UCLA STAT 251

Statistical Methods for the Life and Health Sciences

- Instructor: Ivo Dinov,

Asst. Prof. In Statistics and Neurology
University of California, Los Angeles, Winter 2002
http://www.stat.ucla.edu/~dinov/

Approaches for modeling data relationships

 Regression and Correlation- There are random and nonrandom variables
- Correlation applies if both variables (X / Y) are random (e.g., We saw a previous example, systolic vs. diastolic blood pressure SISVOL/DIAVOL) and are treated symmetrically.
- Regression applies in the case when you want to single out one of the variables (response variable, Y) and use the other variable as predictor (explanatory variable, X), which explains the behavior of the response variable, Y .

Essential Points

1. What essential difference is there between the correlation and regression approaches to a relationship between two variables? (In correlation independent variables; regression response var depends on explanatory variable.)
2. What are the most common reasons why people fit regression models to data? \qquad
3. Can you conclude that changes in X caused the changes in Y seen in a scatter plot if you have data from an observational study? (No, there could be lurking variables, hidden effects/predictors, also associated with the predictor X , itself, e.g., time is often a lurking variable, or may be that changes in Y cause changes in X , instead of the other way around).

Correlation Coefficient

Correlation coefficient $(-1<=R<=1)$: a measure of linear association, or clustering around a line of multivariate data.
Relationship between two variables (X, Y) can be summarized by: $\left(\mu_{\mathrm{X}}, \sigma_{\mathrm{X}}\right),\left(\mu_{\mathrm{Y}}, \sigma_{Y}\right)$ and the correlation coefficient, $R . R=1$, perfect positive correlation (straight line relationship), $R=0$, no correlation (random cloud scatter), $R=-1$, perfect negative correlation.
Computing $R(\mathrm{X}, \mathrm{Y})$: (standardize, multiply, average)
$R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}}\right)$ $\mathrm{X}=\left\{x_{1}, x_{2}, \ldots, x_{N_{2}}\right\}$
$\mathrm{Y}=\left\{\mathrm{y}_{1}, y_{2}, \ldots, y_{N_{2}}\right\}$
$\left(\mu_{X}, \sigma_{X}\right),\left(\mu_{Y}, \sigma_{y}\right)$ sample mean / SD.

Correlation Coefficient

Example:

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{i}}{\boldsymbol{\sigma}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}^{\prime}}{\boldsymbol{\sigma}}\right)
$$

$$
\boldsymbol{\mu}_{x}=\frac{966}{6}=161 \mathrm{~cm}, \quad \boldsymbol{\mu}_{r}=\frac{332}{6}=55 \mathrm{~kg},
$$

$$
\sigma_{x}=\sqrt{\frac{216}{5}}=6.573, \quad \sigma_{x}=\sqrt{\frac{215.3}{5}}=6.563
$$

$\operatorname{Corr}(X, Y)=R(X, Y)=0.904$

Essential Points

5. When can you reliably conclude that changes in X cause the changes in Y ? (Only when controlled randomized experiments are used - levels of X are randomly distributed to available experimental units, or experimental conditions need to be identical for different levels of X, this includes time.

Correlation Coefficient - Properties

Correlation is invariant w.r.t. linear transformations of X or Y

$$
R(X, Y)=\frac{1}{N-1} \sum_{k=1}^{N}\left(\frac{x_{k}-\boldsymbol{\mu}_{k}}{\boldsymbol{\sigma}_{x}}\right)\left(\frac{y_{k}-\boldsymbol{\mu}_{v}}{\boldsymbol{\sigma}_{v}}\right)=
$$

$$
R(a X+b, c Y+d), \quad \text { since }
$$

$$
\left(\frac{a x_{k}+b-\boldsymbol{\mu}_{k+b}}{\boldsymbol{\sigma}_{a x+b}}\right)=\left(\frac{a x_{k}+b-\left(a \boldsymbol{\mu}_{k}+b\right)}{a \times \sigma_{x}}\right)=
$$

$$
\left(\frac{a\left(x_{k}-\mu\right)+b-b}{a \times \sigma_{x}}\right)=\left(\frac{x_{k}-\mu_{k}}{\sigma_{x}}\right)
$$

Essential Points

6. If the experimenter has control of the levels of X used, how should these levels be allocated to the available experimental units?
At random! Example, testing hardness of concrete, Y, based on levels of cement, X, incorporated. Factors effecting Y: amount of $\mathrm{H}_{2} \mathrm{O}$, ratio stone-chips to sand, drying conditions, etc. To prevent uncontrolled differences in batches of concrete in confounding our impression of cement effects, we should choose which batch $\left(\mathrm{H}_{2} 0\right.$ levels, sand, dry-conditions) gets what amount of cement at random! Then investigate for X effects in Y observations. If some significance test indicates observed trend is significantly different from a random pattern \rightarrow we have evidence of causal relationship, which may strengthen even further if the results are replicable.

