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CONSTRUCTION OF OPTIMAL MULTI-LEVEL
SUPERSATURATED DESIGNS
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A supersaturated design is a design whose run size is not large enough
for estimating all the main effects. The goodness of multi-level supersatu-
rated designs can be judged by the generalized minimum aberration crite-
rion proposed by Xu and Wu [Ann. Statist. 29 (2001) 1066–1077]. A new
lower bound is derived and general construction methods are proposed for
multi-level supersaturated designs. Inspired by the Addelman–Kempthorne
construction of orthogonal arrays, several classes of optimal multi-level su-
persaturated designs are given in explicit form: Columns are labeled with
linear or quadratic polynomials and rows are points over a finite field. Ad-
ditive characters are used to study the properties of resulting designs. Some
small optimal supersaturated designs of 3, 4 and 5 levels are listed with their
properties.

1. Introduction. As science and technology have advanced to a higher level,
investigators are becoming more interested in and capable of studying large-scale
systems. Typically these systems have many factors that can be varied during de-
sign and operation. The cost of probing and studying a large-scale system can be
prohibitively expensive. Building prototypes is time-consuming and costly. Even
the quicker route of using computer modeling can take up many hours of CPU
time. To address the challenges posed by this technological trend, research in ex-
perimental design has lately focused on the class of supersaturated designs for
its run size economy and mathematical novelty. Formally, a supersaturated design
(SSD) is a design whose run size is not large enough for estimating all the main
effects represented by the columns of the design matrix. The design and analysis
rely on the assumption of the effect sparsity principle ([5], [31], Section 3.5), that
is, the number of relatively important effects in a factorial experiment is small.
Some practical applications of SSDs can be found in [18, 19, 25, 30].

The construction of SSD dates back to Satterthwaite [26] and Booth and
Cox [4]. The former suggested the use of random balanced designs and the lat-
ter proposed an algorithm to construct systematic SSDs. Many methods have been
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proposed for constructing two-level SSDs in the last decade, for example, among
others, Lin [18, 19], Wu [30], Nguyen [25], Cheng [10], Li and Wu [16], Tang
and Wu [29], Butler, Mead, Eskridge and Gilmour [7], Bulutoglu and Cheng [6]
and Liu and Dean [20]. A popular criterion in the SSD literature is the E(s2) crite-
rion [4], which measures the average correlation among columns. Nguyen [25] and
Tang and Wu [29] independently derived the following lower bound for two-level
SSDs with N runs and m factors:

E(s2) ≥ N2(m − N + 1)/[(m − 1)(N − 1)].(1)

This lower bound was recently improved by Butler, Mead, Eskridge and Gilmour
[7] and Bulutoglu and Cheng [6].

There are a few recent papers on the construction of multi-level SSDs. Yamada
and Lin [37] and Yamada, Ikebe, Hashiguchi and Niki [36] proposed methods for
the construction of three-level SSDs. Fang, Lin and Ma [13] and Lu and Sun [22]
proposed algorithmic methods for the construction of multi-level SSDs. Lu, Hu
and Zheng [21] constructed multi-level SSDs based on resolvable balanced incom-
plete block designs. Aggarwal and Gupta [2] proposed an algebraic construction
method based on Galois field theory. Chatterjee and Gupta [8] studied multi-level
SSDs with certain search design properties. Yamada and Matsui [38] considered
the construction of mixed-level SSDs.

Extensions of the E(s2) criterion to the multi-level case are not unique, for
example, ave(χ2) statistic [37], ave(f ) [13] and E(d2) [22]. All these extensions
measure the overall nonorthogonality between all possible pairs of columns. Lu
and Sun [22] and Yamada and Matsui [38] derived lower bounds for E(d2) and
ave(χ2), respectively, which generalize the lower bound for E(s2) in (1).

There is another class of optimality criteria that were originally proposed for
studying nonregular designs. Generalized minimum aberration (GMA) criteria,
extensions of the minimum aberration criterion [14], have been proposed to assess
regular or nonregular designs. See [12, 23, 28, 33, 34]. Obviously, these criteria
can be used to assess SSDs as well. In this paper we adopt the GMA criterion
due to Xu and Wu [34] as the optimality criterion for two reasons. First, the GMA
criterion has good statistical properties and has been well justified for nonregular
designs. Tang and Deng [28] and Xu and Wu [34] showed that GMA orthogonal
designs are model robust in the sense that they tend to minimize the contamination
of nonnegligible two-factor and higher-order interactions on the estimation of the
main effects. Tang [27] and Ai and Zhang [3] provided projection justifications of
the GMA criterion. Cheng, Deng and Tang [11] showed that GMA is also sup-
ported by some traditional model-dependent efficiency criteria. Second, the GMA
criterion is general and can assess multi-level and mixed-level SSDs. It includes
E(s2), ave(χ2) and E(d2) as special cases. Section 2 reviews the GMA and other
optimality criteria.

