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UCLA  STAT 251
Statistical Methods for the Life and 

Health Sciences

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

University of California, Los Angeles,  Winter 2002
http://www.stat.ucla.edu/~dinov/
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Discrete Random Variables

�Random variables
�Probability functions
�The Binomial distribution
�Poisson Distribution
�Expected values
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Definitions

� An experiment is a naturally occurring phenomenon, 
a scientific study, a sampling trial or a test., in which 
an object (unit/subject) is selected at random (and/or 
treated at random) to observe/measure different 
outcome characteristics of the process the experiment 
studies.

� A random variable is a type of measurement taken on 
the outcome of a random experiment.
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Definitions

� The probability function for a discrete random 
variable X gives   P(X = x) [denoted pr(x) or P(x)]

for every value x that the R.V. X can take

� E.g., number of heads when a coin is tossed twice

x 0 1 2

pr(x )
1
2

1
4

1
4
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Outcome GGG GGB GB BG BBG BBB

Probability
1
4

1
8

1
8

1
8

1
8

1
4

Stopping at one of each or 3 children

� For R.V.   X = number of girls, we have

X 0 1 2 3

pr(x )
5
8

1
8

1
8

1
8

Sample Space – complete/unique description of the 
possible outcomes from this experiment.
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X 0 1 2 3

pr(x )
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Plotting the probability function
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� For each toss,  P(Head) = p   � P(Tail) = 
P(comp(H))=1-p

� Outcomes:      HH,  HT,        TH,            TT

� Probabilities:  p.p,  p(1-p),   (1-p)p,   (1-p)(1-p)

� Count X, the number of heads in 2 tosses
X 0 1 2
pr(x ) (1−p )2 2p (1−p ) p 2

Tossing a biased coin twice
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Hospital stays

Days stayed x 4 5 6 7 8 9 10 Total
Frequency 10 30 113 79 21 8 2 263

Proportion pr(X = x) 0.038 0.114 0.430 0.300 0.080 0.030 0.008 1000
Cumulative
Proportion

0.038 0.152 0.582 0.882 0.962 0.992 1.000pr(X   x)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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1 2 3 4 5 6 7 8 9 10 11 12
To get 4 to 8,

and remove from 3 down

pr(3 < X - 8)
=  pr(X - 8)

pr(X - 3)

[= pr(4 - X - 8)]

x-values :

start with everything up to 8

Figure 5.2.2 Interval probabilities from cumulative probabilities.
            [This Figure represents an arbitrary distribution, not the hospital distribution.]

a

a

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Calculating Interval probabilities
from cumulative probabilities

P(3< X <9)
P(X <9)
P(X<=3)

How to find the upper-tail?
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Review

� What is a random variable? What is a discrete 
random variable? (type of measurement taken on the outcome of random experiment)

� What general principle is used for finding P(X=x)? 
(Adding the probabilities of all outcomes of the experiment where we have 
measured the RV, X=x)

� What two general properties must be satisfied by the 
probabilities making up a probability function? 
(P(x)>=0;                 )    

� What are the two names given to probabilities of the 
form P(X ≤ x)? (cumulative & lower/left-tail)

1)( =∑
x

xP
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Review

� How do we find an upper/right-tail probability from a 
cumulative probability? [P(X>x) = 1-P(X<= x)]

� When we use P(X ≤ 12) − P(X ≤ 5) to calculate the 
probability that  X  falls within an interval of values, 
what numbers are included in the interval?  ([6:12])
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Sample  n  balls and count  X = # black balls in sample

M  black balls

N – M  white balls

N  balls in an urn, of which there are

The two-color urn model

We will compute the probability distribution of the R.V. X
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  Perform  n  tosses and count  X = # heads

toss 1 toss 2 toss  n
pr(H) = p pr(H) = p pr(H) = p

The biased-coin tossing model

We also want to compute the probability
distribution of this R.V. X!

Are the two-color urn and the biased-coin
models related? How do we present the 

models in mathematical terms?
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� The distribution of the number of heads in n
tosses of a biased coin is called the Binomial 
distribution.

