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UCLA  STAT 251
Statistical Methods for the Life and 

Health Sciences

�Instructor:   Ivo Dinov, 
Asst. Prof. In Statistics and Neurology

University of California, Los Angeles,  Winter 2002
http://www.stat.ucla.edu/~dinov/
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Lines in 2D
(Regression and Correlation)

�Vertical Lines
�Horizontal Lines
�Oblique lines
�Increasing/Decreasing
�Slope of a line
�Intercept
�Y=α X + β, in general.

Math Equation for the Line?
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Lines in 2D
(Regression and Correlation)

�Draw the following lines:
�Y=2X+1
�Y=-3X-5
�Line through (X1,Y1) and 
(X2,Y2). 
�(Y-Y1)/(Y2-Y1)= 

(X-X1)/(X2-X1). 

Math Equation for the Line?
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Approaches for modeling data relationships
Regression and Correlation

�There are random and nonrandom variables
�Correlation applies if both variables (X/Y) are 
random (e.g., We saw a previous example, systolic vs. 
diastolic blood pressure SISVOL/DIAVOL) and are 
treated symmetrically.
�Regression applies in the case when you want to 
single out one of the variables (response variable, Y) 
and use the other variable as predictor (explanatory 
variable, X), which explains the behavior of the 
response variable, Y.
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Causal relationship? 
– infant death rate (per 1,000) in 14 countries
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40

60

80

Predict behavior of Y (response)
Based on the values of X
(explanatory var.) Strategies for
uncovering the reasons (causes)
for an observed effect.

Strong evidence (linear pattern)
of death rate increase with 
increasing level of breastfeeding (BF)?
Naïve conclusion breast feeding is
bad? But high rates of BF is 
associated with lower access to H2O.
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Regression relationship = trend + residual scatter

9000 10000 11000 12000
Disposable income ($)

9000 10000 11000 12000

(a)  Sales/income

Disposable income ($)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.
� Regression is a way of studying relationships between 

variables (random/nonrandom)  for predicting or explaining 
behavior of 1 variable (response) in terms of others 
(explanatory variables or predictors).
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1000 2000 3000 4000
Ventilation

1000 2000 3000 4000
Ventilation

(b)  Oxygen uptake

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.

Trend ( does not have to be linear) + 
scatter (could be of any type/distribution)
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(c)  Liver lengths

Gestational age (wk)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.

Trend + scatter (fetus liver length in mm)

Change of scatter with age
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Trend + scatter

Dotted curves (confidence intervals) represent the extend of the scatter.

2000 3000 4000
Weight (lbs)

5000 2000 3000 4000
Weight (lbs)

5000

(a)  Scatter plot (b)  With trend plus scatter

Outliers

Figure 3.1.7 Displacement versus weight for 74 models of automobile.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Looking vertically

Flatter line gives better prediction, since it approx. goes through the
middle of the Y-range, for each fixed x-value (vertical line)

x x

y y

 (a) Which line?  (b) Flatter line gives
better predictions.

Figure 3.1.8 Educating the eye to look vertically.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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100 300 500
Diastolic volume

B A

Figure 3.1.9 Scatter plot from the heart attack data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Outliers – odd, atypical, observations 
(errors, B, or real data, A)
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In observational data, strong relationships
are not necessarily causal. It is virtually 
impossible to conclude a cause-and-effect 
relationship between variables using 
observational data!

A note of caution!
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Essential Points

1. What essential difference is there between the 
correlation and regression approaches to a 
relationship between two variables? (In correlation
independent variables; regression response var depends on explanatory variable.)

2. What are the most common reasons why people fit 
regression models to data? (predict Y or unravel reasons/causes of behavior.)

3. Can you conclude that changes in X caused the 
changes in Y seen in a scatter plot if you have data 
from an observational study? (No, there could be lurking 
variables, hidden effects/predictors, also associated with the predictor X, 
itself, e.g., time is often a lurking variable, or may be that changes in Y 
cause changes in X, instead of the other way around).
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Essential Points

5. When can you reliably conclude that changes 
in X cause the changes in Y? (Only when controlled 
randomized experiments are used – levels of X are randomly 
distributed to available experimental units, or experimental 
conditions need to be identical for different levels of X, this 
includes time.
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Correlation Coefficient 

Correlation coefficient (-1<=R<=1): a measure of linear 
association, or clustering around a line of multivariate 
data. 