Section 3 presents some general optimality results for multi-level SSDs. We
derive a new lower bound for multi-level SSDs as an extension of (1). This new
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lower bound is tight in many cases; for example, it is tight for SSDs with s levels,
N = s2 runs and any number of factors. We also discuss the construction of optimal
SSDs that achieve this bound. In particular, construction methods of Lin [18] and
Tang and Wu [29] are extended to multi-level SSDs. Furthermore, optimal multi-
level SSDs are shown to be periodic.

While an optimal SSD under GMA (and other criteria) may contain fully aliased
columns, Section 4 describes construction methods that produce optimal SSDs
without fully aliased columns. Inspired by the Addelman–Kempthorne construc-
tion of orthogonal arrays, we use linear and quadratic polynomials in the con-
struction. Evaluating the polynomials over a finite field yields optimal multi-level
SSDs. Compared with algorithmic methods, our algebraic method has at least two
advantages: (i) the constructions are explicit and not limited to small run size, and
(ii) the properties of resulting SSDs can be studied analytically. Section 5 presents
some technical proofs that use additive characters of a finite field.

Section 6 lists some small optimal SSDs of 3, 4 and 5 levels and compares them
with existing ones in terms of three other optimality criteria. For small run sizes
(≤ 25), the benefits of our SSDs are marginal; our SSDs may be better in terms
of one criterion but worse in terms of another criterion than existing ones. For 27
runs, our SSDs have more columns and one class of our designs is better than
existing ones in terms of all three criteria. Section 7 considers mixed-level SSDs.
A lower bound is derived and the method of replacement is proposed to construct
optimal mixed-level SSDs.

2. Optimality criteria. Some definitions and notation are necessary in order
to review the optimality criteria.

An (N, s1s2 · · · sm)-design is an N × m matrix, where the ith column takes val-
ues on si symbols {0,1, . . . , si − 1}. A design is called mixed if not all si’s are
equal. Two designs are isomorphic if one can be obtained from the other through
permutations of rows, columns and symbols in each column. An OA(N,m, s, t) is
an orthogonal array (OA) of N runs, m columns, s levels and strength t , in which
all possible level combinations appear equally often for any set of t columns. An
OA(N,m, s,1) is also called a balanced array.

We use the notation SSD(N, s1s2 · · · sm) to denote an SSD of N runs, m columns
with levels s1, s2, . . . , sm and use the notation SSD(N, sm) if all si = s. Throughout
the paper, as in the literature, we only consider balanced SSDs, in which all levels
appear equally often for any column.

2.1. Generalized minimum aberration. For an (N, s1s2 · · · sm)-design D, con-
sider the ANOVA model

Y = X0α0 + X1α1 + · · · + Xmαm + ε,

where Y is the vector of N observations, αj is the vector of all j -factor inter-
actions, Xj is the matrix of orthonormal contrast coefficients for αj , and ε is the
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vector of independent random errors. For j = 0,1, . . . ,m, Xu and Wu [34] defined
Aj(D), a function of Xj , to measure the aliasing between all j -factor interactions

and the general mean. Specifically, if Xj = [x(j)
ik ], define

Aj(D) = N−2
∑

k

∣∣∣∣∣

N∑

i=1

x
(j)
ik

∣∣∣∣∣

2

.

The GMA criterion sequentially minimizes the generalized wordlength patterns
A1(D),A2(D),A3(D), . . . . Xu and Wu [34] showed that isomorphic designs have
the same generalized wordlength patterns and therefore are not distinguishable
under the GMA criterion.

The generalized wordlength patterns characterize the strength of a design, that
is, Ai(D) = 0 for i = 1, . . . , t if and only if D is an OA of strength t . For an SSD,
A1 = 0 and A2 > 0. The GMA criterion suggests that we shall first minimize A2
and then A3, A4 and so on. Note that A2 measures the overall aliasing between all
pairs of columns. Indeed, A2 = ∑

i<j r2
ij if R = (rij ) is the correlation matrix of

all the main effects (see [32]). In particular, for a two-level design A2 is equal to
the sum of squares of correlations between all possible pairs of columns.

The following concept due to Xu [33] is useful in the theoretical development.
For a design D = [xik] and a positive integer t , define the t th power moment to be

Kt(D) = [N(N − 1)/2]−1
∑

1≤i<j≤N

[δij (D)]t ,

where δij (D) is the number of coincidences between the ith and j th rows, that is,
the number of k such that xik = xjk .

The following three lemmas are from [33].

LEMMA 1. Suppose D is an SSD(N, sm). Then:

(i) A1(D) = 0 and A2(D) = [(N − 1)s2K2(D) + m2s2 − Nm(m + s −
1)]/(2N);

(ii) K1(D) = m(N − s)/[(N − 1)s] and K2(D) = [2NA2(D) + Nm(m + s −
1) − m2s2]/[(N − 1)s2].

LEMMA 2. Suppose D is an SSD(N, sm). Then A2(D) ≥ [m(s −1)(ms −m−
N + 1)]/[2(N − 1)].

