Stat 251/OBEE 216 Professor I. Dinov Solution for Project 3

1

Was the <u>proportion</u> of infants with negative BE different from the proportion of infants with positive BE, in the study?

There are total of 30 infants, 14 with BE < 0 (NBE) 12 with BE > 0 (PBE) 4 with BE = 0

Thus, $\hat{p}_{NBE} = \frac{14}{30} \approx 0.47$ and $\hat{p}_{PBE} = \frac{12}{30} = 0.40$

A Two Independent Samples of Proportions is used with normal distribution

$$\begin{array}{ll} H_0: & p_{NBE} = p_{PBE} \\ H_A: & p_{NBE} \neq p_{PBE} \end{array}$$

Test Statistic

$$z = \frac{(\hat{p}_{NBE} - \hat{p}_{PBE}) - 0}{\sqrt{\frac{\hat{p}_{NBE}(1 - \hat{p}_{NBE})}{n_1} + \frac{\hat{p}_{PBE}(1 - \hat{p}_{PBE})}{n_2}}} = 0.52$$
 where $n_1 = n_2 = 30$
$$= \frac{\frac{(\frac{14}{20} - \frac{12}{20})}{\sqrt{\frac{\frac{14}{30}(1 - \frac{14}{30})}{30} + \frac{\frac{12}{30}(1 - \frac{12}{30})}{30}}} = 0.52$$

P-value

$$p = 2 * P(Z > |z|)$$

$$= 0.6015$$
Confidence Interval (95%)
 $(\hat{p}_{NBE} - \hat{p}_{PBE}) \pm z_{a}SE_{(p_{NBE} - p_{PBE})}$

$$= 0.6015$$
0.07 ± 1.96 * 0.1276 \rightarrow (-0.1783,0.3183)

Conclusion

At $\alpha = 0.05$, $0.6015 = p > \alpha = 0.05$. Thus, we fail to reject H_0 . Based on the evidence, we do have enough evidence to reject null, which the difference in the proportion of infants with negative and positive BE is not statistically significant. When examining the 95%CI, it contains the value zero, which implies zero can be one of the possible true population value. Thus, it is supportive of the conclusion of rejecting null.

2

For the two groups, D &L, are there statistical differences in the IMV levels? Since the groups, D & L, do not share equal sample sizes, we should use the two independent samples t test with unequal variance assumed.

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
D L	16 14	71.875 64.07143	5.678817 4.575934	22.71527 17.12158	59.77089 54.18573	83.97911 73.95713
combined	30	68.23333	3.714737	20.34645	60.63584	75.83082
diff		7.803571	7.293019		-7.149001	22.75614

Two-sample t test with unequal variances

```
Satterthwaite's degrees of freedom: 27.4498
```

Ho: mean(D) - mean(L) = diff = 0

Ha:	dif	f < 0	Ha	: diff	~= 0	Ha:	dif	f > 0
t	=	1.0700		t =	1.0700	t	=	1.0700
P < t	=	0.8530	P >	t =	0.2939	P > t	=	0.1470

Hypotheses

 $H_0: \quad \mu_{IMV_D} = \mu_{IMV_L}$ $H_A: \quad \mu_{IMV_D} \neq \mu_{IMV_L}$

Test Statistic

From the above output, t = 1.0700

P-value

p = 0.2939

Conclusion

At $\alpha = 0.05$, $0.2939 = p > \alpha = 0.05$. Thus, we fail to reject H_0 . Based on the evidence, we do have enough evidence to reject null, which the difference in the proportion of infants with negative and positive BE is not statistically significant.

3.

What is a 95% CI for the ratio of the variances of the two groups (D vs L) with respect to the
concentration of oxygen in the blood stream? How do we interpret this CI?

Status = D							
Variable	Obs	Mean	Std. Dev.	Min	Max		
p02	16	67.875	39.93307	33	182		
Status = L							
Variable	0bs	Mean	Std. Dev.	Min	Max		
p02	14	106.2857	76.39213	38	281		

From the above summary table, we obtain $S_1^2 = 39.9331^2 = 1594.6525$ $n_1 = 16$ $S_2^2 = 76.3921^2 = 5835.7529$ $n_2 = 14$

Thus, the critical values are

 $F_{(16-1,14-1,0.025)} = 0.34189$ $F_{(16-1,14-1,0.975)} = 3.05271$

Hypotheses

$$H_0: \quad \sigma_1^2 = \sigma_2^2$$
$$H_A: \quad \sigma_1^2 \neq \sigma_2^2$$

The 95% CI for
$$\frac{\sigma_1^2}{\sigma_2^2}$$
 will be

$$\begin{pmatrix} \frac{s_1^2}{s_2^2} * \frac{1}{F_{(16-1,14-10.025)}}, & \frac{s_1^2}{s_2^2} * \frac{1}{F_{(16-1,14-1,0.975)}} \\ \frac{1594.6525}{5835.7529} * \frac{1}{3.05270}, & \frac{1594.6525}{5835.7529} * \frac{1}{0.34189} \end{pmatrix} = (0.0895, .7993)$$

Interpretation

Since the 95% CI doesn't not contain 1, which means the true population ratio between the variances will not be 1. Thus, we reject the null that the variances are equal since their ratio cannot not be 1.