Relationship between two variables (X, Y) can be 
summarized by: (µX, σX), (µY, σY) and the correlation 
coefficient, R. R=1, perfect positive correlation (straight 
line relationship),   R =0, no correlation (random cloud 
scatter), R = –1, perfect negative correlation.  

Computing R(X,Y): (standardize, multiply, average)
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Correlation Coefficient 

Example:
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Correlation Coefficient 

Example:
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Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y
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Correlation Coefficient - Properties

Correlation is Associative

Correlation measures linear association, NOT an association in 
general!!! So, Corr(X,Y) could be misleading for X & Y related in 
a non-linear fashion.
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Correlation Coefficient - Properties

1. R measures the extent of
linear association between
two continuous variables. 

2. Association does not imply
causation - both variables
may be affected by a third
variable – age was a 
confounding variable.
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Essential Points

6. If the experimenter has control of the levels of 
X used, how should these levels be allocated to 
the available experimental units?

At random! Example, testing hardness of concrete, Y, based on 
levels of cement, X, incorporated. Factors effecting Y: amount 
of H2O, ratio stone-chips to sand, drying conditions, etc. To 
prevent uncontrolled differences in batches of concrete in 
confounding our impression of cement effects, we should 
choose which batch (H20 levels, sand, dry-conditions) gets 
what amount of cement at random! Then investigate for X-
effects in Y observations. If some significance test indicates 
observed trend is significantly different from a random pattern 
� we have evidence of causal relationship, which may 
strengthen even further if the results are replicable.
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Essential Points

7. What theories can you explore using regression 
methods? 
Prediction, explanation/causation, testing a scientific 
hypothesis/mathematical model:

a. Hooke’s spring law: amount of stretch in a spring, Y, is 
related to the applied weight X by Y=α+ β X, a, b are spring 
constants.

b. Theory of gravity: force of gravity F between 2 objects is 
given by F = α/Dβ, where D=distance between objects, a is a 
constant related to the masses of the objects and β =2, 
according to the inverse square law.

c. Economic production function: Q= αLβKγ, Q=production,  
L=quantity of labor, K=capital, α,β,γ are constants specific to 
the market studied.
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Essential Points

8. People fit theoretical models to data for three main 
purposes. 

a. To test the model, itself, by checking if the data is 
reasonably close agreement with the relationship predicted by 
the model.

b. Assuming the model is correct, to test if theoretically 
specified values of a parameter are consistent with the data 
(y=2x+1 vs. y=2.1x-0.9).

c. Assuming the model is correct, to estimate unknown 
constants in the model so that the relationship is completely 
specified (y=ax+5, a=?)
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Trend and Scatter - Computer timing data

� The major components of a regression relationship 
are trend and scatter around the trend.

� To investigate a trend – fit a math function to data, or 
smooth the data.

� Computer timing data: a mainframe computer has X users, 
each running jobs taking Y min time. The main CPU swaps 
between all tasks. Y* is the total time to finish all tasks. Both 
Y and Y* increase with increase of tasks/users, but how?

X = Number of terminals: 40 50 60 45 40 10 30 20
Y* = Total Time (mins): 6.6 14.9 18.4 12.4 7.9 0.9 5.5 2.7
Y = Time Per Task (secs): 9.9 17.8 18.4 16.5 11.9 5.5 11 8.1

X = Number of terminals: 50 30 65 40 65 65
Y* = Total Time (mins): 12.6 6.7 23.6 9.2 20.2 21.4
Y = Time Per Task (secs): 15.1 13.3 21.8 13.8 18.6 19.8
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X = Number of terminals
70

Trend and Scatter - Computer timing data

0 10 20 30 40 50 60

5

10

15

20

X = Number of terminals

Linear
trend?!?

Quadratic
trend?!?

We want to find reasonable
models (descriptions) for

these data!
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Equation for the straight line –
linear/affine function

x

y

0

unitsw

w   units

0

1

β0=Intercept (the y-value at x=0)
β1=Slope of the line (rise/run), change of y for every 

unit of increase for x.

