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UCLA  STAT 251
Statistical Methods for the Life and 

Health Sciences

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

University of California, Los Angeles,  Winter 2002
http://www.stat.ucla.edu/~dinov/
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Tools for Exploring Univariate Data

�Types of variables
�Presentation of data
�Simple plots
�Numerical summaries
�Repeated and grouped data
�Qualitative variables
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TABLE 2.1.1 Data on Male Heart Attack Patients

A subset of the data collected at a Hospital is summarized 
in this table. Each patient has measurements recorded 
for a number of variables – ID,  Ejection factor (ventricular
output), blood systolic/diastolic pressure, etc.
- Reading the table
-Which of the measured variables (age, ejection etc.)

are useful in predicting how long the patient may live.
-Are there relationships between these predictors?
-variability & noise in the observations hide the message

of  the data.
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TABLE 2.1.1  Data on Male Heart Attack Patients
SYS- DIA- OUT-

ID EJEC VOL VOL OCCLU STEN TIME COME AGE SMOKE BETA CHOLa SURG
390 72 36 131 0 0 143 0 49 2 2 59 0
279 52 74 155 37 63 143 0 54 2 2 68 1
391 62 52 137 33 47 16 2 56 2 2 52 0
201 50 165 329 33 30 143 0 42 2 2 39 0
202 50 47 95 0 100 143 0 46 2 2 74 1
69 27 124 170 77 23 143 0 57 2 2 NA 2

310 60 86 215 7 50 40 0 51 2 2 58 0
392 72 37 132 40 10 9 5 56 2 2 75 0
311 60 65 163 0 40 142 0 45 2 2 72 0
393 63 52 140 0 10 142 0 46 2 2 90 0
70 29 117 164 50 0 142 0 48 2 2 72 0

203 48 69 133 0 27 142 0 54 2 2 NA 0
394 59 54 133 30 13 142 0 39 2 1 NA 0
204 50 67 135 37 63 141 0 49 2 2 86 2
280 53 65 138 0 33 140 0 58 2 1 49 0
55 17 184 221 57 13 5 1 50 2 2 70 2
79 37 88 140 37 47 118 5 58 2 2 NA 0

205 45 106 193 33 43 140 0 47 1 1 38 1
206 43 85 150 0 50 23 5 51 2 2 61 0
312 60 59 149 7 37 139 0 43 2 1 56 0
80 38 103 168 47 43 100 1 55 2 2 62 1

281 57 53 124 0 57 140 0 58 2 1 93 0
207 44 68 121 27 60 139 0 55 2 2 63 1
282 51 53 109 0 77 139 0 41 2 2 45 4
396 63 58 157 0 73 139 0 51 2 2 60 0
208 49 81 157 13 13 139 0 49 2 2 60 0
209 48 58 112 0 0 72 1 56 2 2 57 0
283 58 71 167 27 0 138 0 45 2 1 46 0
210 42 92 159 0 0 139 0 57 2 2 58 0
397 68 50 156 0 100 138 0 51 2 1 NA 0
211 43 146 259 47 33 3 1 56 2 2 70 0
398 67 43 130 0 70 138 0 49 2 2 NA 3
284 52 70 146 0 23 137 0 47 1 2 NA 0
399 63 73 195 27 0 136 0 36 1 1 61 0
285 54 62 133 33 23 137 0 38 2 2 NA 0
71 37 93 148 47 0 137 0 59 2 2 NA 0

286 51 65 133 43 7 136 0 54 2 2 NA 0
212 42 95 163 40 10 109 3 57 2 2 NA 4
400 66 49 144 10 50 65 1 52 2 2 55 0
287 54 66 145 7 40 136 0 47 2 2 62 0
81 39 144 237 13 87 136 0 39 2 2 56 3

813 63 52 141 0 47 43 3 48 2 2 NA 0
68 30 219 314 33 45 76 1 53 1 2 NA 0

288 59 39 94 0 0 135 0 47 1 2 63 0
407 67 39 117 0 73 53 1 57 2 2 62 2

a NA  = No t Availa ble (mis s ing data  co de ).

SYS- DIA-
ID EJEC VOL VOL OCCLU STEN T

390 72 36 131 0 0
279 52 74 155 37 63
391 62 52 137 33 47
201 50 165 329 33 30
202 50 47 95 0 100

69 27 124 170 77 23
310 60 86 215 7 50
392 72 37 132 40 10
311 60 65 163 0 40
288 59 39 94 0 0
407 67 39 117 0 73

a NA  = No t Ava ilable (mis s ing da ta  co de).

TABLE 2.1.1 Data on Male Heart Attack Patients
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�Quantitative variables are measurements and 
counts
�Variables with few repeated values are treated as 

continuous.

�Variables with many repeated values are treated 
as discrete 

�Qualitative variables (a.k.a. factors or class-
variables) describe group membership

Types of variable
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Types of Variables

Qualitative

Continuous Discrete Categorical Ordinal

Quantitative

(few repeated values) (many repeated values) (no idea of order) (fall in natural order)

(measurements and counts) (define groups)

Distinguishing between types of variable
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Questions …

� What is the difference between quantitative and 
qualitative variables?

� What is the difference between a discrete variable 
and a continuous variable?

� Name two ways in which observations on qualitative 
variables can be stored on a computer. (strings/indexes)

� When would you treat a discrete random variable as 
though it were a continuous random variable?
�Can you give an example? ($34.45, bill)

STAT 251, UCLA, Ivo DinovSlide 8

0%

10%

20%

30%

29%

US
14%

11%11%

8%

6%

21% S. Africa

USSRAustr.

Can.

Chin.