LEMMA 3. Suppose D is an SSD(N, sm). If the difference among all δij (D),
i < j , does not exceed one, then D has GMA.

2.2. Other optimality criteria and connections. There are several other opti-
mality criteria for multi-level and mixed-level SSDs. Let c1, . . . , cm be the columns
of an SSD(N, s1s2 · · · sm) and n

ij
ab be the number of times that pair (a, b) appears

as a row in columns ci and cj .
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Yamada and Lin [37], Yamada, Ikebe, Hashiguchi and Niki [36] and Yamada
and Matsui [38] defined

χ2(ci, cj ) =
si−1∑

a=0

sj−1∑

b=0

[nij
ab − N/(sisj )]2/

(
N/(sisj )

)

to evaluate the dependency of columns ci and cj . They proposed the following two
criteria to evaluate the maximum and average dependency of all columns:

ave(χ2) = ∑

1≤i<j≤m

χ2(ci, cj )/[m(m − 1)/2]

and

max(χ2) = max
1≤i<j≤m

χ2(ci, cj ).

Fang, Lin and Ma [13] defined

f (ci, cj ) =
si−1∑

a=0

sj−1∑

b=0

|nij
ab − N/(sisj )|

to measure the nonorthogonality between columns ci and cj . They proposed to
minimize

ave(f ) = ∑

1≤i<j≤m

f (ci, cj )/[m(m − 1)/2] and max(f ) = max
1≤i<j≤m

f (ci, cj )

and three other criteria.
When all si = s, Lu and Sun [22] and Lu, Hu and Zheng [21] defined

d2
ij =

s−1∑

a=0

s−1∑

b=0

[nij
ab − N/s2]2

to measure the “departure from orthogonality” for columns ci and cj . They pro-
posed to minimize

E(d2) = ∑

1≤i<j≤m

d2
ij /[m(m − 1)/2] and max(d2) = max

1≤i<j≤m
d2
ij .

It is evident that E(d2) = (N/s2) ave(χ2) and max(d2) = (N/s2)max(χ2).

LEMMA 4. For an SSD(N, sm):

(i) ave(χ2) = NA2/[m(m − 1)/2];
(ii) E(d2) = N2A2/[s2m(m − 1)/2].
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The first part of Lemma 4 was proved by Xu [33] and the second part follows
from the first part. Lemma 4 shows that ave(χ2) and E(d2) are equivalent to A2;
therefore, GMA can be viewed as a refinement of ave(χ2) and E(d2).

Note that A2 measures the overall aliasing between columns. It is also important
to measure the maximum aliasing between columns. For this purpose we consider
projections and propose the concept of projected A2 values. For a pair of columns
ci and cj , we define a projected A2 value as A2(ci, cj ) = A2(d), where d consists
of the two columns ci and cj . Obviously, the overall A2 value is equal to the sum
of all projected A2 values, that is, A2(D) = ∑

1≤i<j≤m A2(ci, cj ). Lemma 4 shows
that the maximum projected A2 value is equal to max(χ2)/N or s2 max(d2)/N2;
therefore, the maximum projected A2 value is equivalent to max(χ2) and max(d2).

3. Some optimality results. In this and the next three sections we study
multi-level SSDs.

3.1. A new lower bound.

THEOREM 1. Suppose D is an SSD(N, sm). Then

A2(D) ≥ [m(s − 1)(ms − m − N + 1)]/[2(N − 1)] + (N − 1)s2η(1 − η)/(2N),

where η = m(N − s)/((N − 1)s)−�m(N − s)/((N − 1)s)� and �x� is the largest
integer that does not exceed x. The lower bound is achieved if and only if the
number of coincidences, δij (D), differs by at most one for all i < j . Furthermore,
an SSD achieving the lower bound is optimal under GMA.

PROOF. By Lemma 1(ii), K1(D) = [N(N − 1)/2]−1 ∑
1≤i<j≤N δij (D) =

m(N −s)/((N −1)s). Then η = K1(D)−�K1(D)� is the fractional part of K1(D).
Since the number of coincidences, δij (D), must be an integer, it is easy to verify
that K2(D) = [N(N − 1)/2]−1 ∑

1≤i<j≤N [δij (D)]2 achieves the minimum value
of K1(D)2 +η(1−η) when all δij (D) take on only one of the two values �K1(D)�
and �K1(D)� + 1. Then the lower bound of A2(D) follows from Lemma 1(i) and
some straightforward algebra. By Lemma 3 an SSD achieving this lower bound is
optimal under GMA. �

The lower bound in Theorem 1 is new for multi-level SSDs. Using the connec-
tion established in Lemma 4, we obtain a new lower bound for ave(χ2) and E(d2).
As will be seen next, there are many cases in which the lower bound in Theorem 1
is tight, whereas the lower bound in Lemma 2 is not. For example, when N = s2,
the lower bound in Theorem 1 is tight for any m; in contrast, the lower bound in
Lemma 2 is tight only when m is a multiple of s + 1.
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3.2. Optimal designs. Many optimal SSDs that achieve the lower bound in
Theorem 1 can be derived from saturated OAs. An OA(N, t, s,2) is saturated if
N − 1 = t (s − 1). The following lemma from Mukerjee and Wu [24] says that the
number of coincidences between distinct rows is constant for a saturated OA.