The answer is:  Binomial distribution
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x 0 1 2 3 4 5 6
Individual pr(X = x) 0.001 0.010 0.060 0.185 0.324 0.303 0.118
Cumulative pr(X - x) 0.001 0.011 0.070 0.256 0.580 0.882 1.000

Binomial(N, p) – the probability distribution
of the number of Heads in an N-toss coin 
experiment, where the probability for Head 
occurring in each trial is p.

E.g., Binomial(6, 0.7)

For example  P(X=0) = P(all 6 tosses are Tails) =

001.03.0)7.01( 66 ========−−−−
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Binary random process

The biased-coin tossing model is a physical model for 
situations which can be characterized as a series of 
trials where:
�each trial has only two outcomes: success or 

failure;
�p = P(success) is the same for every trial; and
�trials are independent.

� The distribution of X = number of successes (heads) 
in N such trials is

Binomial(N, p)
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Extra-Sensory Perception (ESP)

Hypnosis enhances your ESP?
A card is randomly selected from a shuffled deck. Two 

people under hypnosis participate, one staring at the 
card, the other trying to guess the card. 15 pairs of 
students tested, each doing the experiment 100 times. 
Total of 1,500 trials. 325 correct guesses were 
recorded. Is there evidence for ESP potentiation? 
Purely random guessing would yield expected 300 correct 
answers.

CumBin(324, 1500, 0.2) = 0.94
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Binomial Distribution

The biased-coin tossing model is a physical model for 
situations which can be characterized as a series of 
trials where:
�each trial has only two outcomes: success or 

failure;
�p = P(success) is the same for every trial; and
�trials are independent.

� The distribution of X = number of successes (heads) 
in N such trials is

Binomial(N, p)
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Sampling from a finite population –
Binomial Approximation

If we take a sample of size n

� from a much larger population (of size N)

� in which a proportion p have a characteristic of 
interest, then the distribution of X, the number in 
the sample with that characteristic,

� is approximately Binomial(n, p).
� (Operating Rule: Approximation is adequate if n / N< 0.1.)

� Example, polling the US population to see what 
proportion is/has-been married.
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Odds and ends …

� For what types of situation is the urn-sampling model 
useful? For modeling binary random processes. When 
sampling with replacement, Binomial distribution is exact, 
where as, in sampling without replacement Binomial 
distribution is an approximation.

� For what types of situation is the biased-coin 
sampling model useful? Defective parts. Approval poll of cloning 
for medicinal purposes. Number of Boys in 151 presidential children (90).

� Give the three essential conditions for its 
applicability. (two outcomes; same p for every trial; independence)
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Odds and ends …

� What is the distribution of the number of heads in n
tosses of a biased coin?

� Under what conditions does the Binomial distribution 
apply to samples taken without replacement from a 
finite population? When interested in assessing the distribution of a 
R.V., X, the number of observations in the sample (of n) with one specific 
characteristic, where n / N< 0.1 and a proportion  p have the characteristic 
of interest in the beginning of the experiment.
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Binomial Probabilities –
the moment we all have been waiting for!

� Suppose X ~ Binomial(n, p), then the probability

� Where the binomial coefficients are defined by

nxpp
x
n

xXP xnx ≤≤≤≤≤≤≤≤−−−−






======== −−−− 0   ,)1()( )(

nnn
xxn

n
x
n

××××−−−−××××××××××××××××====
−−−−

====






 )1(...321!     ,
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!

n-factorial
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Binomial Formula with examples

� Does the Binomial probability satisfy the requirements?

� Explicit examples for n=2, do the case n=3 at home!

(((( )))) 1  np)-(1p   )()1()( ====++++====∑∑∑∑
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Usual
quadratic-
expansion
formula

Three terms in the sum
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Prize ($) x 1 2 3
Probability pr(x) 0.6 0.3 0.1

$ won

Total  prize money  =  Sum; Average prize money  =  Sum/100
 = 1  0.6  +  2  0.3  +  3  0.1
 = 1.5

Sum
Number of games won

What we would "expect" from 100 games add across row
0.6 100 0.3 100 0.1 100

2 0.3 100 3 0.1 1001 0.6 100

Expected values

� The game of chance: cost to play:$1.50;  Prices {$1, $2, $3}, 
probabilities of winning each price are {0.6, 0.3, 0.1}, respectively.