Rest

(a)  Bar graph (b)  Pie chart

0%

20%

40%

60%

80%

100%

(c)  Segmented bar

S. Africa

U.S.
USSR
Austr.
Can.
China
Rest

14%
U.S.

Different graphs of the same set of numbers –
percentages of the world’s gold production in 1991
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Questions …

� For what two purposes are tables of numbers 
presented? (convey information about trends in the data,  detailed 

analysis)

� When should you round numbers, and when should you 
preserve full accuracy?

� How should you arrange the numbers you are most 
interested in comparing? (Arrange numbers you want to compare in 
columns, not rows. Provide written/verbal summaries/footnotes. Show 
row/column averages.)

� Should a table be left to tell its own story?
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3 4 5 6 7 8

Figure 2.3.1 Dot plot.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

cluster gap outlier

Figure 2.3.2 Dot plot showing special features.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

The dot plot

Atypical obs.
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Figure 2.3.3 Grading of a university course.

Example of exploiting gaps and clusters

F                         D          C- C C+ B- B  B+ A- A A+
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10 20 30 40 50 60

10 15 20 55 60

(a)   Unbroken scale

scale break

(b)   Broken scale

Figure 2.3.4 Dot plot with and without a scale break.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Scale breaks
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4 6 80 2 3 5 7 91
% Growth in GDP

Figure 2.3.5 Forecast of percent growth in GDP for 1990
for some South-East Asian and Pacific countries.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

A labeled dot plot
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Units: 7 | 2 =72

1 7
2 7 9
3 0 7 7 8 9
4 2 2 3 3 4 5 8 8 9
5 0 0 0 1 1 2 2 3 4 4 7 8 9 9
6 0 0 0 2 3 3 3 3 6 7 7 8
7 2 2

Example of a stem-and-leaf plot

Stem-plot of the 45 obs’s of the Ejection variable in the
Heart Attack data table.

Values 52, 54 and 
their frequencies

Stem Leafs
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Traffic death-rates data

TABLE 2.3.1   Traffic  Death-Rates (per 100,000  Population) for 30 Countries

17.4 Australia 20.1 Austria 19.9 Belgium 12.5 Bulgaria 15.8 Canada
10.1 Czechoslovakia 13.0 Denmark 11.6 Finland 20.0 France 12.0 E. Germany 
13.1 W. Germany 21.1 Greece   5.4 Hong Kong 17.1 Hungary 15.3 Ireland
10.3 Israel 10.4 Japan 26.8 Kuwait 11.3 Netherlands 20.1 New Zealand
10.5 Norway 14.6 Poland 25.6 Portugal 12.6 Singapore   9.8 Sweden 
15.7 Switzerland 18.6 United States 12.1 N. Ireland 12.0 Scotland 10.1England & Wales
Data for  1983, 1984 or 1985 depending on the country (prior to reunification of Germany)  
Source: Hutchinson [1987, page 3].
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Units: 17 | 4 = 17.4  deaths per  100,000
5 4
6
7
8
9 8 Units: 1 | 7 = 17  deaths per  100,000

10 1 1 3 4 5 0 5
11 3 6 0
12 0 0 1 5 6 0
13 0 1 1 0 0 0 0 0 1 1
14 6 1 2 2 2 2 3 3 3
15 3 7 8 1 5 5
16 1 6 6 7 7
17 1 4 1 9
18 6 2 0 0 0 0 1
19 9 2
20 0 1 1 2
21 1 2 6 7
22
23
24
25 6
26 8

FIGURE 2.3.7  Two stem-and-leaf plots for the traffic deaths dat

Collapse to

12 stems

(a)

(b)

Round-off
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TABLE 2.3.2   Coyote Lengths Data (cm)

Females
93.0 97.0 92.0 101.6 93.0 84.5 102.5 97.8 91.0 98.0 93.5 91.7
90.2 91.5 80.0 86.4 91.4 83.5 88.0 71.0 81.3 88.5 86.5 90.0
84.0 89.5 84.0 85.0 87.0 88.0 86.5 96.0 87.0 93.5 93.5 90.0
85.0 97.0 86.0 73.7

Males
97.0 95.0 96.0 91.0 95.0 84.5 88.0 96.0 96.0 87.0 95.0 100.0

101.0 96.0 93.0 92.5 95.0 98.5 88.0 81.3 91.4 88.9 86.4 101.6
83.8 104.1 88.9 92.0 91.0 90.0 85.0 93.5 78.0 100.5 103.0 91.0

105.0 86.0 95.5 86.5 90.5 80.0 80.0

Coyotes captured in Nova Scotia, Canada.  Data courtesy of Dr Vera Eastwood.
TABLE 2.3.3 Frequency Table for

Female Coyote Lengths

Class Interval Tally Frequency Stem-and-leaf plot
70-75 - || 2 7 1 4
75-80 - 0 7
80-85 - |||| | 6 8 0 1 4 4 4
85-90 - |||| |||| || 12 8 5 5 5 6 6 7 7 7 7 8 8 9
90-95 - |||| |||| ||| 13 9 0 0 0 0 1 1 2 2 2 3 3 4 4 4

95-100 - |||| 5 9 6 7 7 8 8
100-105 - || 2 10 2 3

Total 40

Body
length
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70 80 90 100
length (cm)

(b)  Stem-and-leaf plot rotated(a)  Histogram

0

4

8

12

Figure 2.3.8 Histogram of the female coyote-lengths data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

TABLE 2.3.3 Frequency Table for
Female Coyote Lengths

Class Interval Tally Frequency Stem-and-leaf plot
70-75- || 2 7 1 4
75-80- 0 7
80-85- |||| | 6 8 0 1 4 4 4
85-90- |||| |||| || 12 8 5 5 5 6 6 7 7 7 7 8 8 9
90-95- |||| |||| ||| 13 9 0 0 0 0 1 1 2 2 2 3 3 4 4 4