LEMMA 5. Suppose H is a saturated OA(N, t, s,2) with t = (N −1)/(s −1).
Then δij (H) = (N − s)/[s(s − 1)] for any i < j .

The next lemma shows the change of the A2 values of a design when a saturated
OA is juxtaposed to it. Readers are referred to Xu and Wu [35] for a proof.

LEMMA 6. Suppose H is a saturated OA(N, t, s,2) with t = (N − 1)/(s − 1)

and D is an OA(N,m, s,1). Let D ∪ H be the column juxtaposition of D and H .
Then A2(D ∪ H) = A2(D) + m(s − 1).

Tang and Wu [29] first proposed to construct optimal two-level SSDs by jux-
taposing saturated OAs derived from Hadamard matrices. This method can be ex-
tended to construct optimal multi-level SSDs. Suppose D1, . . . ,Dk are k saturated
OA(N, t, s,2)s with t = (N − 1)/(s − 1). Let D = D1 ∪ · · · ∪ Dk be the column
juxtaposition, which may have duplicated or fully aliased columns. It is evident
that δij (D) = k(N − s)/[s(s − 1)] for any i < j . Then by Lemma 3, D is an
optimal SSD under GMA.

As Tang and Wu [29] suggested, to construct an SSD with m = kt − j columns,
1 ≤ j < t , we may simply delete the last j columns from D. Though the resulting
design may not be optimal, it has an A2 value very close to the lower bound in
Theorem 1.

If one column is removed from or one (balanced) column is added to D, the
resulting design is still optimal. Cheng [10] showed that, for two-level SSDs, re-
moving (and resp. adding) two orthogonal columns from (and resp. to) D also
results in an optimal SSD. This is not true for multi-level SSDs in general. For
N = s2, we have a stronger result in Lemma 5 that the number of coincidences
between any two rows is equal to 1. Then removing (and resp. adding) any number
of orthogonal columns from (and resp. to) D also results in an optimal SSD under
GMA, because the resulting design has the property that the number of coinci-
dences between any two rows differs by at most one. In particular, for any m, the
lower bound in Theorem 1 is tight.

Lin [18] used half fractions of Hadamard matrices to construct two-level SSDs
by taking a column as the branching column. This method can be extended to con-
struct multi-level SSDs as follows. Taking any column of a saturated OA(N, t, s,2)

as the branching column, we obtain s fractions according to the levels of the
branching column. After removing the branching column, the fractions have the
properties that all columns are balanced and the number of coincidences between
any two rows is constant. The row juxtaposition of any k fractions forms an
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SSD(kNs−1, st−1) of which the number of coincidences between any two rows
differs by at most one. By Lemma 3 such a design is optimal under GMA. For
N = s2, any subdesign is also optimal, because the number of coincidences be-
tween any two rows is either 0 or 1.

Because a saturated OA(sn, (sn − 1)/(s − 1), s,2) exists for any prime power s,
we have the following result.

THEOREM 2. Suppose s is a prime power.

(i) For any n and k, there exists an optimal SSD(sn, sm) that achieves the
lower bound in Theorem 1, where m = k(sn − 1)/(s − 1) or m = k(sn − 1)/

(s − 1) ± 1.
(ii) For any n and k < s, there exists an optimal SSD(ksn−1, sm) that achieves

the lower bound in Theorem 1, where m = (sn − 1)/(s − 1) − 1.
(iii) For any m, there exists an optimal SSD(s2, sm) that achieves the lower

bound in Theorem 1.
(iv) For any m ≤ s and k < s, there exists an optimal SSD(ks, sm) that achieves

the lower bound in Theorem 1.

Given N and s, let a2(m) = min{A2(D) :D is an SSD(N, sm)}, where designs
may have fully aliased columns. When N = s2, Theorem 2(iii) implies that a2(m+
s + 1) = a2(m) + m(s − 1) for any m ≥ 1. The following result shows that for
certain N , a2(m) is periodic when m is large enough.

THEOREM 3. Suppose a saturated OA(N, t, s,2) exists with t = (N − 1)/

(s − 1). Then there exists a positive integer m0 such that for m ≥ m0, a2(m + t) =
a2(m) + m(s − 1).

Readers are referred to Xu and Wu [35] for a proof. This periodicity property
helps us understand SSDs of large size; it shows how larger optimal SSDs are con-
nected with smaller ones. Chen and Wu [9] previously showed a similar periodicity
property for maximum resolution and minimum aberration designs.

The above optimal SSDs may contain fully aliased columns, which are not use-
ful in practice. The next section presents explicit construction methods that pro-
duce optimal SSDs without fully aliased columns.

