UCLA STAT 251
 Statistical Methods for the Life and Health Sciences

- Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology

University of California, Los Angeles, Winter 2002
http://www.stat.ucla.edu/~dinov/

TABLE 2.1.1 Data on Male Heart Attack Patients

A subset of the data collected at a Hospital is summarized in this table. Each patient has measurements recorded for a number of variables - ID, Ejection factor (ventricular output), blood systolic/diastolic pressure, etc.

- Reading the table
-Which of the measured variables (age, ejection etc.) are useful in predicting how long the patient may live. -Are there relationships between these predictors? -variability \& noise in the observations hide the message of the data.

Types of variable

Questions ...

- For what two purposes are tables of numbers presented? (convey information about trends in the data, detailed analysis)
- When should you round numbers, and when should you preserve full accuracy?
- How should you arrange the numbers you are most interested in comparing? (Arrange numbers you want to compare in columns, not rows. Provide written/verbal summaries/footnotes. Show row/column averages.)
- Should a table be left to tell its own story?

Example of exploiting gaps and clusters

Figure 2.3.3 Grading of a university course.

Figure 2.3.2 Dot plot showing special features.

Questions ...

- What advantages does a stem-and-leaf plot have over a histogram? (S\&L Plots return info on individual values, quick to produce by hand, provide data sorting mechanisms. But, histograms are more attractive and more understandable).
- The shape of a histogram can be quite drastically altered by choosing different class-interval boundaries. What type of plot does not have this problem? (density trace) What other factor affects the shape of a histogram? (bin-size)
- What was another reason given for plotting data on a variable, apart from interest in how the data on that variable behaves? (shows features, cluster/gaps, outliers; as well as trends)

Interpreting Stem-plots and Histograms

(j) Spike in pattern

Figure 2.3.10 Features to look for in histograms and stem-and-leaf plots.

Skewness \& Kurtosis

- What do we mean by symmetry and positive and negative skewness? Kurtosis? Properties?!?
Skewness $=\frac{\sum_{k=1}^{N}\left(Y_{k}-\bar{Y}\right)^{3}}{(N-1) S D^{3}} ; \quad$ Kurtosis $=\frac{\sum_{k=1}^{N}\left(Y_{k}-\bar{Y}\right)^{4}}{(N-1) S D^{4}}$
- Skewness in linearly invariant $\operatorname{Sk}(\mathrm{aX}+\mathrm{b})=\mathrm{Sk}(\mathrm{X})$
- Skewness is a measure of unsymmetry
- Kurtosis is a measure of flatness
- Both are use to quantify departures from StdNormal
- Skewness(StdNorm) $=0$; Kurtosis(StdNorm) $=3$

The sample mean is where the dot plot balances

(a)

(b)

(c)

Figure 2.4.1	$\begin{array}{l}\text { Mechanical construction representing a dot plot: } \\ \text { (a) shows a balanced rod while (b) and (c) show unbalanced rods. }\end{array}$

Effect of outliers on the mean and median

(a) Data symmetric about P

(b) Two largest points moved to the right

Figure 2.4.2 The mean and the median.
[Grey disks in (b) are the "ghosts" of the points that were moved.]

Beware of inappropriate averaging

Questions ..

How is the sample mean related to the dot plot?

- If the index $(n+1) / 2$ is not a whole number (e.g., 23.5), how do we obtain the sample median?
- Why is the sample median usually preferred to the sample mean for skewed data? Why is it preferred for "dirty" data?

0 : mean

- Under what circumstances may quoting a single center (be it mean or median) not make sense?(multi-modal)
- What can we say about the sample mean of a qualitative variable? (meaningless)

Mode, Coefficient-of-Variation

- Mode: the most frequently occurring number in a discrete data sample.
$\cdot \mathrm{CV}$: Coefficient of variation $=$ SD/Mean

Sampling Distributions

- Parameters and Estimates
- Sampling distributions of the sample mean
- Central Limit Theorem (CLT)
- Estimates that are approximately Normal
- Standard errors of differences
- Student's t-distribution

Figure 2.5.1 Bar graph for species data.