Essential Points

7. What theories can you explore using regression methods?
Prediction, explanation/causation, testing a scientific hypothesis/mathematical model:
a. Hooke's spring law: amount of stretch in a spring, Y, is related to the applied weight X by $\mathrm{Y}=\alpha+\beta \mathrm{X}, \mathrm{a}, \mathrm{b}$ are spring constants.
b. Theory of gravity: force of gravity F between 2 objects is given by $\mathrm{F}=\alpha / \mathrm{D}^{\beta}$, where $\mathrm{D}=$ distance between objects, a is a constant related to the masses of the objects and $\beta=2$, according to the inverse square law.
c. Economic production function: $\mathrm{Q}=\alpha \mathrm{L}^{\beta} \mathrm{K}^{\gamma}, \mathrm{Q}=$ production, $\mathrm{L}=$ quantity of labor, $\mathrm{K}=$ capital, α, β, γ are constants specific to the market studied.

Trend and Scatter - Computer timing data

- The major components of a regression relationship are trend and scatter around the trend.
- To investigate a trend - fit a math function to data, or smooth the data.
- Computer timing data: a mainframe computer has X users, each running jobs taking Y min time. The main CPU swaps between all tasks. Y^{*} is the total time to finish all tasks. Both Y and Y^{*} increase with increase of tasks/users, but how?

The quadratic curve

Segments of the curve

Comments

1. In statistics what are the two main approaches to summarizing trends in data? (model fiting; smoothing - done by the eye!)
2. In $y=5 \mathrm{x}+2$, what information do the 5 and the 2 convey? (slope, y -intercept)
3. In $y=7+5 x$, what change in y is associated with a 1 -unit increase in x ? with a 10 -unit increase? $(5 ; 50)$

How about for $y=7-5 x .(-5 ;-50)$
5. How can we tell whether a trend in a scatter plot is exponential? (plot $\log (Y)$ vs. X , should be linear)

Fitting a line through the data
Show the Regression-Line Simulation Applet
RegressionApplet.html

Creatine kinase concentration in patient's blood

You should not

 let the questions you want to ask be dictated by the tools you know how to use.Here $Y=$ creatine kinase concentration in blood for a set of heart attack patients vs. the time, X .

No symmetry so X^{2}
models won't work!

Least squares criterion

Least squares criterion: Choose the values of the parameters to minimize the sum of squared prediction errors (or sum of squared residuals),

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Computer timings data - linear fit

Two lines on the computer-timings data.

Adding the least squares line

Example - Method/Hemi/Tissue/Value

Summary

For the simple linear model, least-squares estimates are unbiased $\left[E\left(\beta^{\wedge}\right)=\beta\right.$] and Normally distributed.

Noisier data produce more-variable least-squares estimates.

Summary

1. Before considering using the simple linear model, what sort of pattern would you be looking for in the scatter plot? (linear trend with constant scatter spread across the range of X)
2. What assumptions are made by the simple linear model, SLM? (X is linearly related to the mean value of the Y obs's at each $\mathrm{X}, \mu_{\mathrm{Y}}=\beta_{0}+\beta_{1} \mathrm{x}$; where β_{0} \& β_{1} are the true values of the intercept and slope of the SLM; The LS estimates $\beta_{0} \wedge \& \beta_{1} \wedge$ estimate the true values of $\beta_{0} \& \beta_{1}$; and the random errors $\mathrm{U}=\mathrm{Y}$ $\left.\mu_{\mathrm{Y}} \sim \mathrm{N}(\mu, \sigma).\right)$
3. If the simple linear model holds, what do you know about the sampling distributions of the least-squares estimates? (Unbiased and Normally distributed)

RMS Error for regression

Compute the RMS Error for this regression line

Compute the RMS Error for this regression line

- The RMS Error for the regression line $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}$ says how far away from the (model/predicting) regression line is each observation.
- Observe that the $\mathrm{SD}(\mathrm{Y})$ is also a RMS Error measure of another specific line - horizontal line through the average of the Y values. This line may also be taken for a regression line, but often it's not the best linear

- Then Compute the individual errors
- Finally compute the cumulative RMS measure
lide 5

Plotting the Residuals

- The Residuals $=$ Observed - Predicted for the regression line $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}$ (just like the error).
- Residuals average to zero, mathematically, and the regression line for the residuals is a horizontal line through $\mathrm{y}=0$.

When $X=x, \quad Y \sim \operatorname{Normal}\left(\mu_{Y}, \sigma\right) \quad$ where $\mu_{Y}=\beta_{0}+\beta_{1} x, \quad$ OR

Inference -

just a glance at statistical inference

- The regression intercept β_{0} and slope β_{1} are usually called regression coefficients
- The least squares estimates of their values are found in the coefficients column of program printouts
- Confidence intervals for a true regression coefficient (whether intercept or slope) is given by
estimated coefficient $\pm \boldsymbol{t}$ std errors
- t-test statistic
$t_{0}=\frac{\text { estimated coefficient }- \text { hypothesized value }}{\text { standard error }}$
Slide 57
STAT25LUCLUW We Dinas

Is there always an $\mathrm{X} \mathbf{Y}$ relationship? Linear Relationship?