4. Construction. The construction methods are applicable to any prime
power. Throughout this section we assume s > 2 is a prime power. Let Fs be a
Galois field of s elements. For clarity, all proofs are given in the next section.

4.1. Half Addelman–Kempthorne orthogonal arrays. Addelman and
Kempthorne [1] described a method for constructing OA(2sn,2(sn − 1)/
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(s − 1) − 1, s,2) for any prime power s and any n. Such arrays can be natu-
rally decomposed into two arrays of sn runs. Each array is an SSD(sn, sm) with
m = 2(sn − 1)/(s − 1) − 1. We now describe how to construct an SSD in general.

In the construction the columns of an array are labeled with linear or quadratic
polynomials in n variables X1, . . . ,Xn and the rows are labeled with points
from Fn

s . Let f1(X1, . . . ,Xn) and f2(X1, . . . ,Xn) be two functions, linear or non-
linear. They correspond to two columns of length sn when evaluated at Fn

s . The
two functions (or columns) are fully aliased if the pair has only s level combi-
nations, each combination occurring sn−1 times; and orthogonal if the pair has
s2 distinct level combinations, each combination occurring sn−2 times. A pair of
fully aliased columns has projected A2 = s − 1 and a pair of orthogonal columns
has projected A2 = 0.

Following Addelman and Kempthorne [1], f1(X1, . . . ,Xn) and f2(X1, . . . ,Xn)

are said to be semi-orthogonal to each other if (i) for s odd, the pair has (s + 1)s/2
distinct level combinations, s combinations occurring sn−2 times and s(s − 1)/2
combinations occurring 2sn−2 times, and (ii) for s even, the pair has s2/2 distinct
level combinations each occurring 2sn−2 times. A pair of semi-orthogonal columns
has projected A2 = (s −1)/s for s odd and projected A2 = 1 for s even. This result
can be easily verified from the connection between the ave(χ2) statistic and A2
described in Lemma 4.

Let L(X1, . . . ,Xn) be the set of all nonzero linear functions of X1, . . . ,Xn,
that is,

L(X1, . . . ,Xn) = {c1X1 + · · · + cnXn : ci ∈ Fs, not all ci are zero}.
Every function in L(X1, . . . ,Xn) corresponds to a balanced column. Two func-
tions f1 and f2 in L(X1, . . . ,Xn) are dependent if there is a nonzero constant
c ∈ Fs such that f1 = cf2; otherwise, they are independent. Clearly, dependent lin-
ear functions correspond to the same column up to level permutation and, thus,
they are fully aliased, while independent linear functions correspond to orthog-
onal columns. A set of (sn − 1)/(s − 1) independent linear functions generates
an OA(sn, (sn − 1)/(s − 1), s,2). The traditional convention is to assume the
first nonzero element is 1 for each column. For convenience, we assume the last
nonzero element is 1 for each column. In particular, let H(X1, . . . ,Xn) be the set
of all nonzero linear functions of X1, . . . ,Xn such that the last nonzero coefficient
is 1. When evaluated at Fn

s , H(X1, . . . ,Xn) is a saturated OA(sn, (sn − 1)/(s −
1), s,2). This is indeed the regular fractional factorial design and the construction
is called the Rao–Hamming construction by Hedayat, Sloane and Stufken ([15],
Section 3.4).

The key idea of the Addelman–Kempthorne construction is to use quadratic
functions in addition to linear functions. Let

Q∗
1(X1, . . . ,Xn) = {X2

1 + aX1 + h :a ∈ Fs,h ∈ H(X2, . . . ,Xn)}(2)

and Q1(X1, . . . ,Xn) = {X1} ∪ Q∗
1(X1, . . . ,Xn).
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H(X1, . . . ,Xn) has (sn − 1)/(s − 1) columns and Q∗
1(X1, . . . ,Xn) has

(sn − 1)/(s − 1) − 1 columns. The column juxtaposition of H(X1, . . . ,Xn) and
Q∗

1(X1, . . . ,Xn) forms an SSD(sn, sm) with m = 2(sn − 1)/(s − 1) − 1, which is
a half of an Addelman–Kempthorne OA.

EXAMPLE 1. Consider s = 3 and n = 2. The functions are

H(X1,X2) = {X1,X2,X1 + X2,2X1 + X2},
Q∗

1(X1,X2) = {X2
1 + X2,X

2
1 + X1 + X2,X

2
1 + 2X1 + X2},

Q1(X1,X2) = {X1,X
2
1 + X2,X

2
1 + X1 + X2,X

2
1 + 2X1 + X2}.

H(X1,X2) is an OA(9,4,3,2) when the functions are evaluated at F 2
3 ; so is

Q1(X1,X2). They are isomorphic [indeed, there is only one unique OA(9,4,3,2)

up to isomorphism]. The column juxtaposition of H(X1,X2) and Q∗
1(X1,X2)

forms an SSD(9,37), which is isomorphic to the first (and last) nine rows of the
commonly used OA(18,7,3,2) (e.g., Table 7C.2 of [31]). This SSD has an over-
all A2 = 6 and achieves the lower bound in Theorem 1. Furthermore, there are
no fully aliased columns. Each column of Q∗

1(X1,X2) is semi-orthogonal to three
columns of H(X1,X2) with projected A2 = 2/3.