Parameters and estimates

A parameter is a numerical characteristic of a population or distribution

- An estimate is a quantity calculated from the data to approximate an unknown parameter
- Notation

■Capital letters refer to random variables
\square Small letters refer to observed values

Questions

- What are two ways in which random observations arise and give examples. (random sampling from finite population randomized scientific experiment; random process producing data.)
- What is a parameter? Give two examples of parameters. (characteristic of the data - mean, $1^{\text {st }}$ quartile, std.dev.)
- What is an estimate? How would you estimate the parameters you described in the previous question?
- What is the distinction between an estimate (p^ value calculated form obs'd data to approx. a parameter) and an estimator (${ }^{\wedge}$ abstraction the the properties of the ransom process and the sample that produced the estimate)? Why is this distinction necessary? (effects of sampling variation in P^{\wedge})

Slide 44

Mean and SD of the sampling distribution of X_bar
 [Sampling distributions -probability distributions of statistics]

$\mathrm{E}($ sample mean $)=$ Population mean $\mathrm{SD}($ sample mean $)=\frac{\text { Population } S D}{\sqrt{\text { Sample size }}}$ | $\mathrm{E}(\bar{X})=\mathrm{E}(X)=\mu, \quad \mathrm{SD}(\bar{X})=\frac{\mathrm{SD}(X)}{\sqrt{n}}=\frac{\sigma}{\sqrt{n}}$ |
| :---: |
| Slide 48 |

Review

- We use both \bar{x} and \bar{X} to refer to a sample mean. For what purposes do we use the former and for what purposes do we use the latter?
- What is meant by "the sampling distribution of \bar{X} "?
(sampling variation - the observed variability in the process of taking random samples; sampling distribution - the real probability distribution of the random sampling process)
- How is the population mean of the sample average \bar{X} related to the population mean of individual observations? ${ }^{(E}(\bar{X})=$ Population mean)

Review

- Increasing the precision of \bar{X} as an estimator of μ is equivalent to doing what to $\operatorname{SD}(\bar{X})$? (decreasing)
- For the sample mean calculated from a random sample, $\operatorname{SD}(\bar{X})=\frac{\boldsymbol{\sigma}}{\sqrt{n}}$. This implies that the variability from sample to sample in the samplemeans is given by the variability of the individual observations divided by the square root of the sample-size. In a way, averaging decreases variability.

Slide 51

Central Limit Theorem theoretical formulation

Let $\left\{X_{1}, X_{2}, \ldots, X_{k}, \ldots\right\}$ be a sequence of independent observations from one specific random process. Let and $E(X)=\boldsymbol{\mu}$ and $S D(X)=\boldsymbol{\sigma}$ and both are finite $(0<\boldsymbol{\sigma}<\infty ;|\boldsymbol{\mu}|<\infty)$. If $\overline{X_{n}}=\frac{1}{n} \sum_{k=1}^{n} X$, , sample-avg,
Then \bar{X} has a distribution which approaches $\mathrm{N}\left(\mu, \sigma^{2} / \mathrm{n}\right)$, as $n \rightarrow \infty$.

Review

When you have data from a moderate to small sample and want to use a normal approximation to the distribution of \bar{X} in a calculation, what would you want to do before having any faith in the results? ${ }^{30}$ or more for the sample-size, depending on the skewness of the distribution of X. Plot the data - non-symmetry and heavyness in the tails slows down the CLT effects).

- Take-home message: CLT is an application of statistics of paramount importance. Often, we are not sure of the distribution of an observable process. However, the CLT gives us a theoretical description of the distribution of the sample means as the samplesize increases ($\mathrm{N}\left(\mu, \sigma^{2 / n}\right)$.

The standard error of the mean

The standard error of the sample mean is an estimate of the $S D$ of the sample mean

- i.e. a measure of the precision of the sample mean as an estimate of the population mean
- given by $\mathrm{SE}(\bar{x})=\frac{\text { Sample standard deviation }}{\sqrt{\text { Sample size }}}$

$$
S \mathrm{E}(\bar{x})=\frac{s_{x}}{\sqrt{n}} \begin{array}{l|l|}
\hline \bullet \text { Note similarity with } \\
\bullet \mathrm{SD}(\bar{X})=\frac{\sigma}{\sqrt{n}} .
\end{array}
$$

Review

- What does the central limit theorem say? Why is it
useful? (If the sample sizes are large, the mean in Normally distributed, as a RV)
- In what way might you expect the central limit effect to differ between samples from a symmetric distribution and samples from a very skewed distribution? (Larger samples for non-symmetric distributions to see CLT effects)
- What other important factor, apart from skewness, slows down the action of the central limit effect?
(Heavyness in the tails of the original distribution.)

