$$

(c) One sample of size n, many Yes/No items

$$se(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{Min(\hat{p}_1 + \hat{p}_2, \hat{q}_1 + \hat{q}_2) - (\hat{p}_1 - \hat{p}_2)^2}{n}}$$

where $\hat{q}_1 = 1 - \hat{p}_1$ and $\hat{q}_2 = 1 - \hat{p}_2$

Slide 24

1998 Back-to-school survey – smoking/drinking 2000 students participating in the survey

Characteristics by Smoking and Drinking Sta

·			-		
(Table entry & % of group saying yes)		Smoker	Nonsmoker	Drinker	Nondrinker
Get mostly A's or B's?		41	68		
Read 1 or more hours/day?	Хr	54	72	56	75
Get drunk at least once a month?	α	63	1 0		
Have smoked Marijuana?		79 &	14	52	12
Likely to try illegal drug in future?		42	14	35	11
	n	130	870	260	740

1 Sample many yes/no Answers -

compare proportions of smokers who get a drink at least once a month(63)
With proportion of smokers who have smoked marijuana (79).
Smokers group, say, are not forced to choose I category out of a set of
categories as in the previous situation.

Sample size - proportion

- For a 95% CI, margin = $1.96 \times \sqrt{\hat{p}(1-\hat{p})/n}$
- Sample size for a desired margin of error:
 For a margin of error no greater than m, use a sample size of approximately

 $n = \left(\frac{z}{m}\right)^2 \times p^*(1-p^*)$

- p^* is a guess at the value of the proportion -- err on the side of being too close to 0.5
- z is the multiplier appropriate for the confidence level
- m is expressed as a proportion (between 0 and 1), not a percentage (basically, What's n, so that m >= margin?)

Slide 26

STAT 251. UCLA. Ivo

Sample size -- mean

• Sample size for a desired margin of error:

For a margin of error no greater than *m*, use a sample size of approximately

 $n = \left(\frac{z\boldsymbol{\sigma}^*}{m}\right)^2$

- σ^* is an estimate of the variability of individual observations
- z is the multiplier appropriate for the confidence level

Slide 27 STAT 251, UCLA, Iva Dina

Covariance – a measure of LINEAR association between two variables, X & Y

$$\begin{split} E(aY_1 + bY_2) = & aE(Y_1) + bE(Y_2) \\ &= a \mu_1 + b \mu_2 \\ &Var(aY_1 + bY_2 + c) = \\ a^2Var(Y_1) + b^2Var(Y_2) + 2abCov(Y_1; Y_2) \end{split}$$

$$Cov(Y_1; Y_2) = E[(Y_1 - \mu_1)(Y_2 - \mu_2)]$$

STAT 251, UCLA, Ivo Dinov

Slide 28

HypothesisTesting4a.ppt and then:

F_Chi2_dist_Ch4_6.pdf Variance estimates/CI's

STAT 251, UCLA, Ivo Dinov

Slide 29