95-100- |||| 5 9 6 7 7 8 8
100-105- || 2 10 2 3

Total 40

compare
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(a)  Original histogram
           (interval width = 5)

(c)  Same widths, different boundaries
                  (interval width = 5)

(b)  Change class-interval width
               (interval width = 3)

(d)  Density trace
      (window width = 5)
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Figure 2.3.9 Histograms and density trace of female coyote-lengths data.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Histogram bin-size change

Histogram bin-boundary change
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Questions …

� What advantages does a stem-and-leaf plot have over 
a histogram? (S&L Plots return info on individual values, quick to 
produce by hand, provide data sorting mechanisms. But, histograms are 
more attractive and more understandable). 

� The shape of a histogram can be quite drastically 
altered by choosing different class-interval 
boundaries.  What type of plot does not have this 
problem? (density trace) What other factor affects the 
shape of a histogram? (bin-size)

� What was another reason given for plotting data on a 
variable, apart from interest in how the data on that 
variable behaves? (shows features, cluster/gaps, outliers; as well as 
trends)
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(e)   Positively skewed

(a)   Unimodal (b)   Bimodal (c)   Trimodal

(d)   Symmetric
(long upper tail)

(f)   Negatively skewed
(long lower tail)

(g)   Symmetric (h)   Bimodal with gap (i)   Exponential shape

Interpreting Stem-plots and Histograms

e x||−

e x2
2
1−

)1( 22

1
−x
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(j)   Spike in pattern

(k)   Outliers (l)   Truncation plus outlier

outlieroutlier

spike

Figure 2.3.10 Features to look for in histograms and stem-and-leaf plots.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Interpreting Stem-plots and Histograms
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Fascinations with histograms –
Histogram of heights using the actual people

Subjects are university genetics students, females in white
and males in dark tops.

?
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Skewness & Kurtosis

� What do we mean by symmetry and positive and 
negative skewness? Kurtosis? Properties?!?

� Skewness in linearly invariant Sk(aX+b)=Sk(X)

� Skewness is a measure of unsymmetry

� Kurtosis is a measure of flatness

� Both are use to quantify departures from StdNormal

� Skewness(StdNorm)=0; Kurtosis(StdNorm)=3
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Descriptive Statistics
Variable N Mean Median TrMean StDev SE Mean
age 45 50.133 51.000 50.366 6.092 0.908

Variable Minimum Maximum Q1 Q3
age 36.000 59.000 46.500 56.000

Standard deviation

Lower quartile Upper quartile

Minitab output

Descriptive statistics from computer 
programs like STATA

STATA Output
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� The sample mean is denoted by  .x 

Descriptive statistics …

Sum  of the observations
Number  of observations

The sample mean =
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Mean
(a) (b) (c)

Figure 2.4.1 Mechanical construction representing a dot plot:
(a) shows a balanced rod while (b) and (c) show unbalanced rods.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

The sample mean is where the dot plot balances
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The sample median

If            is not a whole number, the median is the 

average of the two observations on either side.

n +1
2

For n observations, {x1, x2, x3, …, xn}. Suppose we order
the observations min-to-max to get 

{x(1), x(2), x(3), …, x(n)}.
Then the sample median is the [(n+1)/2]-st largest 
Observation x n








 +
2

1
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Med = x

P

Med
x

P

(a)  Data symmetric about  P

(b)  Two largest points moved to the right

Figure 2.4.2 The mean and the median.
[Grey disks in (b) are the ``ghosts'' of the points that were moved.]

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Effect of outliers on the mean and median
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Founded
Area

Altitude
Population

Welcome to
MEANSTOWN

1867
20

584
372
711Average

Suggested by a 1977 cartoon in The New Yorker magazine by Dana Fradon.

Beware of inappropriate averaging

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.
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Questions …

� How is the sample mean related to the dot plot?

� If  the index (n+1)/2  is not a whole number (e.g., 
23.5), how do we obtain the sample median?

� Why is the sample median usually preferred to the 
sample mean for skewed data?  Why is it preferred for 
“dirty” data?

� Under what circumstances may quoting a single center
(be it mean or median) not make sense?(multi-modal)

� What can we say about the sample mean of a 
qualitative variable? (meaningless)

0 100
mean

STAT 251, UCLA, Ivo DinovSlide 32

The first quartile (Q1) is the median of all the observations 
whose position is strictly below the position of the median, 
and the third quartile (Q3) is the median of those above.

Quartiles

25% 25%25%

median
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•Mode: the most frequently occurring number in a discrete 
data sample.

•CV: Coefficient of variation = SD/Mean

Mode, Coefficient-of-Variation
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The five-number summery = (Min, Q1, Med, Q3, Max)

Five number summary
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IQR = Q3 - Q1

Inter-quartile Range
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SYSVOL
50 100 150 200

MedianQ1 Q3

Box plot

Dot plot

Figure 2.4.3 Box plot for SYSVOL.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Box plot compared to dot plot
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Data
1.5 IQR

Med

1.5 IQR

Scale

Q1 Q3

(pull back until hit observation) (pull back until hit observation)

Figure 2.4.4 Construction of a box plot.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Construction of a box plot
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TABLE 2.5.1  Word Lengths for the First 100 
Words on a Randomly Chosen Page