In general, we have the following results.

LEMMA 7. When evaluated at Fn
s , Q1(X1, . . . ,Xn) is an OA(sn, (sn −

1)/(s − 1), s,2).

THEOREM 4. The column juxtaposition of H(X1, . . . ,Xn) and Q∗
1(X1,

. . . ,Xn) forms an SSD(sn, sm) with m = 2(sn − 1)/(s − 1) − 1. It has an overall
A2 = sn − s and is optimal under GMA. Furthermore, column X1 is orthogonal to
all other columns and there are no fully aliased columns if s > 2.

(i) For s odd, the possible projected A2 values are 0 and (s − 1)/s. There are
s(sn − s)/(s −1) pairs of semi-orthogonal columns with projected A2 = (s −1)/s.

(ii) For s even, the possible projected A2 values are 0 and 1. There are sn − s

pairs of semi-orthogonal columns with projected A2 = 1.

Both Q1(X1, . . . ,Xn) and H(X1, . . . ,Xn) are saturated OAs of the same pa-
rameters. It is of interest to know whether they are isomorphic. Example 1 shows
that they are isomorphic for n = 2 and s = 3. This is true as long as n = 2. When
n > 2 and s > 2, they are not isomorphic. The following corollary summarizes the
result.

COROLLARY 1. (i) For n = 2, Q1(X1,X2) is isomorphic to the regular design
H(X1,X2).
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(ii) For n > 2 and s > 2, Q1(X1, . . . ,Xn) is not isomorphic to H(X1, . . . ,Xn).

Corollary 1(ii) implies that Q1(X1, . . . ,Xn) is a nonregular design for n > 2
and s > 2.

4.2. Juxtaposition of saturated orthogonal arrays. As a by-product of the
half Addelman–Kempthorne construction, we have constructed a saturated OA,
Q1(X1, . . . ,Xn), besides the regular OA, H(X1, . . . ,Xn). For any h ∈ H(X1,

. . . ,Xn), we can construct a saturated OA, Qh(X1, . . . ,Xn), as follows. Let h =
c1X1 +· · ·+cnXn, not all ci ’s being 0. Let k be the largest i such that ci �= 0. Then
ck = 1 and ci = 0 for all i > k. Let Y1 = h, Yi = Xi−1 for 2 ≤ i ≤ k, and Yi = Xi

for k < i ≤ n. It is clear that H(X1, . . . ,Xn) is equivalent to H(Y1, . . . , Yn) up to
row and column permutations. Define Q∗

h(X1, . . . ,Xn) = Q∗
1(Y1, . . . , Yn) as in (2)

by replacing Xi with Yi and Qh(X1, . . . ,Xn) = Q1(Y1, . . . , Yn).
Since there are (sn − 1)/(s − 1) columns in H(X1, . . . ,Xn), we obtain

(sn − 1)/(s − 1) saturated OA(sn, (sn − 1)/(s − 1), s,2)s. Although they are all
isomorphic, we can obtain many optimal multi-level SSDs by juxtaposing them.

EXAMPLE 2. Consider s = 3 and n = 2. H(X1,X2) = {X1,X2,X1 +
X2,2X1 + X2}. For each h ∈ H(X1,X2), we can define Qh(X1,X2) as follows:

QX1(X1,X2) = {X1,X
2
1 + X2,X

2
1 + X1 + X2,X

2
1 + 2X1 + X2},

QX2(X1,X2) = {X2,X
2
2 + X1,X

2
2 + X2 + X1,X

2
2 + 2X2 + X1},

QX1+X2(X1,X2) = {X1 + X2, (X1 + X2)
2 + X1,

(X1 + X2)
2 + 2X1 + X2, (X1 + X2)

2 + 2X2},
Q2X1+X2(X1,X2) = {2X1 + X2, (2X1 + X2)

2 + X1,

(2X1 + X2)
2 + X2, (2X1 + X2)

2 + 2X1 + 2X2}.
Each Qh(X1,X2) is a saturated OA(9,4,3,2) and they are all isomorphic. The
column juxtaposition of all four Qh(X1,X2) has 16 columns: 4 linear and
12 quadratic. All linear columns are orthogonal to each other. Each linear column
is orthogonal to 3 quadratic columns, and semi-orthogonal to the other 9 quadratic
columns. Each quadratic column is orthogonal to 1 linear column, semi-orthogonal
to the other 3 linear columns, orthogonal to 2 quadratic columns, and partially
aliased (projected A2 = 4/9) with the other 9 quadratic columns. The 16 columns
together form an optimal SSD(9,316) with an overall A2 = 48. The 12 quadratic
columns together form an optimal SSD(9,312) with an overall A2 = 24. For the
latter design, each column is partially aliased with 9 columns with projected
A2 = 4/9.