The standard error of the mean - remember ...

- For the sample mean calculated from a random sample, $\operatorname{SD}(\bar{X})=\frac{\sigma}{\sqrt{n}}$. This implies that the variability from sample to sample in the samplemeans is given by the variability of the individual observations divided by the square root of the sample-size. In a way, averaging decreases variability.
- Recall that for known $\mathrm{SD}(\mathrm{X})=\sigma$, we can express the $\operatorname{SD}(\bar{X})=\frac{\sigma}{\sqrt{n}}$. How about if $\mathrm{SD}(\mathrm{X})$ is unknown?!?

Cavendish's 1798 data on mean density of the Earth, $\mathbf{g} / \mathrm{cm}^{3}$, relative to that of $\mathbf{H}_{\mathbf{2}} \mathrm{O}$

5.50	5.61	4.88	5.07	5.26	5.55	5.36	5.29	5.58	5.65
5.57	5.53	5.62	5.29	5.4	5.34	5.79	5.10	5.27	5.39
5.42	5.47	5.63	5.34	5.46	5.30	5.75	5.68	5.85	
Source: Cavendish [1798].									
Sam and	le m	ean	$\bar{x}=$. 44	931	g / cm			

Then the standard error for these data is:

$$
S E(\bar{X})=\frac{S_{X}}{\sqrt{n}}=\frac{0.2209457}{\sqrt{29}}=0.04102858
$$

Review

- Why is the standard deviation of $\bar{X}, \operatorname{SD}(\bar{X})$, not a useful measure of the precision of \bar{X} as an estimator in practical applications? $\left(\operatorname{SD}(\bar{X})=\frac{\sigma}{\sqrt{n}}\right.$ and σ is unknown most time!)
- What measure of precision do we use in practice? (SE)
- How is $\operatorname{SE}(\bar{x})$ related to $\operatorname{SD}(\bar{X})$?
- When we use the formula $\operatorname{SE}(\bar{x})=s_{X} \sqrt{n}$, what is s_{X} and how do you obtain it? (Sample SD(X))

$$
S_{X}=\sqrt{\frac{1}{n-1}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Sampling distribution of the sample proportion

The sample proportion \hat{p} estimates the population proportion p.

Suppose, we poll college athletes to see what percentage are using performance enhancing drugs. If 25% admit to using such drugs (in a single poll) can we trust the results? What is the variability of this proportion measure (over multiple surveys)? Could Football, Water Polo, Skiing and Chess players have the same drug usage rates?

Cavendish's 1798 data on mean density of the Earth, $\mathbf{g} / \mathbf{c m}^{\mathbf{3}}$, relative to that of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$

5.50	5.61	4.88	5.07	5.26	5.55	5.36	5.29	5.58	5.65
5.57	5.53	5.62	5.29	5.44	5.34	5.79	5.10	5.27	5.39
5.42	5.47	5.63	5.34	5.46	5.30	5.75	5.68	5.85	
Source: Cavendish [1798].									

Safely can assume the true mean density of the Earth is within 2 SE's of the sample mean!

$$
\bar{x} \pm 2 \times S E(\bar{x})=5.447931 \pm 2 \times 0.04102858 \mathrm{~g} / \mathrm{cm}^{3}
$$

Review

- What can we say about the true value of μ and the interval $\bar{x} \pm 2 \operatorname{SE}(\bar{x})$? (95\% sure)
- Increasing the precision of \bar{x} as an estimate of μ is equivalent to doing what to $\operatorname{se}(\bar{x})$? (decreasing)