3 2 2 4 4 4 3 9 9 3 6 2 3 2 3 4 6 5 3 4
2 3 4 5 2 9 5 8 3 2 4 5 2 4 1 4 2 5 2 5
3 6 9 6 3 2 3 4 4 4 2 2 4 2 3 7 4 2 6 4
2 5 9 2 3 7 11 2 3 6 4 4 7 6 6 10 4 3 5 7
7 7 5 10 3 2 3 9 4 5 5 4 4 3 5 2 5 2 4 2

Value u 1 2 3 4 5 6 7 8 9 10 11
Frequency f 1 22 18 22 13 8 6 1 6 2 1

j

j

Frequency Table

Frequency Table
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)nsobservatio all of Sum(1

 )occurrence offrequency   (value of Sum 1

n

n
x =×=

Mean from a frequency table
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TABLE 2.5.2  
Frequency Table for the Occurrence of Fish Species in Ocean Strata

No. of strata   Frequency   Percentage  
in which species occur   (No. of species)  of species   Cumulative

Percentage 

1 117 35.5 35.5
2 61 18.5 53.9
3 37 11.2 65.2
4 24 7.3 72.4
5 23 7.0 79.4
6 12 3.6 83.0
7 14 4.2 87.3
8 10 3.0 90.3
9 9 2.7 93.0

  10+ 23 7.0 100.0

n = 330 100
Source: Haedrich and Merrett [1988]

(
fj

n × 100 )(uj) ( fj )
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30%

10%

20%

0 1 2 3 4 5 6 7 8 9 10+

Number of strata occupied

0%

Figure 2.5.1 Bar graph for species data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Sampling Distributions

�Parameters and Estimates
�Sampling distributions of the sample mean
�Central Limit Theorem (CLT)
�Estimates that are approximately Normal
�Standard errors of differences
�Student’s t-distribution
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Parameters and estimates

� A parameter is a numerical characteristic of a 
population or distribution

� An estimate is a quantity calculated from the data to 
approximate an unknown parameter

� Notation
�Capital letters refer to random variables
�Small letters refer to observed values
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Questions

� What are two ways in which random observations 
arise and give examples. (random sampling from finite population –
randomized scientific experiment; random process producing data.)

� What is a parameter? Give two examples of 
parameters. (characteristic of the data – mean, 1st quartile, std.dev.)

� What is an estimate? How would you estimate the 
parameters you described in the previous question?

� What is the distinction between an estimate (p^ value 

calculated form obs’d data to approx. a parameter) and an estimator (P^ 
abstraction the the properties of the ransom process and the sample that produced the 

estimate) ? Why is this distinction necessary? (effects of 
sampling variation in P^)
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The sample mean has a sampling distribution

Sampling batches of Scottish soldiers and taking chest 
measurements.  Population  µ = 39.8 in, and σ = 2.05 in.

1
2
3
4
5
6
7
8
9

10

12
11

34 36 38 40 42 44 46

(a)   12 samples of size  n = 6mple
mber
Sample
number

Chest
measurements

12 samples of size 6
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Twelve samples of size 24

34 36 38 40 42 44 46

1
2

3
4

5
6
7
8
9

10

12
11

Sample
number

12 samples of size 24

Chest
measurements
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Histograms from 100,000 samples, n=6, 24, 100

393837 40 41 42
0.0

0.5
(a)  n = 6

(b)  n = 24

393837 40 41 42
0.0

0.5

1.0

(c)  n = 100

393837 40 41 42
0.0

0.5

1.0

1.5

Sample mean of chest measurements (in.)

What do we see?!?

1.Random nature of the means:
individual sample means
vary significantly

2. Increase of sample-size
decreases the variability of
the sample means!
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E(sample mean)    =  Population mean

size Sample
Population = )SD( SDnsample mea

Mean and SD of the sampling distribution of
X_bar

[Sampling distributions -probability
distributions of statistics]

nn
XXXX σσσσµµµµ ================ )(SD)(SD    ,)(E)(E
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� We use both      and       to refer to a sample mean. For 
what purposes do we use the former and for what 
purposes do we use the latter?

� What is meant by “the sampling distribution of       ”?

(sampling variation – the observed variability in the process of taking random samples; 
sampling distribution – the real probability distribution of the random sampling process)

� How is the population mean of the sample average
related to the population mean of individual 
observations? (E(     ) = Population mean)

x X 

X 

X 

Review

X 
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� How is the population standard deviation of related 
to the population standard deviation of individual 
observations?  ( SD(     ) = (Population SD)/sqrt(sample_size) )

� What happens to the sampling distribution of if 
the sample size is increased? ( variability decreases ) 

� What does it mean when      is said to be an “unbiased 
estimate” of µ ? (E(     ) = µ. Are Y^= ¼ Sum, or Z^ = ¾ Sum unbiased?)

� If you sample from a Normal distribution, what can 
you say about the distribution of        ? ( Also Normal ) 

X

X 

x 

X 

Review

X 

x 
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� Increasing the precision of       as an estimator of µ is 
equivalent to doing what to SD(    )? (decreasing)

� For the sample mean calculated from a random 
sample, SD(      ) =      . This implies that the 
variability from sample to sample in the sample-
means is given by the variability of the individual 
observations divided by the square root of the 
sample-size. In a way, averaging decreases variability.