� Should we play the game? What are our chances of 
winning/loosing?

Theoretically Fair Game: price to play EQ the expected return!
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TABLE 5.4.1   Average Winnings from a Game conducted N  times

Number
of games 1 2 3 Average winnings 

played per game

(N )

100 64 25 11
( .64) ( .25) ( .11) 1.7

 1,000 573 316 111
( .573) ( .316) ( .111) 1.538

10,000 5995 3015 990
( .5995) ( .3015) ( .099) 1.4995

20,000 11917 6080 2000
( .5959) ( .3040) ( .1001) 1.5042

30,000 17946 9049 3005
( .5982) ( .3016) ( .1002) 1.5020

( .6) ( .3)  ( .1) 1.5

Prize won in dollars(x )

frequencies

(Relative frequencies)

∞

(x  ) So far we looked
at the theoretical
expectation of the
game. Now we 
simulate the game
on a computer
to obtain random 
samples from
our distribution, 
according to the
probabilities
{0.6, 0.3, 0.1}.
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� The expected value:

E(X) =

� = Sum of (value times probability of value)

∑∑∑∑

x
xx

 all
)(P

Definition of the expected value, in general.
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Example

X 0 1 2 3

pr(x )
5
8

1
8

1
8

1
8

25.1
8
13

8
12

8
51

8
10

)(P)(E

====

××××++++××××++++××××++++××××====

∑∑∑∑====
x

xxX

In the at least one of each or at most 3 children
example, where X ={number of Girls}  we have:
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µµµµX = E(X) is called the mean of the distribution of X.

µµµµX = E(X) is usually called the population mean.

µµµµx is the point where the bar graph of P(X = x) balances.

The expected value and population mean
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X

pr (x)

The  mean     i s  t he  ba lance  poin t .X

The expected value as the point of balance

STAT 251, UCLA, Ivo DinovSlide 30

The population standard deviation is

sd( X) =  E[(X -  µ)2 ]

Population standard deviation

Note that if X is a RV, then (X-µµµµ) is also a RV, 
and so is (X-µµµµ)2. Hence, the expectation, 

E[(X-µµµµ)2],  makes sense.
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)-1( = )sd( pnpX

For the Binomial distribution . . . mean

E(X) = n p,
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E(X) = Sum(Value x Probability)

If x=0, the entire term is zero

Change variables:  x � (x+1)
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)-1( = )sd( pnpX

For the Binomial distribution . . . mean

E(X) = n p,

Remaining term is just the 
binomial formula – expectation
of the constant 1, which is always 1

Expand the binomial coefficient
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)-1( = )sd( pnpX

For the Binomial distribution . . . SD

E(X) = n p,
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E(X) = Sum(Value x Probability)

Expand the square term
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)-1( = )sd( pnpX

For the Binomial distribution . . . SD

E(X) = n p,
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)-1( = )sd( pnpX

For the Binomial distribution . . . mean

E(X) = n p,
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Change the summation index  x ���� x+1

This is simply the 
Expectation of X2,

E(X2) and we compute
It exactly like E(X)
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)-1( = )sd( pnpX

For the Binomial distribution . . . SD

E(X) = n p,
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====−−−−∑∑∑∑
−−−−

====

−−−−−−−−−−−−






 −−−−
++++

==== As before, factor out nxp and do the math

Split off the (x+1) term

Binomial Formula and a bit of arithmetic yield the result
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For any constants a and b, the expectation of the RV aX + b
is equal to the sum of the product of a and the expectation of 
the RV X and the constant b.

E(aX + b) = a E(X) +b

And similarly for the standard deviation (b, an additive 
factor, does not affect the SD).

SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b
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Why is that so?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

Linear Scaling (affine transformations) aX + b

.1
00

00

0

baE(X)baE(X)

n

x
x) P(Xb

n

x
x)x P(Xa

n

x
x)b  P(X

n

x
x)a x P(X

n

x
x)b)  P(X(a xb)E(aX

++++====××××++++

====∑∑∑∑

====
====++++∑∑∑∑

====
====

====∑∑∑∑

====
====++++∑∑∑∑

====
====

====∑∑∑∑

====
====++++====++++
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And why do we care?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

-completely general strategy for computing the distributions 
of RV’s which are obtained from other RV’s with known 
distribution. E.g., X~N(0,1), and Y=aX+b, then we need 
not calculate the mean and the SD of Y. We know from the 
above formulas that E(Y) = b and SD(Y) =|a|.

-These formulas hold for all distributions, not only for 
binomial.

Linear Scaling (affine transformations) aX + b
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And why do we care?

E(aX + b) = a E(X) +b SD(aX +b) = |a| SD(X)

-E.g., say the rules for the game of chance we saw before change and 
the new pay-off is as follows: {$0, $1.50, $3}, with probabilities of 
{0.6, 0.3, 0.1}, as before. What is the newly expected return of the 
game? Remember the old expectation was equal to the entrance fee of 
$1.50, and the game was fair!

Y = 3(X-1)/2
{$1, $2, $3} � {$0, $1.50, $3}, 

E(Y) =  3/2 E(X) –3/2 = 3 / 4 = $0.75

And the game became clearly biased. Note how easy it is to compute E(Y).

Linear Scaling (affine transformations) aX + b
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Review

� What does the expected value of X tell you about? 
(Expected outcome from an experiment regarding the characteristics measured by 
the RV X)

� Why is the expected value also called the population 
mean? [because for finite population E(X) is the ordinary mean (average)]

� What is the relationship between the population mean 
and the bar graph of the probability function? (balances 
the graph)

� What are the mean and standard deviation of the 
Binomial distribution? (np;  np(1-p))

� Why is SD(X+10) = SD(X)? 
� Why is SD(2X) = 2SD(X)?
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Poisson Distribution – Definition

� Used to model counts – number of arrivals (k) on a 
given interval …

� The Poisson distribution is also sometimes referred to 
as the distribution of rare events. Examples of 
Poisson distributed variables are number of accidents 
per person, number of sweepstakes won per person, 
or the number of catastrophic defects found in a 
production process.
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Functional Brain Imaging –
Positron Emission Tomography (PET)
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Functional Brain Imaging - Positron Emission 
Tomography (PET)

http://www.nucmed.buffalo.edu
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Functional Brain Imaging –
Positron Emission Tomography (PET)

Isotope Energy (MeV)   Range(mm)  1/2-life  Application
C 0.96 1.1     20 min    receptor studies
O 1.7 1.5     2 min     stroke/activation
F 0.6      1.0     110 min      neurology
I ~2.0 1.6     4.5 days      oncology

11

15
18

124
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Functional Brain Imaging –
Positron Emission Tomography (PET)
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SVT Analysis Saccade PET Data - Local SVT Maps

Freq 1 - Freq 8Freq 8 - Freq 1
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Poisson Distribution  – Mean

� Used to model counts – number of arrivals (k) on a 
given interval …

� Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

� Mean of Y, µY = λ, since
!
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Poisson Distribution - Variance

� Y~Poisson(    ), then P(Y=k) =              , k = 0, 1, 2, …

� Variance of Y, σY = λ, since

� For example, suppose that Y denotes the number of 
blocked shots (arrivals) in a randomly sampled game
for the UCLA Bruins men's basketball team. Then 
a Poisson distribution with mean=4 may be used to 
model Y .
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Poisson Distribution - Example

� For example, suppose that Y denotes the number of 
blocked shots in a randomly sampled game for the
UCLA Bruins men's basketball team. Poisson 
distribution with mean=4 may be used to model Y .