Plotting the Residuals - patterns?

- The Residuals=Observed -Predicted for the regression line $Y=\beta_{0}+\beta_{1} X+U$ should show no clear trend or pattern, for our linear model to be a good and useful approximation to the unknown process.

Computer timings
How does the job completion timing depend
on the number of computer tasks?

For a 95% CI with $d f=n-2=12, t=2.179$
CI: estimate $\pm t$ std errors
$=0.26034 \pm 2.179 \times 0.02705=[0.20,0.32]$

Testing for no linear relationship trend of Y w.r.t. X is trivial!
$H_{0}:$ true slope $=0$
OR
$H_{0}: \beta_{1}=0$

Computer timings

How does the job completion timing depend on the number of computer tasks?

Prediction

Predicting at $\boldsymbol{X}=x_{p}$

- The confidence interval for the mean estimates the average Y-value at $X=x_{p}$.
- (averaged over many repetitions of the experiment.)
- The prediction interval (PI) tries to predict the next actual Y-value at x_{p}, in the future.

Predicting time-per-task for 70 terminals

Time per Task versus Number of Terminals (with the least-squares line and 95% PI's superimposed). Slide 67

Effect of an outlier in X on the $L S$ line

The effect of an X-outlier on the least-squares line.

Review

1. What assumptions are made by the simple linear model?
2. Which assumptions are critical for all types of inference?
3. What types of inference are relatively robust against departures from the Normality assumption?
4. Four types of residual plot were described. What were they, and what can we learn from each?
5. What is an outlier in X, and why do we have to be on the lookout for such observations?

Correlation of parent and teacher $=0.297$, P-value $=0.024$

Review

1. Describe a fundamental difference between the way regression treats data and the way correlation treats data.
2. What is the correlation coefficient intended to measure?
3. For what shape(s) of trend in a scatter plot does it make sense to calculate a correlation coefficient?
4. What is the meaning of a correlation coefficient of $r=+1$? $r=-1$? $r=0$?

Concepts cont'd

In practical problems, regression models may be fitted for any of the following reasons:

- To understand a causal relationship better.
- To find relationships which may be causal.
- To make predictions.
- But be cautious about predicting outside the range of the data
- To test theories.
- To estimate parameters in a theoretical model.

Concepts cont'd

Two important trend curves are the straight line and the exponential curve.

- A straight line changes by a fixed amount with each unit change in x.
■ An exponential curve changes by a fixed percentage with each unit change in x.
- You should not let the questions you want to ask of your data be dictated by the tools you know how to use. You can always ask for help.

Concepts

- Relationships between quantitative variables should be explored using scatter plots.
■ Usually the Y variable is continuous (or behaves like one in that there are few repeated values)
\square and the X variable is discrete or continuous.
- Regression singles out one variable (Y) as the response and uses the explanatory variable (X) to explain or predict its behavior.
- Correlation treats both variables symmetrically.

Concepts cont'd

- The two main approaches to summarizing trends in data are using smoothers and fitting mathematical curves.
- The least-squares criterion for fitting a mathematical curve is to choose the values of the parameters (e.g. β_{0} and β_{1}) to minimize the sum of squared prediction errors, $\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$.

Residuals and outliers

These assumptions should be checked using residual plots (Section 12.4.4). The i th residual (or prediction error) is

$$
y_{i}-\hat{y}_{i}=\text { observed }- \text { predicted. }
$$

- An outlier is a data point with an unexpectedly large residual (positive or negative).

*Prediction

- The predicted value for a new Y at $X=x_{p}$ is

$$
\hat{y}_{p}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{p}
$$

- The confidence interval for the mean estimates the average Y-value at $X=x_{p}$.
- averaged over many repetitions of the experiment.
- The prediction interval tries to predict the next actual Y-value at $X=x_{p}$.
- The prediction interval is wider than the corresponding confidence interval for the mean.

Model for statistical inference

- Our theory assumes the model $Y_{i}=\beta_{0}+\beta_{1} x_{i}+U_{i}$,
- where the random errors, $U_{1}, U_{2}, \ldots, U_{n}$, are a
random sample from a $\operatorname{Normal}(0, \sigma)$ distribution.
- This means that the random errors

■ are Normally distributed (each with mean 0),
\square all have the same standard deviation
σ regardless of the value of x, and
\square are all independent.

Correlation coefficient

The correlation coefficient r is a measure of linear association with $-1 \leq r \leq 1$.

- If $r=1$, then X and Y have a perfect positive linear relationship.
- If $\mathrm{r}=-1$, then X and Y have a perfect negative linear relationship.
- If $r=0$, then there is no linear relationship between X and Y.
- Correlation does not necessarily imply causation.