STAT 251, UCLA, Ivo DinovSlide 27

The quadratic curve

positive2 negative2

Quadratic Curve

Y=β0+ β1x+ β2x2
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The quadratic curve

Segments of the curve

Y=β0+ β1x+ β1x2
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The exponential curve,    y = a ebx

0
0

a

x

y

b   negative
0

0

a

x

y
b   positive

Used in population 
growth/decay models.
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A straight line changes by a fixed amount with each 
unit change in x.

An exponential changes by a fixed percentage with 
each unit change in x.

Effects of changing x 
for different functions/curves
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check whether a plot of log(y) versus x has a linear trend.

To tell whether a trend is exponential ….

x

y

Trend Exponential?

x

log(y)

Y = e^x 
Log_e(Y) = X
E^(Ln(Z))=Z
Y=X
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You should not 
let the questions 
you want to ask 
be dictated by 
the tools you 
know how to use.

Here Y=creatine 
kinase concentration 
in blood for a set of 
heart attack patients 
vs. the time, X. 

No symmetry so X2

models won’t work!

0 10 20 30 40
Time (hours)

Creatine kinase concentration in patient’s blood

Questions: Asymptote?
Max-value?ArgMax?
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Comments

1. In statistics what are the two main approaches to 
summarizing trends in data? (model fitting; smoothing – done by 
the eye!)

2. In y = 5x + 2, what information do the 5 and the 2 
convey? (slope, y-intercept)

3. In y = 7 + 5x, what change in y is associated with a  
1-unit increase in x? with a 10-unit increase? (5; 50)

How about for y = 7- 5x. (-5; -50)

5. How can we tell whether a trend in a scatter plot is 
exponential? (plot log(Y) vs. X, should be linear)
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Choosing the
“best-fitting”
line

yi

yi
^

x 1 x 2 xi xn. . . . .

Prediction
error

ith data point
(x  ,i y  )i

(a)  The data (b)  Which line?

Least-squares line

Choose line with smallest
sum of squared
prediction errors

Min   Σ

Its parameters are denoted:

   Intercept:

   Slope:

y   -i yi
^

(c)  Prediction errors

Figure 12.3.1 Fitting a line by least squares.

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

2
(y  −i y  )i

^

^
0

^
1
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Fitting a line through the data

(a)  The data (b)  Which line?

Show the Regression-Line Simulation Applet
RegressionApplet.html
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The idea of a residual or prediction error

yi

yi
^

Data point

Trend

(x  ,i y  )i

Predicted

Observed
Residual     u  =i

^y   -i yi
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Least squares criterion:  Choose the values of the 
parameters to minimize the sum of squared 
prediction errors (or sum of squared residuals),

(yi − ˆ y i)
2

i =1

n

�

Least squares criterion
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Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line

yi

yi
^

x 1 x 2 xi xn. . . . .

Prediction
error

ith data point
(x  ,i y  )i

Least-squares line

Choose line with smallest
sum of squared
prediction errors

Min   Σ

Its parameters are denoted:

   Intercept:

   Slope:

y   -i yi
^

(c)  Prediction errors

2(y  −i y  )i
^

^
0

^
1
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Least-squares line: ˆ y = ˆ β 0 + ˆ β 1x

The least squares line
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Computer timings data – linear fit

10 20 30 40 50 60
5

10

15

20

X = Number of terminals

3 + 0.25x

7 + 0.15x

(Sum sq’d err = 37.46)

(Sum sq’d err = 90.36)

Figure 12.3.2 Two lines on the computer-timings data.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Adding the least squares line

0 20 40 60
0

5

10

15

20

25

X = Number of terminals

y  =     +     x^
0

^
1

^

^
0

Here       = 3.05,       = 0.26^
0

^
1

(x, y)

Some Minitab regression output
The regression equation is
timeper = 3.05 + 0.260 nterm
Predictor Coef ...
Constant 3.050 ...
nterm 0.26034 ...