THEOREM 5. Let h1 and h2 be two distinct functions in H(X1, . . . ,Xn). The
column juxtaposition of Qh1(X1, . . . ,Xn) and Qh2(X1, . . . ,Xn) forms an SSD(sn,
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sm) with m = 2(sn −1)/(s −1). It has an overall A2 = sn −1 and is optimal under
GMA. Furthermore, there are no fully aliased columns if s is odd or s > 4.

(i) For s odd, the possible projected A2 values are 0, (s − 1)/s, (s − 1)2/s2

and (s − 1)/s2. There are 2s pairs with projected A2 = (s − 1)/s, s2 pairs with
projected A2 = (s − 1)2/s2 and s2(sn − s2)/(s − 1) pairs with projected A2 =
(s − 1)/s2.

(ii) For s even, the possible projected A2 values are 0,1,2 and 3.
(iii) For s = 4, the possible projected A2 values are 0,1 and 3. There are one

pair of fully aliased columns with projected A2 = 3 and 4n − 4 pairs of partially
aliased columns with projected A2 = 1.

Theorem 5 states that the column juxtaposition of Qh1(X1, . . . ,Xn) and
Qh2(X1, . . . ,Xn) has the same projected A2 values and frequencies, independent
of the choice of h1 and h2. It is of interest to note that they can have different geo-
metric structures and be nonisomorphic to each other. For example, when n = 3
and s = 3, the column juxtaposition of QX1 and QX2 is not isomorphic to the
column juxtaposition of QX1 and QX3 .

Extending Theorem 5, we have the following result.

THEOREM 6. For 1 < k ≤ (sn − 1)/(s − 1), let h1, . . . , hk be k distinct
functions in H(X1, . . . ,Xn). The column juxtaposition of Qhi

(X1, . . . ,Xn), i =
1, . . . , k, forms an SSD(sn, sm) with m = k(sn − 1)/(s − 1). It has an overall
A2 = (k

2

)
(sn − 1) and is optimal under GMA. Furthermore, there are no fully

aliased columns if s is odd or s > 4.

(i) For s odd, the possible projected A2 values are 0, (s − 1)/s, (s − 1)2/s2

and (s − 1)/s2. There are
(k
2

)
2s pairs with projected A2 = (s − 1)/s,

(k
2

)
s2 pairs

with projected A2 = (s − 1)2/s2 and
(k
2

)
s2(sn − s2)/(s − 1) pairs with projected

A2 = (s − 1)/s2.
(ii) For s even, the possible projected A2 values are 0,1,2 and 3.

(iii) For s = 4, the possible projected A2 values are 0,1 and 3. There are
(k
2

)

pairs of fully aliased columns with projected A2 = 3 and
(k
2

)
(4n − 4) pairs of par-

tially aliased columns with projected A2 = 1.

When k = (sn − 1)/(s − 1), the above SSD has [(sn − 1)/(s − 1)]2 columns,
among which (sn − 1)/(s − 1) columns are linear from H(X1, . . . ,Xn) and the
rest are quadratic. All quadratic functions form another class of SSDs. This SSD
does not have semi-orthogonal columns, which have projected A2 = (s − 1)/s for
s odd.

THEOREM 7. Suppose s is odd. For 1 < k ≤ (sn − 1)/(s − 1), let h1, . . . , hk

be k distinct functions in H(X1, . . . ,Xn). The column juxtaposition of Q∗
hi

(X1,
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. . . ,Xn), i = 1, . . . , k, forms an SSD(sn, sm) with m = k(sn − s)/(s − 1).
There are no fully aliased columns and the possible projected A2 values are 0,
(s − 1)2/s2 and (s − 1)/s2. There are

(k
2

)
s2 pairs with projected A2 = (s − 1)2/s2

and
(k
2

)
s2(sn − s2)/(s − 1) pairs with projected A2 = (s − 1)/s2. It has an overall

A2 = (k
2

)
(sn − 2s + 1). When k = (sn − 1)/(s − 1) − 1 or (sn − 1)/(s − 1), the

SSD is optimal under GMA.

COROLLARY 2. For s odd, the column juxtaposition of Q∗
h(X1,X2), h ∈

H(X1, X2), forms an SSD(s2, s(s+1)s). It has an overall A2 = (s + 1)s(s − 1)2/2
and is optimal under GMA. Each column is orthogonal to s − 1 columns and par-
tially aliased with the other s2 columns with projected A2 = (s − 1)2/s2.

4.3. Fractions of saturated orthogonal arrays. First consider fractions of
H(X1, . . . ,Xn). Without loss of generality, taking X1 as the branching column,
we obtain s fractions according to the levels of X1. Each fraction has sn−1 runs
and (sn −1)/(s −1) columns: column X1 has only one level and all other columns
have s levels. The row juxtaposition of any k fractions forms an optimal SSD after
removing column X1.

