Stat 251/OBEE 216
 Professor I. Dinov
 Solution for Project 3

1
Was the proportion of infants with negative BE different from the proportion of infants with positive $B E$, in the study?

There are total of 30 infants,
14 with $\mathrm{BE}<0$ (NBE)
12 with $\mathrm{BE}>0$ (PBE)
4 with $\mathrm{BE}=0$
Thus, $\hat{p}_{N B E}=\frac{14}{30} \square 0.47$ and $\hat{p}_{P B E}=\frac{12}{30}=0.40$
A Two Independent Samples of Proportions is used with normal distribution

$$
\begin{array}{ll}
H_{0}: & p_{\text {NBE }}=p_{P B E} \\
H_{A}: & p_{\text {NBE }} \neq p_{P B E}
\end{array}
$$

Test Statistic

$$
\begin{aligned}
z & =\frac{\left(\hat{p}_{\text {NBE }} \square \hat{p}_{P B E}\right) \square 0}{\sqrt{\frac{\hat{p}_{\text {NBE }}\left(1 \square \hat{p}_{\text {NBE }}\right)}{n_{1}}+\frac{\hat{p}_{P B E}\left(1 \square \hat{p}_{P B E}\right)}{n_{2}}}} \\
& =\frac{\left(14 / 3 \square^{12} / 30\right.}{\sqrt{\frac{14}{30}\left(1 \square \frac{14}{30}\right)} \frac{\frac{12}{30}\left(1 \square \frac{12}{30}\right)}{30}}
\end{aligned}=0.522
$$

P-value

$$
\begin{aligned}
p & =2 * P(Z>\mid z) \\
& =0.6015
\end{aligned}
$$

Confidence Interval (95\%)

$$
\left(\hat{p}_{N B E} \square \hat{p}_{P B E}\right) \pm z_{\square} S E_{\left(p_{N B E} \square p_{P B E}\right)}
$$

$$
0.07 \pm 1.96 * 0.1276 \square(\square 0.1783,0.3183)
$$

Conclusion

At $\Pi=0.05,0.6015=p>\square=0.05$. Thus, we fail to reject H_{0}. Based on the evidence, we do have enough evidence to reject null, which the difference in the proportion of infants with negative and positive BE is not statistically significant. When examining the $95 \% \mathrm{CI}$, it contains the value zero, which implies zero can be one of the possible true population value. Thus, it is supportive of the conclusion of rejecting null.

2

For the two groups, $D \& L$, are there statistical differences in the IMV levels?
Since the groups, D \& L, do not share equal sample sizes, we should use the two independent samples t test with unequal variance assumed.

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf. Interval]	
D	16	71.875	5.678817	22.71527	59.77089	83.97911
L	14	64.07143	4.575934	17.12158	54.18573	73.95713
combined	30	68.23333	3.714737	20.34645	60.63584	75.83082
diff		7.803571	7.293019		-7.149001	22.75614
Satterthw	deg	s of free	: 27.449			

Ho: mean(D) - mean(L) $=\operatorname{diff}=0$

$$
\begin{array}{rrr}
\text { Ha: diff }<0 & \text { Ha: diff } \sim=0 & \text { Ha: diff }>0 \\
t=1.0700 & t= & t=1.0700 \\
P<t \mid=0.8530 & P>t \mid & =0.2939
\end{array}
$$

Hypotheses

$$
\begin{array}{ll}
H_{0}: & \square_{I M V_{D}}=\square_{I M V_{L}} \\
H_{A}: & \square_{I M V_{D}} \neq \square_{I M V_{L}}
\end{array}
$$

Test Statistic
From the above output, $\mathrm{t}=1.0700$

P-value

$$
\mathrm{p}=0.2939
$$

Conclusion

At $\Pi=0.05,0.2939=p>\square=0.05$. Thus, we fail to reject H_{0}. Based on the evidence, we do have enough evidence to reject null, which the difference in the proportion of infants with negative and positive BE is not statistically significant.
3.

What is a 95\% CI for the ratio of the variances of the two groups (D vs L) with respect to the concentration of oxygen in the blood stream? How do we interpret this CI?

From the above summary table, we obtain

$$
\begin{array}{ll}
S_{1}^{2}=39.9331^{2}=1594.6525 & n_{1}=16 \\
S_{2}^{2}=76.3921^{2}=5835.7529 & n_{2}=14
\end{array}
$$

Thus, the critical values are

$$
F_{(16 \square \square, 14 \square, 0.025)}=0.34189 \quad F_{(16[1,1 \square \square, 0.975)}=3.05271
$$

Hypotheses

$$
\begin{array}{ll}
H_{0}: & \square_{1}^{2}=\square_{2}^{2} \\
H_{A}: & \square_{1}^{2} \neq \square_{2}^{2}
\end{array}
$$

The 95% CI for $\frac{\square_{1}^{2}}{\square_{2}^{2}}$ will be

$$
\begin{aligned}
& \frac{\square_{1}^{2}}{\frac{l_{1}^{2}}{s_{2}^{2}}} * \frac{1}{F_{(16[1,14 \square 10.025)}}, \quad \frac{s_{1}^{2}}{s_{2}^{2}} * \frac{1}{F_{(16 \square 1,14 \square 1,0.975)}}= \\
& \frac{1594.6525}{5835.7529} * \frac{1}{3.05270}, \frac{1594.6525}{5835.7529} * \frac{1}{0.34189}=(0.0895, \quad .7993)
\end{aligned}
$$

Interpretation

Since the 95% CI doesn't not contain 1, which means the true population ratio between the variances will not be 1 . Thus, we reject the null that the variances are equal since their ratio cannot not be 1 .