Figure 12.3.3 Computer-timings data with least-squares line.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Example – Method/Hemi/Tissue/Value

1. C:\Ivo.dir\Research\Data.dir\WM_GM_CSF_tissueMaps.dir

2. SYSTAT: � regression Value = c0+ c1M+ c2H+ c3T

3. Results:
Effect Coefficient SE t P(2 Tail)

CONSTANT 1.02231E+05 9087 11.24911 0.00000

METHOD -3703.77667 3635 -1.01887 0.31038 ���� Insignif
TISSUE -22623.47875 2226 -1.01E01 0.00000
HEMISPH -2.13667 3635 -0.00059 0.99953

Effect Coeff. Lower < 95%> Upper
CONSTANT 1.02231E+05 84231.33157 1.20231E+05
METHOD -3703.77667 -10903.69304 3496.13971
TISSUE -22623.47875 -27032.50908 -18214.44842
HEMISPH -2.13667 -7202.05304 7197.77971
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y y

x 2 3x1x 4xx 2 3x1x 4x

(a)  The simple linear model (b)  Data sampled from the model

The simple linear model

When   X = x,    Y ~ Normal(µY,σ)   where µY = β0 + β1 x,     OR

when   X = x,    Y = ββββ0 + ββββ1 x +  U,   where  U ~ Normal(0,σ)
Random error
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0

10

20

30

y

0

10

20

30

2 4 6 80 2 4 6 80

Sample 1:      = 3.63,      = 2.26^
1

^
0 Sample 2:      = 9.11,       = 1.44^

0
^
1

Data generated from Y = 6 + 2x + error (U)
Dotted line               is true line and 
solid line            is the data-estimated LS line.
Note differences between true β0=6, β1=2 and 
their estimates β0^ & β1^.
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Sample 3:      = 7.38,       = 2.10^
1

^
0

Sample 5:      = 9.14,       = 1.13^
0

^
1

Sample 4:      = 7.92,      = 1.59^
0

^
1

Combined:      = 7.44,       = 1.70^
0

^
1

Data generated from Y = 6 + 2x + error(U)
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Data generated from Y = 6 + 2x + error(U)

0 5 10 15 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Histograms of least-squares estimates from 1,000 data sets

True valueTrue value

Mean = 6.05
Std dev. =  2.34

Mean = 1.98
Std dev. =  0.46

Estimates of slope,
1

Estimates of intercept,
0

Figure 12.4.3 Data generated from the model  Y = 6 + 2 x + U
                             where  U    Normal(  µ = 0, σ  = 3).
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For the simple linear model, least-squares estimates 
are unbiased [ E(ββββ^)= β β β β ] and Normally distributed.

Summary

Noisier data produce more-variable least-squares 
estimates.

STAT 251, UCLA, Ivo DinovSlide 48

Summary

1. Before considering using the simple linear model, what 
sort of pattern would you be looking for in the scatter 
plot? (linear trend with constant scatter spread across the range of X)

2. What assumptions are made by the simple linear model, 
SLM? (X is linearly related to the mean value of the Y obs’s at 
each X, µY= β0 + β1 x; where β0 & β1 are the true values of the 
intercept and slope of the SLM; The LS estimates β0^ & β1^  
estimate the true values of β0 & β1; and the random errors U=Y-
µY~N(µ, σ).)

3. If the simple linear model holds, what do you know about 
the sampling distributions of the least-squares estimates? 
(Unbiased and Normally distributed)
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Summary

4. In the simple linear model, what behavior is 
governed by  σ ? (the spread of scatter of the data around trend)

5. Our estimate of σ can be thought of as a sample 
standard deviation for the set of prediction errors
from the least-squares line.

0

10

20

30

2 4 6 80
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RMS Error for regression

� Error = Actual value – Predicted value

� The RMS Error for the regression line Y= β0 + β1 X is

0

10

20

30

2 4 6 80

Y= β0 + β1 XY

X

51      ,ˆˆˆ    where
15
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Compute the RMS Error for this 
regression line

� Error = Actual value – Predicted value

� The RMS Error for the regression line Y= β0 + β1 X is

0

10

20

30

2 4 6 80

Y

X

51      ,ˆˆˆ    where
15

2)ˆ(2)ˆ(2)ˆ(2)ˆ(2)ˆ(
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kxy

yyyyyyyyyy

kk ββββββββ

X   Y
1 9
2 15
3 12
4 19
5 11
6 20
7 22
8 18
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Compute the RMS Error for this 
regression line

� Error = Actual value – Predicted value

� The RMS Error for the regression line Y= β0 + β1 X is

� First compute the LS linear fit (estimate β0^ +  β1^ )
� Then Compute the individual errors
� Finally compute the cumulative RMS measure.
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Compute the RMS Error for this 
regression line

� Then Compute the individual errors

� Finally compute the cumulative RMS measure.