X 
X 

Review

X n
σσσσ
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Central Limit Effect –
Histograms of sample means

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

n = 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

n = 2

Triangular
Distribution

Sample means from sample size
n=1, n=2, 

500 samples

Area = 1

2

1

0

2

1

0

2

1

0

Y=2 X
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Central Limit Effect -- Histograms of sample means

0.0 0.2 0.4 0.6 0.8 1.0

n = 4

0.0 0.2 0.4 0.6 0.8 1.0

n = 10

Triangular Distribution
Sample sizes n=4, n=10
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Central Limit Effect –
Histograms of sample means

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

n = 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

n = 2

0
0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

Area = 1

Uniform Distribution

Sample means from sample size
n=1, n=2, 

500 samples

Y = X
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Central Limit Effect -- Histograms of sample means

n = 4

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

n = 10

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

Uniform Distribution
Sample sizes n=4, n=10
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Central Limit Effect –
Histograms of sample means

Sample means from sample size
n=1, n=2, 

500 samples

0 1 2 3 4 5 6
0.0
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n = 2
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Area = 1

Exponential Distribution
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Central Limit Effect -- Histograms of sample means

n = 4

0 1 2 3
0.0
0.2
0.4
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0.8
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n = 10
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Exponential Distribution
Sample sizes n=4, n=10
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Central Limit Effect –
Histograms of sample means

Sample means from sample size
n=1, n=2, 

500 samples
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Central Limit Effect -- Histograms of sample means

n = 4

0.0 0.2 0.4 0.6 0.8 1.0
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0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

Quadratic U Distribution
Sample sizes n=4, n=10
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Central Limit Theorem:
When sampling from almost any distribution,

is approximately Normally distributed in large samples.X 

Central Limit Theorem – heuristic formulation

SamplingDistributionApplet.html
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Let                              be a sequence of independent
observations from one specific random process. Let    
and                      and                        and both are
finite (                           ). If                    , sample-avg,

Then    has a distribution which approaches 
N(µ, σ2/n), as            .

{{{{ }}}},...,...,X,XX
k21

Central Limit Theorem –
theoretical formulation

µµµµ====)(XE σσσσ====)(XSD
∞∞∞∞<<<<∞∞∞∞<<<<<<<< ||  ;0 µµµµσσσσ ∑∑∑∑

====
====

n

k k
X

nn
X

1

1

X

∞∞∞∞→→→→n
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Review

� What does the central limit theorem say? Why is it 
useful? (If the sample sizes are large, the mean in Normally distributed, as a RV)

� In what way might you expect the central limit effect 
to differ between samples from a symmetric
distribution and samples from a very skewed 
distribution? (Larger samples for non-symmetric distributions to see CLT effects)

� What other important factor, apart from skewness, 
slows down the action of the central limit effect?

(Heavyness in the tails of the original distribution.)
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Review

� When you have data from a moderate to small sample 
and want to use a normal approximation to the 
distribution of in a calculation, what would you 
want to do before having any faith in the results? (30 or 
more for the sample-size, depending on the skewness of the distribution of X. Plot 
the data - non-symmetry and heavyness in the tails slows down the CLT effects).

� Take-home message: CLT is an application of 
statistics of paramount importance. Often, we are not 
sure of the distribution of an observable process. 
However, the CLT gives us a theoretical description 
of the distribution of the sample means as the sample-
size increases (N(µ, σ2/n)).

X 

STAT 251, UCLA, Ivo DinovSlide 64

� For the sample mean calculated from a random 
sample, SD(      ) =      . This implies that the 
variability from sample to sample in the sample-
means is given by the variability of the individual 
observations divided by the square root of the 
sample-size. In a way, averaging decreases variability.

� Recall that for known SD(X)=σ, we can express the 
SD(     ) =       .  How about if SD(X) is unknown?!?X 

X n
σσσσ

The standard error of the mean – remember …

n
σσσσ
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The standard error of the mean

The standard error of the sample mean is an 
estimate of the SD of the sample mean

� i.e. a measure of the precision of the sample 
mean as an estimate of the population mean

�given by   SE(   )
size Sample
deviation standard Sample =

n
s

xS x =)E(

x 

� Note similarity with

� SD(     ) =       . X 
n

σσσσ
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : C avendis h [1798].

5.0 5.2 5.4 5.6 5.8

Two-standard-error interval
for true value

x

Measured density (g/cm  )3

Newton’s law of gravitation: F = G m1 m2 /r2, the attraction force
F is the ratio of the product (Gravitational const, mass of body1, mass
body2) and the distance between them, r. Goal is to estimate G!

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Total of 29 measurements obtained by 
measuring Earth’s attraction to masses
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : C avendis h [1798].

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Sample mean 

and sample SD =

Then the standard error for these data is:

3/  447931.5 cmgx ====

3/  2209457.0 cmg
X

S ====

04102858.0
29

2209457.0)( ============
n

S
XSE X
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TABLE 7.2.1 Cavendish's Determinations of the Mean Density 
of the Earth (g/cm3)

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

So urce : C avendis h [1798].

Cavendish’s 1798 data on mean density of the 
Earth, g/cm3, relative to that of H2O

Safely can assume the true mean density of the 
Earth is within 2 SE’s of the sample mean! 

3/ 04102858 0.2 447931.5)(2 cmgxSEx ××××±±±±====××××±±±±
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Review

� Why is the standard deviation of     , SD(    ) , not a 
useful measure of the precision of     as an estimator 
in practical applications?(SD(   ) =       and σ is unknown most time!)

� What measure of precision do we use in practice? (SE)

� How is SE(   ) related to SD(    )?

� When we use the formula SE(   ) = sX/     , what is sX
and how do you obtain it? (Sample SD(X))

X X 
X 

x X 

x n

n
σσσσX 

∑

=
−

−
=

n

i
xix

nXS
1

2)(    
1

1
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Review

� What can we say about the true value of µ and the 
interval        2 SE(   )  ? (95% sure)

� Increasing the precision of    as an estimate of µ is 
equivalent to doing what to se(   )? (decreasing)

x ± x 

x 
x 
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The sample proportion estimates the population 
proportion p.