Approximate Normality in large samples

Histogram of $\operatorname{Bin}(200, \mathrm{p}=0.4)$ probabilities with superimposed Normal curve approximation. Recall that for $\mathrm{Y} \sim \operatorname{Bin}(\mathrm{n}, \mathrm{p})$. $\mathrm{Y}=$ \# Heads in n -trials. Hence, the proportion of Heads is: $\mathrm{Z}=\mathrm{Y} / \mathrm{n}$.
$\mu_{Y}=E(Y)=n p$

$$
\boldsymbol{\mu}_{Z}=E(Z)=\frac{1}{n} E(Y)=p
$$

$\boldsymbol{\sigma}_{Y}=S D(Y)=\sqrt{n p(1-p)}$

$$
\boldsymbol{\sigma}_{Z}=S D(Z)=\frac{1}{n} S D(Y)=\sqrt{\frac{p(1-p)}{n}}
$$

This gives us bounds on the variability of the sample proportion:

$$
\mu_{Z} \pm 2 S E(Z)=p \pm 2 \sqrt{\frac{p(1-p)}{n}}
$$

What is the variability of this proportion measure over multiple surveys?

Standard error of the sample proportion

Standard error of the sample proportion:

$$
\operatorname{se}(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

Review

- Why is the standard deviation of $\hat{p}_{\text {not }}$ useful in practice as a measure of the precision of the estimate?
- How did we obtain ă useful measure of precision, and what is it called? (SE($\hat{p})$)
- What can we say about the true value of p and the interval $\hat{p} \pm 2 \operatorname{SE}(\hat{p}) ?{ }_{(\text {Safe bett) }}$
- Under what conditions is the formula
$\mathrm{SE}(\hat{p})=\sqrt{\hat{p}(1-\hat{p}) / n} \quad$ applicable? (Large samples)

Approximate Normality in large samples

The sample proportion Y / n can be approximated by normal distribution, by CLT, and this explains the tight fit between the observed histogram and a $\mathrm{N}(p n, \sqrt{n p p(1-p)})$

Review

- We use both \hat{p} and \hat{p} to describe a sample proportion. For what purposes do we use the former and for what purposes do we use the latter? \qquad
- What two models were discussed in connection with investigating the distribution of \hat{p} ? What assumptions are made by each model? (Number of unis having a property from a large population $Y \sim$ Bin(n,p), when sample $<10 \%$ of popul; $\mathrm{Y} / \mathrm{n} \sim \operatorname{Normal}(\mathrm{m}, \mathrm{s})$, since it's the avg. of all Head(1) and Tail((0) observations, when n -large)
- What is the standard deviation of a sample proportion obtained from a binomial experiment?

$$
S D(Y / n)=\sqrt{\frac{p(1-p)}{n}}
$$

Review

- In the TV show Annual People's Choice Awards, awards are given in many categories (including favorite TV comedy show, and favorite TV drama) and are chosen using a Gallup poll of 5,000 Americans (US population approx. 260 million)
- At the time the 1988 Awards were screened in NZ, an NZ Listener journalist did "a bit of a survey" and came up with a list of awards for NZ (population 3.2 million).
- Her list differed somewhat from the U.S. list. She said, "it may be worth noting that in both cases approximately 0.002 percent of each country's populations were surveyed." The reporter inferred that because of this fact, her survey was just as reliable as the Gallup poll. Do you agree? Justify your answer. (only 62 people surveyed, but that okay. Possible bad design (not a random sample)?

Review

Are public opinion polls involving face-to-face interviews typically simple random samples? (No! Often there are elements of quota sampling in public opinion polls. Also, most of the time, samples are taken at random from clusters, e.g., townships, counties, which doesn't always mean random sampling. Recall, however, that the size of the sample doesn't really matter, as long as it's random, since sample size less than 10% of population implies Normal approximation to Binomial is valid.)

- What approximate measure of error is commonly quoted with poll results in the media? What poll percentages does this level of error apply to?
($\hat{p} \pm 2 * \operatorname{SE}(\hat{p}), 95 \%$, from the Normal approximation)

Standard error of an estimate

The standard error of any estimate $\hat{\theta}$ [denoted $\operatorname{se}(\hat{\theta})]$

- estimates the variability of $\hat{\theta}$ values in repeated sampling and
- is a measure of the precision of $\hat{\theta}$.

Review

- A 1997 questionnaire investigating the opinions of computer hackers was available on the internet for 2 months and attracted 101 responses, e.g. 82% said that stricter criminal laws would have no effect on their activities. Why would you have no faith that a 2 std-error interval would cover the true proportion?
(sampling errors present (self-selection), which are a lot larger than nonsampling statistical random errors).