� Note on the Correlation coefficient formula,
51      ,ˆˆˆ    where

15

2)ˆ(2)ˆ(2)ˆ(2)ˆ(2)ˆ(

10

5544332211
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Compute the RMS Error for this 
regression line

� The RMS Error for the regression line Y= β0 + β1 X
says how far away from the (model/predicting) 
regression line is each observation.

� Observe that the SD(Y) is also a RMS Error measure 
of another specific line – horizontal line through the 
average of the Y values. This line may also be taken 
for a regression line, but often it’s not the best linear 
fit.

Predicted vs. Observed
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Plotting the Residuals

� The Residuals=Observed –Predicted  for the 
regression line Y= β0 + β1 X (just like the error).

� Residuals average to zero, mathematically, and the 
regression line for the residuals is a horizontal line 
through y=0.

Residual Error

When   X = x,    Y ~ Normal(µY,σ)   where µY = β0 + β1 x,     OR

when   X = x,    Y = ββββ0 + ββββ1 x +  U,   where  U ~ Normal(0,σ)
Random error
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Plotting the Residuals – patterns?

� The Residuals=Observed –Predicted  for the 
regression line Y= β0 + β1 X + U should show no clear 
trend or pattern, for our linear model to be a good and 
useful approximation to the unknown process.

y

x

STAT 251, UCLA, Ivo DinovSlide 57

Inference –
just a glance at statistical inference

� The regression intercept β0 and slope β1 are usually called
regression coefficients
�The least squares estimates of their values are found in the 

coefficients column of program printouts

� Confidence intervals for a true regression 
coefficient   (whether intercept or slope)   is given by

estimated coefficient  ±  t std errors

� t-test statistic

errorstandard
valueedhypothesiztcoefficienestimatedt −=0

df = n - 2
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Inferences

� Confidence intervals for a true regression 
coefficient   (whether intercept or slope)   is given by

estimated coefficient  ±  t std errors

ββββ1^ ± t SE(ββββ1^)

� t-test statistic                 Ho: ββββ1 =c

)ˆ(
ˆ

1

1

0 ββββ
ββββ

SE
ct −−−−====

df = n - 2
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Is there always an X Y relationship? 
Linear Relationship ?
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(a)  1000 data points with no relationship between X and Y

y

x
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 1999.
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(b)  12 random samples each of size 20

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Random samples from these 1000 data points
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H0: true slope = 0
OR

H0: ββββ1 = 0

Testing for no linear relationship –
trend of Y w.r.t. X is trivial!
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Computer timings
How does the job completion timing depend 

on the number of computer tasks?

0 20 40 60
0

5

10

15

20

25

X = Number of terminals

LS line
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Computer timings
How does the job completion timing depend 

on the number of computer tasks?

Regression Analysis
The regression equation is
timeper = 3.05 + 0.260 nterm

Predictor Coef StDev T P
Constant 3.050 1.260 2.42 0.032
nterm 0.26034 0.02705 9.62 0.000

Standard errors P-values
t-statistics

testing  H   :        = 00 i
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CI for true slope

Regression Analysis
The regression equation is
timeper = 3.05 + 0.260 nterm

Predictor Coef StDev T P
Constant 3.050 1.260 2.42 0.032
nterm 0.26034 0.02705 9.62 0.000

Standard errors P-values
t-statistics

testing  H   :        = 00 i

For a 95% CI with df = n−2 = 12, t = 2.179

CI:  estimate ± t std errors
=  0.26034 ± 2.179×0.02705  =  [0.20,  0.32]
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Prediction

Predicting at   X = xp

� The confidence interval for the mean estimates the 
average Y-value at X = xp .
� (averaged over many repetitions of the experiment.)

� The prediction interval (PI) tries to predict the next 
actual Y-value at xp, in the future.
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Predicting time-per-task for 70 terminals

10 20 30 40 50 60 70
X = Number of terminals

0

5

15

25

10

20

30

Figure 12.4.10 Time per Task versus Number of Terminals
   (with the least-squares line and 95% PI's superimposed).