Suppose, we poll college athletes to see what percentage 
are using performance enhancing drugs. If 25% admit to 
using such drugs (in a single poll) can we trust the 
results? What is the variability of this proportion 
measure (over multiple surveys)? Could Football, Water 
Polo, Skiing and Chess players have the same drug 
usage rates?

ˆ p 

Sampling distribution of the sample 
proportion
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For large samples,  the distribution of ˆ P   is approximately Normal with

             mean =  p   and    standard deviation =  
p(1 − p)

n
 

Approximate Normality in large samples

0.04

0.00

0.02

60 70 80 90 100

0.06

Value of y

Histogram of 
Bin (200, p=0.4)
probabilities with
superimposed 
Normal curve 
approximation.
Recall that for
Y~Bin(n,p)

)1()(

)(

pnpYSD

npYE

Y

Y
−−−−========

========

σσσσ

µµµµ
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Approximate Normality in large samples

Histogram of  Bin (200, p=0.4) probabilities with superimposed 
Normal curve  approximation. Recall that for Y~Bin(n,p). 
Y = # Heads in n-trials. Hence, the proportion of Heads is:
Z=Y/n. 

)1()(

)(

pnpYSD

npYE

Y

Y
−−−−========

========

σσσσ

µµµµ

n
ppYSD

n
ZSD

pYE
n

ZE

Z

Z
)1()(1)(

)(1)(

−−−−============

============

σσσσ

µµµµ

This gives us bounds on the variability of the sample proportion:

n
pppZSE

Z
)1(2)(2 −−−−±±±±====±±±±µµµµ

What is the variability of this proportion measure 
over multiple surveys?
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Approximate Normality in large samples

0.04

0.00

0.02

60 70 80 90 100

0.06

Value of y

Histogram of 
Bin (200, p=0.4)
probabilities with
superimposed 
Normal curve 
approximation.
Recall that for
Y~Bin(n,p)

The sample proportion Y/n can be approximated by 
normal distribution, by CLT, and this explains the tight 
fit between the observed histogram and a N(pn,            ))1( pnp −−−−

93.6)1( ====−−−− pnp0.80====np
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Standard error of the sample proportion:

se( ˆ p ) =
ˆ p (1− ˆ p )

n

Standard error of the sample proportion
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Review

� We use both     and    to describe a sample proportion. 
For what purposes do we use the former and for what 
purposes do we use the latter? (observed values vs. RV)

� What two models were discussed in connection with 
investigating the distribution of    ? What 
assumptions are made by each model? (Number of units having 
a property from a large population Y~ Bin(n,p), when sample <10% of popul.; 
Y/n~Normal(m,s), since it’s the avg. of all Head(1) and Tail(0) observations, when n-large).

� What is the standard deviation of a sample proportion 
obtained from a binomial experiment?

ˆ p ˆ p 

p̂

n
ppnYSD )1()/( −−−−====
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Review

� Why is the standard deviation of    not useful in 
practice as a measure of the precision of the estimate?

� How did we obtain a useful measure of precision, and 
what is it called? (SE(   ) )

� What can we say about the true value of p and the 
interval       2 SE(   )? (Safe bet!)

� Under what conditions is the formula

SE(   ) = applicable? (Large samples)

ˆ p 

ˆ p ± p̂

p̂ npp /)ˆ1(ˆ −

!unknownp  of  in  terms  ,)1()ˆ( −−−−
−−−−====
n

ppPSD

p̂
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Review

� In the TV show Annual People's Choice Awards, awards are 
given in many categories (including favorite TV comedy show, and favorite TV 

drama) and are chosen using a Gallup poll of 5,000 Americans (US 

population approx. 260 million).

� At the time the 1988 Awards were screened in NZ, an NZ 
Listener journalist did “a bit of a survey” and came up with a list 
of awards for NZ (population 3.2 million).

� Her list differed somewhat from the U.S. list. She said, “it may be 
worth noting that in both cases approximately 0.002 percent of 
each country's populations were surveyed.” The reporter inferred 
that because of this fact, her survey was just as reliable as the 
Gallup poll. Do you agree? Justify your answer. (only 62 people surveyed, but that’s 
okay. Possible bad design (not a random sample)?)
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Review

� Are public opinion polls involving face-to-face 
interviews typically simple random samples? (No! Often 
there are elements of quota sampling in public opinion polls. Also, most of the 
time, samples are taken at random from clusters, e.g., townships, counties, which 
doesn’t always mean random sampling. Recall, however, that the size of the sample 
doesn’t really matter, as long as it’s random, since sample size less than 10% of 
population implies Normal approximation to Binomial is valid.)

� What approximate measure of error is commonly 
quoted with poll results in the media? What poll 
percentages does this level of error apply to? 

(         2*SE(    ) ,  95%, from the Normal approximation)ˆ p ± p̂
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Review

� A 1997 questionnaire investigating the opinions of 
computer hackers was available on the internet for 2 
months and attracted 101 responses, e.g. 82% said 
that stricter criminal laws would have no effect on 
their activities. Why would you have no faith that a 2 
std-error interval would cover the true proportion?
(sampling errors present (self-selection), which are a lot larger than non-
sampling statistical random errors).
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Bias and Precision

� The bias in an estimator is the distance between 
between the center of the sampling distribution of the 
estimator and the true value of the parameter being 
estimated. In math terms, bias = , where 
theta      is the estimator, as a RV,  of the true 
(unknown) parameter      .

� Example, Why is the sample mean an unbiased
estimate for the population mean? How about ¾ of 
the sample mean? 

θθθθ−−−−)ˆ(ΘE
Θ̂

θθθθ

0
1

1)ˆ( ====−−−−
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
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





∑∑∑∑
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====−−−− µµµµµµµµ
n

k k
X

n
EE Θ

general.in     ,0
44

3
1

1
4
3)ˆ(

≠≠≠≠====−−−−

====−−−−
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Bias and Precision

� The precision of an estimator is a measure of how 
variable is the estimator in repeated sampling. 