1   2   3   4   5 6   7   8   9   10   11   12   13   14   15
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Continuous Distributions

� Normal distribution

� Student’s T distribution

� F-distribution

� Chi-squared (     )

� Cauchy’s distribution

� Exponential distribution

� …

2χ
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Continuous Distributions - Normal

� (General) Normal distribution

� (Standard) Normal distribution (µ=0, σ=1)
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Continuous Distributions – Student’s T

� Student’s T distribution [approx. of Normal(0,1)]
�Y1, Y2, …, YN IID from a Normal(µ;σ)
�Variance σ2 is unknown

� In 1908, William Gosset (pseudonym Student)  derived the 
exact sampling distribution of the statistics

� T~Student(df=N-1), where 
N
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Continuous Distributions – F-distribution

� F-distribution k-samples of different sizes.

� Snedecor's F distribution is most commonly used in tests of 
variance (e.g., ANOVA). The ratio of two chi-squares divided 
by their respective degrees of freedom is said to follow an F 
distribution 

� {Y1;1, Y1;2, ………….., Y1;N1}  IID from a Normal(µ1;σ1)
� {Y2;1, Y2;2,.., Y2;N2}  IID from a Normal(µ2;σ2)
� .,..
� {Yk;1, Yk;2, ….., Yk;N2}  IID from a Normal(µ2;σ2)
� σ1= σ2= σ3=… σnk

= σ. (1/2 <= σk/σj<=2)
� Samples are independent!

k
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Continuous Distributions – F-distribution

� F-distribution k-samples of different sizes

� s2
B is a measure of variability  of

sample means, how far apart they are.
� s2

W reflects the avg. internal
variability within the samples.

TABLE 10.3.2 Typical Analysis-of-Variance Table for One-Way ANOVA

Sum of Mean sum
Source squares df of Squaresa F -statistic P -value

Between k -1 pr(F    f 0)

Within n tot - k

Total n tot - 1
aMean sum of squares = (sum of squares)/df
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∑
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Continuous Distributions – χχχχ2 [Chi-Square]
� χ2 [Chi-Square] goodness of fit test:

�Let {X1, X2, …, XN} are IID N(0, 1)
�W = X1

2 + X2
2 + X3

2 + …+ XN
2

�W ~ χ2(df=N)
�Note: If {Y1, Y2, …, YN} are IID N(µ, σ), then

�And the Statistics W ~ χ2(df=N-1)

�E(W)=N;  Var(W)=2N

( )∑
=

−
−

=
N

k
k YY

N
YSD

1

2

1
1)(

)(1 2
2 YSDNW

σ
−=( ) 2~

1

2
2 χ∑

=

−=Χ
N

k k

kk

E
EO

STAT 251, UCLA, Ivo DinovSlide 57

Continuous Distributions – Cauchy’s

� Cauchy’s distribution, X~Cauchy(t,s), t=location; s=scale

� PDF(X):

� PDF(Std Cauchy’s(0,1)):

� The Cauchy distribution is (theoretically) important as an example of 
a pathological case. Cauchy distributions look similar to a normal
distribution. However, they have much heavier tails. When studying 
hypothesis tests that assume normality, seeing how the tests perform 
on data from a Cauchy distribution is a good indicator of how 
sensitive the tests are to heavy-tail departures from normality. The 
mean and standard deviation of the Cauchy distribution are 
undefined!!! The practical meaning of this is that collecting 1,000 
data points gives no more accurate an estimate of the mean and 
standard deviation than does a single point. 

( ) (reals) R    x;
)/)(1

1)( 2 ∈
−+

=
stxs

xf
π

( )21
1)(

xs
xf

+
=

π

STAT 251, UCLA, Ivo DinovSlide 58

Continuous Distributions – Exponential

� Exponential distribution, X~Exponential(λ)

� The exponential model, with only one unknown parameter, is the 
simplest of all life distribution models.

� E(X)=1/ λ;    Var(X)=1/ λ2; 

� Another name for the exponential mean is the Mean Time To Fail
or MTTF and we have MTTF = 1/ λ. 