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Review

1. What is the difference between a confidence interval 
for the mean and a prediction interval?

2. Prediction intervals make allowances for two sources 
of uncertainty. What are they? How does a 
confidence interval for the mean differ in this regard?

3. At what point along the X-axis are these intervals 
narrowest?

4. We gave some general warnings about prediction 
earlier. They are relevant here as well. What were 
those warnings?
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00

0 0

x  or ŷ x  or ŷ

x  or ŷ x  or ŷ

(b)  Trended  (curve here)(a)  Ideal

(c)  Fan (d)  Outlier

Figure 12.4.11 Patterns in residual plots.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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20100

3
2
1
0
-1
-2
-3
-4

Fitted value

Residuals versus the fitted values
(response is time)

10 20 30 40 50 60
X = Number of terminals

-3

-1

1

2

0

-2

Normal Probability Plot

P-Value (approx): > 0.1000
W-test for Normality

210-1-2-3

.999
.99
.95
.80
.50
.20
.05
.01

.001

Residuals

Residuals versus nterm
(response is timeper)

0 1 2 3 4 5 6
Can reading (mm)

Residuals versus can
(response is gauge)

(a) (b)

(c)
(d)

Figure 12.4.12 Examples of residual plots.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Effect of an outlier in X on the LS line

Figure 12.4.13 The effect of an X-outlier on the least-squares line.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Review

1. What assumptions are made by the simple linear 
model?

2. Which assumptions are critical for all types of 
inference?

3. What types of inference are relatively robust against 
departures from the Normality assumption?

4. Four types of residual plot were described. What 
were they, and what can we learn from each?

5. What is an outlier in X, and why do we have to be on 
the lookout for such observations?
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Correlation of parent and teacher = 0.297, P-value = 0.024

30 50 70 90
X = Parent's rating

0

80

100

60

40

20

Regression of  Y on X
(Predicting Y-values from X-values)

Regression of X on Y
(Predicting X-values from Y-values)

Figure 12.5.1 Two regression lines.
From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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(e)   r = 0

(d)   r =   0.2(c)   r =    0.4(b)   r =    0.8(a)   r =   1

(i)   r = + 1 (h)   r = + 0.95 (g)   r = + 0.6 (f)   r = + 0.3

Negative

Positive

Correlation coefficient r

Perfect
correlation

Becoming
weaker

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Misuse of the correlation coefficient

Some patterns with  r = 0

r = 0r = 0r = 0

(a) (b) (c)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.
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Some patterns with  r = 0.7

r = 0.7 r = 0.7 r = 0.7

r = 0.7r = 0.7r = 0.7

(d) (e) (f)

(g) (h) (i)

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.

Misuse of the correlation coefficient
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Correlation does not necessarily imply causation.
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Review

1. Describe a fundamental difference between the way 
regression treats data and the way correlation treats 
data.

2. What is the correlation coefficient intended to 
measure?

3. For what shape(s) of trend in a scatter plot does it 
make sense to calculate a correlation coefficient?

4. What is the meaning of a correlation coefficient of    
r = +1?   r = −1?   r = 0?



14

STAT 251, UCLA, Ivo Dinov Slide 79

Summary 
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Concepts

� Relationships between quantitative variables should 
be explored using scatter plots.
�Usually the Y variable is continuous

(or behaves like one in that there are few repeated values)

� and the X variable is discrete or continuous.

� Regression singles out one variable (Y) as the 
response and uses the explanatory variable (X) to 
explain or predict its behavior.

� Correlation treats both variables symmetrically.
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Concepts cont’d

In practical problems, regression models may be 
fitted for any of the following reasons:

� To understand a causal relationship better.

� To find relationships which may be causal.

� To make predictions.
� But be cautious about predicting outside the range of the data

� To test theories.

� To estimate parameters in a theoretical model.
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Concepts cont’d

� In observational data, strong relationships are not 
necessarily causal.

� We can only have reliable evidence of causation from 
controlled experiments.

� Be aware of the possibility of lurking variables 
which may effect both X and Y.
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Concepts cont’d

� Two important trend curves are the straight line and 
the exponential curve.
�A straight line changes by a fixed amount with each unit 

change in x.
�An exponential curve changes by a  fixed percentage with 

each unit change in x. 