Bias and Precision

The bias in an estimator is the distance between between the center of the sampling distribution of the estimator and the true value of the parameter being estimated. In math terms, bias $=E(\hat{\Theta})-\boldsymbol{\theta}$, where theta $\hat{\Theta}$ is the estimator, as a RV, of the true (unknown) parameter $\boldsymbol{\theta}$.

- Example, Why is the sample mean an unbiased estimate for the population mean? How about $3 / 4$ of the sample mean?
$E(\hat{\Theta})-\boldsymbol{\mu}=E\left(\frac{1}{n} \sum_{k=1}^{n} X_{k}\right)-\boldsymbol{\mu}=0$

$$
\begin{aligned}
& E(\Theta)-\boldsymbol{\mu}=E\left(\frac{3}{4} \frac{1}{n} \sum_{k=1}^{n} X_{k}\right)-\boldsymbol{\mu}= \\
& \frac{3}{4} \boldsymbol{\mu}-\boldsymbol{\mu}=\frac{\boldsymbol{\mu}}{4} \neq 0, \quad \text { in general. }
\end{aligned}
$$

Slide 81
Side 81 STAT25LuCladvo Dinov

Bias and Precision

- The precision of an estimator is a measure of how variable is the estimator in repeated sampling.

Review

- What is the standard error of an estimate, and what do we use it for? (measure of precision)
- Given that an estimator of a parameter is approximately normally distributed, where can we expect the true value of the parameter to lie? (within 2SE away)
- If each of 1000 researchers independently conducted a study to estimate a parameter θ, how many researchers would you expect to catch the true value of θ in their 2 -standard-error interval? $(10 * 95=950)$

Is there racial profiling or are there

 confounding explanatory effects?!?- The book by Best (Damned Lies and Statistics: Untangling Numbers from the Media, Politicians and Activists, Joel Best) shows how we can test for racial bias in police arrests. Suppose we find that among 100 white and 100 black youths, 10 and 17, respectively, have experienced arrest. This may look plainly discriminatory. But suppose we then find that of the 80 middleclass white youths 4 have been arrested, and of the 50 middleclass black youths 2 arrested, whereas the corresponding numbers of lower-class white and black youths arrested are, respectively, 6 of 20 and 15 of 50 . These arrest rates correspond to 5 per 100 for white and 4 per 100 for black middle-class youths, and 30 per 100 for both white and black lower-class youths. Now, better analyzed, the data suggest effects of social class, not race as such.

is exactly distributed as $\operatorname{Student}(d f=n-1) \backsim$ Approx/Exxact \uparrow
\square but methods we shall base upon this distribution for T work well even for small samples sampled from distributions which are quite non-Normal.
- $d f$ is number of observations -1 , degrees of freedom.

 From Chance Encounters by C... Wild and G.A.F. Scbor, D. John Wiey \& Sons, 2000 . ide 91

Review

- For a small Normal sample, if you want an interval to contain the true value of μ for 95% of samples taken, should you take more or fewer than twostandard errors on either side of \bar{x} ? (more)
- Under what circumstances does mathematical theory show that the distribution of $T=(\bar{X}-\mu) / \operatorname{SE}(\bar{X})$ is exactly Student $(d f=n-1)$? (Normal samples)
- Why would methods derived from the theory be of little practical use if they stopped working whenever the data was not normally distributed? (In ractice, we're never sure of Normality of our sampling distribution).

Sampling Distributions

- For random quantities, we use a capital letter for the random variable, and a small letter for an observed value, for example, X and x, \bar{X} and \bar{x}, \hat{P} and \hat{p}, $\hat{\Theta}$ and $\hat{\theta}$.
- In estimation, the random variables (capital letters) are used when we want to think about the effects of sampling variation, that is, about how the random process of taking a sample and calculating an estimate behaves.