(a)   No bias, high precision (b)  No bias,  low precision

(c)  Biased, high precision (d)  Biased,  low precision

value of parameter value of parameter

value of parameter value of parameter
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Standard error of an estimate

The standard error of any estimate    [denoted se(   )]

• estimates the variability of     values in repeated
sampling and

• is a measure of the precision of     .

ˆ θ ˆ θ 

ˆ θ 

ˆ θ 
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Review

� What is meant by the terms parameter and estimate.

� Is an estimator a RV?

� What is statistical inference? (process of making conclusions or 
making useful statements about unknown distribution parameters based on 
observed data.)

� What are bias and precision?

� What is meant when an estimate of an unknown 
parameter is described as unbiased? 
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Review

� What is the standard error of an estimate, and what 
do we use it for? (measure of precision)

� Given that an estimator of a parameter is 
approximately normally distributed, where can we 
expect the true value of the parameter to lie? (within 2SE 
away)

� If each of 1000 researchers independently conducted 
a study to estimate a parameter  θ, how many 
researchers would you expect to catch the true value 
of θ in their 2-standard-error interval? (10*95=950)
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Estimating a difference – proportions of 
people who believe police use racial profiling

“White”
estimate

“Black or Hispanic”
estimate

Truth Truth

= 0.52 - 0.29,
but what is the true difference ??

Estimated difference

P i

????????

0.2 0.3 0.4 0.5 0.6 0.7
.52.29

STAT 251, UCLA, Ivo DinovSlide 87

Is there racial profiling or are there
confounding explanatory effects?!?

� The book by Best (Damned Lies and Statistics: Untangling 
Numbers from the Media, Politicians and Activists, Joel Best) 
shows how we can test for racial bias in police arrests. Suppose
we find that among 100 white and 100 black youths, 10 and 17, 
respectively, have experienced arrest. This may look plainly 
discriminatory. But suppose we then find that of the 80 middle-
class white youths 4 have been arrested, and of the 50 middle-
class black youths 2 arrested, whereas the corresponding 
numbers of lower-class white and black youths arrested are, 
respectively, 6 of 20 and 15 of 50. These arrest rates correspond 
to 5 per 100 for white and 4 per 100 for black middle-class
youths, and 30 per 100 for both white and black lower-class
youths. Now, better analyzed, the data suggest effects of social 
class, not race as such.
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Standard error of a difference

Standard error for a difference between independent 
estimates:

What happens if there’s an association between them?

2)
2

ˆSE( + 2)
1
ˆSE( = )

2
ˆ - 

1
ˆSE(             or        

2)
2

SE(Est + 2)
1

SE(Est = )
2

Est - 
1

SE(Est

θθθθθθθθθθθθθθθθ
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� For random samples from a Normal distribution, 

is exactly distributed as Student(df = n - 1)
� but methods we shall base upon this distribution for T work 

well even for small samples sampled from distributions 
which are quite non-Normal.

� df is number of observations –1, degrees of freedom.

)(
)(

XSE
XT µµµµ−−−−====

Student’s t-distribution

Recall that for samples 
from N( µ , σ )

)1,0(~
/

)(
)(
)( N

n
X

XSD
XZ

σσσσ
µµµµµµµµ −−−−====−−−−====

Approx/Exact
Distributions
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Density curves for Student’s t

0 2 4- 2- 4

df  =  ×
[i.e., Normal(0,1)]

df  =  5
df  =  2

Figure 7.6.1 Student(df) density curves for various df.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

∞∞∞∞



16

STAT 251, UCLA, Ivo DinovSlide 91

� By     (prob), we mean the number t such that when  
T ~ Student(df), P(T ) = prob; that is, the tail area 
above t (that is to the right of  t on the graph) is prob.

≥

Notation

dft

(prob)tdf

0

prob

z(prob)
0

prob

Normal(0,1) density Student(df) density

Figure 7.6.2 The z(prob) and t(prob) notations.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

dft
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(0.05)- t tdf df(0.05)
0

0.05 0.050.90

Figure 7.6.3 The central 90% of the Student(df) distribution.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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TABLE 7.6.1  Extracts from the Student's t-Distribution Table
prob

df .20 .15 .10 .05  .025 .01 .005 .001 .0005 .0001
6 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959 8.025
7 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408 7.063
8 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041 6.442
… … … … … … … … … … …
10 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587 5.694

 … … … … … … … … … … …
15 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073 4.880
… … … … … … … … … … …

0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.719∞

Reading Student’s t table

t-value

Desired
df

Desired
upper-tail prob

(prob)tdf

0

prob

Student(df) density
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Review

� Qualitatively, how does the Student (df) distribution 
differ from the standard Normal(0,1) distribution? 
What effect does increasing the value of df have on 
the shape of the distribution?  (σσσσ is replaced by SE)

� What is the relationship between the Student (df= ) 
distribution and the Normal(0,1) distribution? 
(Approximates N(0,1) as n�increases)

∞
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Review

� Why is T, the number of standard errors separating      
and µ , a more variable quantity than Z, the number 
of standard deviations separating     and µ ? (Since an 
additional source of variability is introduced in T, SE, not available in Z. E.g., P(-
2<=T<=2)=0.9144 < 0.954=P(-2<=Z<2), hence tails of T are wider. To get 95% 
confidence for T we need to go out to +/-2.365).