� If X is the time between occurrences of rare events that happen on the average 
with a rate l per unit of time, then X is distributed exponentially with parameter λ. 
Thus, the exponential distribution is frequently used to model the time interval 
between successive random events. Examples of variables distributed in this 
manner would be the gap length between cars crossing an intersection, life-times 
of electronic devices, or arrivals of customers at the check-out counter in a grocery 
store. 

0     ;)( ≥= − xexf xλλ
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Continuous Distributions – Exponential

� Exponential distribution, Example:

� On weeknight shifts between 6 pm and 10 pm, there are an 
average of 5.2 calls to the UCLA medical emergency 
number. Let X measure the time needed for the first call on 
such a shift. Find the probability that the first call arrives 
(a) between 6:15 and 6:45 (b) before 6:30. Also find the 
median time needed for the first call. 
�We must first determine the correct average of this exponential 

distribution. If we consider the time interval to be 4x60=240 
minutes, then on average there is a call every 240 / 5.2 (or 46.15) 
minutes. Then X ~ Exp(1/46), [E(X)=46] measures the time in 
minutes after 6:00 pm until the first call. 
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Continuous Distributions – Exponential Examples

� Customers arrive at a certain store at an average of 15 per hour. What is the 
probability that the manager must wait at least 5 minutes for the first customer? 

� The exponential distribution is often used in probability to model (remaining) 
lifetimes of mechanical objects for which the average lifetime is known and for 
which the probability distribution is assumed to decay exponentially. 

� Suppose after the first 6 hours, the average remaining lifetime of batteries for a 
portable compact disc player is 8 hours. Find the probability that a set of batteries 
lasts between 12 and 16 hours. 

Solutions: 

� Here the average waiting time is 60/15=4 minutes. Thus X ~ exp(1/4). E(X)=4.
Now we want P(X>5)=1-P(X <= 5).  We obtain a right tail value of .2865. So 
around 28.65% of the time, the store must wait at least 5 minutes for the first 
customer. 

� Here the remaining lifetime can be assumed to be X ~ exp(1/8). E(X)=8. For the 
total lifetime to be from 12 to 16, then the remaining lifetime is from 6 to 10. We 
find that P(6 <= X <= 10) = .1859.
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Summary
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Summary

Random variable

� A type of measurement made on the outcome of a 
random experiment

Probability function

� P(X = x) for every value X can take, abbreviated to  
P(x)
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Expected Value for a random variable X, denoted E(X).

� Also called the population mean and denoted µX
(abbreviated to µ).

� Is a measure of the long-run average of X-values in 
many repetitions of the experiment.

� Formula (for a discrete random variable):

∑∑∑∑======== )(P)(E xxX
x

µµµµ

Expected value
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� Standard deviation for a random variable X, denoted 
SD(X) is :
� also called the population standard deviation and denoted 

σX (abbreviated σ)
� Is a measure of the variability of X-values.
� Formula:

� for a discrete random variable X,

])[(E)(S 2µµµµσσσσ −−−−======== XXD
x

)(P2)(]2)[(E xxX ∑∑∑∑ −−−−====−−−− µµµµµµµµ

Population standard deviation
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Affine Transformations aX + b

For any constants a and b,

� E(aX + b) = a E(X) +b

and 

� SD(aX +b) = |a| SD(X)
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Sampling from a finite population

� The urn model is a physical model for situations in 
which we
� sample n individuals at random from a finite population 

and
� count X, the number of individuals with a characteristic of 

interest

� When n/N < 0.1, the distribution of X is 
approximately Binomial(n, p)
�where p is the population proportion with the characteristic 

of interest
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Observing a random process

The biased-coin tossing model is a physical model for 
situations which can be characterized as a series of 
trials where:
� each trial has only two outcomes: success and failure;
� p = P(success) is the same for every trial; and
� trials are independent.

� The distribution of X = number of successes (heads) 
in n such trials is

Binomial(n, p)
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Binomial distribution

� The distribution of the number of successes in n trials 
(or the number of heads in n tosses) is Binomial (n, p)

� The Binomial distribution has

)1()SD(     )(E pnpXnpX
xx

−−−−================ σσσσµµµµ