Slide 97

Sampling distribution of the sample proportion

- Sample proportion, \hat{P} : For a random sample of size n from a population in which a proportion p have a characteristic of interest, we have the following results about the sample proportion with that characteristic:
- $\mu_{\hat{p}}=\mathrm{E}(\hat{P})=p \quad \sigma_{\hat{p}}=\operatorname{sd}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$
- \hat{P} is approximately Normally distributed for large n
(e.g., $n p(1-p) \geq 10$, though a more accurate rule is given in the next chapter)

Slide 99
STAT25LUCLLAVMo Dinov

Sampling distribution of \bar{X}

Sample mean, \bar{X} :
For a random sample of size n from a distribution for which $\mathrm{E}(X)=\mu$ and $\operatorname{sd}(X)=\sigma$, the sample mean \bar{X} has :

$$
\mathrm{E}(\bar{X})=\mathrm{E}(X)=\mu, \quad \mathrm{SD}(\bar{X})=\frac{\mathrm{S} D(X)}{\sqrt{n}}=\frac{\sigma}{\sqrt{n}}
$$

■ If we are sampling from a Normal distribution, then

$$
\bar{X} \sim \text { Normal. } \quad \text { (exactly) }
$$

- Central Limit Theorem: For almost any distribution, \bar{X} is approximately Normally distributed in large samples.

Parameters and estimates

- A parameter is a numerical characteristic of a population or distribution
- An estimate is a known quantity calculated from the data to approximate an unknown parameter
\square For general discussions about parameters and estimates, we talk in terms of $\hat{\theta}$ being an estimate of a parameter θ
- The bias in an estimator is the difference between $E(\hat{\Theta})$ and θ
- $\hat{\theta}$ is an unbiased estimate of θ if $\mathrm{E}(\hat{\Theta})=\theta$.

Standard error

- The standard error, $\operatorname{SE}(\hat{\theta})$, for an estimate $\hat{\theta}$ is:
\square an estimate of the std dev. of the sampling distribution
\square a measure of the precision of $\hat{\theta}$ as an estimate of θ
- For a mean
- The sample mean \bar{x} is an unbiased estimate of the population mean μ

■ $\mathrm{SE}(\bar{x})=\frac{s_{X}}{\sqrt{n}}$

Standard errors cont.

- Proportions

The sample proportion \hat{p} is an unbiased estimate of the population proportion p

- $\operatorname{se}(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- Standard error of a difference: For independent estimates,

$$
\operatorname{se}\left(\hat{\theta}_{1}-\hat{\theta}_{2}\right)=\sqrt{\operatorname{se}\left(\hat{\theta}_{1}\right)^{2}+\operatorname{se}\left(\hat{\theta}_{2}\right)^{2}}
$$

Student's \boldsymbol{t}-distribution

- Is bell shaped and centered at zero like the $\operatorname{Normal}(0,1)$, but
- More variable (larger spread and fatter tails).
- As $d f$ becomes larger, the Student $(d f)$ distribution becomes more and more like the $\operatorname{Normal}(0,1)$ distribution.
- Student $(d f=\infty)$ and $\operatorname{Normal}(0,1)$ are two ways of describing the same distribution.

CLT Example - CI shrinks by half by quadrupling the sample size!

- If I ask 30 of you the question "Is 3 credit hour a reasonable load for Stat 251 ?", and say, 15 (50\%) said no. Should we change the format of the class?
- Not really - the 2 SE interval is about $[0.32 ; 0.68]$. So, we have little concrete evidence of the proportion of students who think we need a change in Stat 251 format,

$$
\begin{aligned}
& \hat{\mathrm{p}} \pm 2 \times \mathrm{SE}(\hat{\mathrm{p}})=0.5 \pm 2 \times \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{n}}=0.5 \pm-0.18 \\
& \text { I ask all } 300 \text { Stat } 251 \text { students and } 150 \text { sav } n o \text { (still } 50 \%
\end{aligned}
$$

- If I ask all 300 Stat 251 students and 150 say no (still 50%), then 2 SE interval around 50% is: $[0.44 ; 0.56]$.
- So, large sample is much more useful and this is due to CLT effects, without which, we have no clue how useful our estimate actually is ...

Student's \boldsymbol{t}-distribution cont.

- For random samples from a Normal distribution,

$$
T=(\bar{X}-\mu) / S E(\bar{X})
$$

is exactly distributed as $\operatorname{Student}(d f=n-1)$, but methods we shall base upon this distribution for T work well even for small samples sampled from distributions which are quite non-Normal.

- By $t_{d f}$ (prob), we mean the number t such that when $T \sim \operatorname{Student}(d f), \operatorname{pr}(T \geq t)=p r o b$; that is, the tail area above t (that is to the right of t on the graph) is prob.