� For large samples the true value of µ lies inside the 
interval       2 se(   ) for a little more than 95% of all 
samples taken. For small samples from a normal 
distribution, is the proportion of samples for which 
the true value of µ lies within the 2-standard-error 
interval smaller or bigger than 95%? Why?(Smaller – wider tail.)

X 

X 

x ± x 
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Review

� For a small Normal sample, if you want an interval to 
contain the true value of  µ for 95 % of samples 
taken, should you take more or fewer than two-
standard errors on either side of     ? (more)

� Under what circumstances does mathematical theory 
show that the distribution of T=(   - µ )/SE(   ) is 
exactly Student (df=n-1)? (Normal samples)

� Why would methods derived from the theory be of 
little practical use if they stopped working whenever 
the data was not normally distributed? (In practice, we’re never 
sure of Normality of our sampling distribution).

x 

X X
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� For random quantities, we use a capital letter for the 
random variable, and a small letter for an observed 
value, for example, X and x,      and    ,     and    ,              

and      .

� In estimation, the random variables (capital letters) 
are used when we want to think about the effects of 
sampling variation, that is, about how the random 
process of taking a sample and calculating an 
estimate behaves.

X x
Θ̂

ˆ P 
ˆ θ 

ˆ p 

Sampling Distributions
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Sample mean,      :
For  a random sample of size n from a distribution for which  

E(X) = µ and sd(X) = σ,   the sample mean        has :

�

� If we are sampling from a Normal distribution, then

�Central Limit Theorem: For almost any distribution,        
is approximately Normally distributed in large samples.  

nn
XDXXX σσσσµµµµ ================ )(S)(SD    ,)(E)(E

Normal. ~X

X 

X 

Sampling distribution of  

X 

X 

X 

(exactly)
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� Sample proportion,      : For a random sample of size n
from a population in which a proportion p have a 
characteristic of interest, we have the following results about 
the sample proportion with that characteristic:

�

� is approximately Normally distributed for large  n

(e.g., np(1-p)     10, though a more accurate rule is given in the next 
chapter)

µ ˆ p = E( ˆ P ) = p       σ ˆ p = sd( ˆ P ) = p(1- p)
n

ˆ P 

ˆ P 

ˆ P Sampling distribution of the 
sample proportion

≥
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� A parameter is a numerical characteristic of a 
population or distribution

� An estimate is a known quantity calculated from the 
data to approximate an unknown parameter

� For general discussions about parameters and estimates, we 
talk in terms of      being an estimate of a parameter  θ

�The bias in an estimator is the difference between           
and  θ

� is an unbiased estimate of   θ if            

ˆ θ 

)ˆ(ΘE

ˆ θ E( ˆ Θ ) = θ.

Parameters and estimates
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Precision

� The precision of an estimate refers to its variability in 
repeated sampling

� One estimate is less precise than another if it has 
more variability.
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� The standard error, SE(    ), for an estimate     is: 
� an estimate of the std dev. of the sampling distribution
� a measure of the precision of      as an estimate of  θ

� For a mean

�The sample mean      is an unbiased estimate of the 
population mean µ

� SE

se( ˆ θ ) ˆ θ 

x 

n
sx X=)(

Standard error

ˆ θ ˆ θ 

ˆ θ 
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� Proportions
�The sample proportion        is an unbiased estimate of the 

population proportion p

�

� Standard error of a difference: For independent 
estimates,

ˆ p 

se( ˆ p ) =
ˆ p (1− ˆ p )

n

se( ˆ θ 1 − ˆ θ 2 ) = se( ˆ θ 1)
2 + se( ˆ θ 2 )2

Standard errors cont.
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TABLE 7.7.1 Some Parameters and Their Estimates

Population(s) or
Distributions(s) Sample data

Measure of
Parameters Estimates precision

Mean m  se  

Proportion p  se  

Difference in means µ 1-µ 2  se

Difference in proportions p 1-p 2  se

General case θ  se

x  
ˆ p  

x  1 − x  2
ˆ  p  1 − ˆ  p  2

ˆ θ 

(x  )
( ˆ  p  )
(x  1 − x  2 )
( ˆ  p  1 − ˆ  p  2 )
( ˆ  θ )
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� Is bell shaped and centered at zero like the 
Normal(0,1), but

� More variable (larger spread and fatter tails).

� As df becomes larger, the Student(df) distribution 
becomes more and more like the Normal(0,1) 
distribution.

� Student                 and Normal(0,1) are two ways of 
describing the same distribution.

(df = ∞)

Student’s t-distribution ….
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� For random samples from a Normal distribution, 

is exactly distributed as Student(df = n - 1), but 
methods we shall base upon this distribution for T
work well even for small samples sampled from 
distributions which are quite non-Normal.

� By     (prob), we mean the number t such that when  
T ~ Student(df), pr(T t) = prob; that is, the tail area 
above t (that is to the right of  t on the graph) is prob.

)(/)( XSEXT µµµµ−−−−====

≥

Student’s t-distribution cont.

dft
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� If I ask 30 of you the question “Is 3 credit hour a reasonable 
load for Stat251?”, and say, 15 (50%) said no. Should we 
change the format of the class?

� Not really – the 2SE interval is about [0.32 ; 0.68]. So, we 
have little concrete evidence of the proportion of students who 
think we need a change in Stat 251 format, 

� If I ask all 300 Stat 251 students and 150 say no (still 50%), 
then 2SE interval around 50% is: [0.44 ; 0.56].

� So, large sample is much more useful and this is due to 
CLT effects, without which, we have no clue how useful 
our estimate actually is …

CLT Example – CI shrinks by half by 
quadrupling the sample size!

-0.180.5)p̂-(1p̂20.5)p̂SE(2p̂ ±±±±====××××±±±±====××××±±±±
n