� You should not let the questions you want to ask of your data 
be dictated by the tools you know how to use. You can always 
ask for help.
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� The two main approaches to summarizing trends in 
data are using smoothers and fitting mathematical 
curves.

� The least-squares criterion for fitting a mathematical 
curve is to choose the values of the parameters (e.g. 
β0 and  β1 ) to minimize the sum of squared 
prediction errors,       (yi −� ˆ y i)

2 .

Concepts cont’d
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� We fit the linear relationship                      .

� The slope  β1 is the change in      associated with a 
one-unit increase in x. 

Least-squares estimates

� The least-squares estimates,      and       are chosen to 
minimize

� The least-squares regression line is

ˆ y = β0 + β1x

ˆ y 

(yi −� ˆ y i)
2 .

ˆ y = ˆ β 0 + ˆ β 1x.

Linear Relationship

0β̂ 1β̂
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Model for statistical inference

� Our theory assumes the model    Yi = β0 + β1xi + Ui , 

� where the random errors, U1, U2, … , Un, are a 
random sample from a Normal(0, σ) distribution.

� This means that the random errors ….
� are Normally distributed (each with mean 0),
� all have the same standard deviation

σ regardless of the value of  x, and
� are all independent.
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� These assumptions should be checked using residual 
plots (Section 12.4.4). The ith residual (or prediction error) is

� An outlier is a data point with an unexpectedly large 
residual (positive or negative).

yi − ˆ y i =  observed -  predicted.

Residuals and outliers
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� Inferences for the intercept and slope are just as in 
Chapters 8 and 9, with confidence intervals being of 
the form estimate     t  std errors and test statistics of 
the form 

t0 = (estimate - hypothesized value)/ standard error.

�We use df = n - 2.
�To test for no linear association, we test    H0: β1 = 0 .

±

Inference
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� The predicted value for a new Y at X =  xp is

� The confidence interval for the mean estimates the 
average Y-value at X= xp.
� averaged over many repetitions of the experiment.

� The prediction interval tries to predict the next actual
Y-value at X= xp.

� The prediction interval is wider than the 
corresponding confidence interval for the mean.

ˆ y p = ˆ β 0 + ˆ β 1xp

*Prediction
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The correlation coefficient r is a measure of linear 
association with −1   r 1.

� If r = 1, then X and Y have a perfect positive linear 
relationship.

� If r = −1, then X and Y have a perfect negative linear 
relationship.

� If r = 0, then there is no linear relationship between X 
and Y.

� Correlation does not necessarily imply causation.

≤ ≤

Correlation coefficient
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(c)  Regression of km.ltr on mo.jan

(b)  km.ltr vs mo.jan(a)  km.ltr vs month

2 4 6 8 10 12
month

0 1 2 3 4 5 6
mo.jan

4

6

8

10

4

6

8

10

Coef Std Err t-value p-value CI lower CI upper
Intercept 5.889 0.2617 22.506 <1.0e0-6 5.367 6.411
mo.jan 0.386 0.0721 5.361 1.134e-06 0.243 0.530

Percentage of variation explained: 30.34
Estimate of error Std dev: 1.075366
Error df: 66

Figure 1 Fuel consumption data.
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C o ef S td Er r t -v al ue p -v a lu e C I lo we r C I up pe r
I nt e rc e pt 3. 8 51 1 0. 0 49 4 7 8. 02 0 - -- - --
a ge - 0. 2 16 4 0. 0 09 5 -2 2. 67 0 - 0 .2 4 - 0 .2 0

P er c en t o f v ar i at i on e x pl a in e d: 90 . 0 2
E st i ma t e o f er r or St d d ev : 0 .2 43 32 0 5
E rr o r d f: 5 7

Age 0 1 2 3 4 5 6 7 8 9 10
Predicted 3.85 3.63 3.42 3.20 2.99 2.77 ---- 2.34 2.12 1.90 1.69
Pred lower 3.35 3.14 2.93 2.71 2.49 2.28 ---- 1.84 1.62 1.40 1.18
Pred upper 4.35 4.13 3.91 3.69 3.48 3.26 ---- 2.83 2.62 2.40 2.19

Table 10 Regression of Log(price) on Age

From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley & Sons, 2000.