THEOREM 8. Take any column of H(X1, . . . ,Xn) as a branching column. For
k < s, the row juxtaposition of any k fractions forms an SSD(ksn−1, sm) with m =
(sn −s)/(s−1) after removing the branching column. It has an overall A2 = (sn −
s)(s − k)/(2k) and is optimal under GMA. Furthermore, all possible projected A2
values are 0 and (s − k)/k. There are (sn − s)/2 pairs of nonorthogonal columns
with projected A2 = (s − k)/k. In particular, there are no fully aliased columns
for 1 < k < s.

Next consider fractions of Q1(X1, . . . ,Xn). If X1 is used as the branching
column, the row juxtaposition of the fractions has the same property as that of
H(X1, . . . ,Xn). In the following theorem, we take X2

1 + X2 as the branching col-
umn.

THEOREM 9. Take column X2
1 + X2 of Q1(X1, . . . ,Xn) as a branching col-

umn. The row juxtaposition of any k fractions forms an SSD(ksn−1, sm) with
m = (sn − s)/(s − 1) after removing the branching column. It has an overall
A2 = (sn − s)(s − k)/(2k) and is optimal under GMA. Furthermore, there are
no fully aliased columns for 1 < k < s.

(i) For s odd, there are s(sn − s2 + s − 1)/2 pairs of nonorthogonal columns,
s(s − 1)/2 pairs with projected A2 = (s − k)/k and s(sn − s2)/2 pairs with pro-
jected A2 = (s − k)/(ks).

(ii) For s even, there are at most (s −1)(sn − s2 + s)/2 pairs of nonorthogonal
columns, s(s − 1)/2 pairs with projected A2 = (s − k)/k and at most (s − 1)(sn −
s2)/2 pairs with projected A2 ≤ 1.



2824 H. XU AND C. F. J. WU

(iii) For s = 4 and k = 2, there are (4n − 4)/2 pairs of nonorthogonal columns
with projected A2 = 1; for s = 4 and k = 3, there are 6 pairs of nonorthogonal
columns with projected A2 = 1/3 and 3(4n −16)/2 pairs with projected A2 = 1/9.

By branching other columns, we can obtain different SSDs as illustrated below.

EXAMPLE 3. Consider n = 3 and s = 3. The columns of Q1(X1,X2,X3) are
the following:

X1,X
2
1 + X2,X

2
1 + X1 + X2,X

2
1 + 2X1 + X2,X

2
1 + X3,X

2
1 + X1 + X3,

X2
1 + 2X1 + X3,X

2
1 + X2 + X3,X

2
1 + X1 + X2 + X3,X

2
1 + 2X1 + X2 + X3,

X2
1 + 2X2 + X3,X

2
1 + X1 + 2X2 + X3,X

2
1 + 2X1 + 2X2 + X3.

Depending on the branching column, we obtain one of three types of optimal
SSD(18,312). The frequencies of projected A2 values are the following:

A2 0 1/6 1/2

Type 1 54 0 12
Type 2 36 27 3
Type 3 42 18 6

We obtain a type 1 SSD if X1 is used as the branching column, a type 2 SSD if
X2

1 + aX1 +X2 is used as the branching column, and a type 3 SSD if X2
1 + aX1 +

bX2 + X3 is used as the branching column, where a, b ∈ F3. A type 2 design is
preferred in general because it has the smallest number of maximum projected A2.

5. Some proofs. Additional notation and lemmas are needed for the proofs.
Let C be the set of complex numbers and F ∗

s be the set of nonzero elements in Fs .
An additive character of Fs is a homomorphism mapping χ :Fs → C such that,
for any x, y ∈ Fs , |χ(x)| = 1 and χ(x + y) = χ(x)χ(y). Clearly, χ(0) = 1 since
χ(0) = χ(0)χ(0). A character is called trivial if χ(x) = 1 for all x; otherwise,
it is nontrivial. A nontrivial additive character has the property that, for a ∈ Fs ,∑

x∈Fs
χ(ax) = s if a = 0 and equals 0 otherwise (see, e.g., [17]).

Let χ be a nontrivial additive character. For u ∈ Fs , the function χu(x) = χ(ux)

defines a character of Fs . Then χ0 is a trivial character and all other characters χu

are nontrivial. It is important to note that {χu,u ∈ F ∗
s } forms a set of orthonormal

contrasts defined in [34], that is,
∑

x∈Fs
χu(x)χv(x) = s if u = v and equals 0

otherwise. As a result, we can use additive characters to compute the generalized
wordlength pattern. In particular, for a column x = (x1, . . . , xN)T , the orthonormal
contrast coefficient matrix is (χu(xi)), where u ∈ F ∗

s and i = 1, . . . ,N . For a pair
of columns x = (x1, . . . , xN)T and y = (y1, . . . , yN)T , the projected A2 value is

A2(x, y) = N−2
∑

u1∈F ∗
s

∑

u2∈F ∗
s

∣∣∣∣∣

N∑

i=1

χ(u1xi + u2yi)

∣∣∣∣∣

2

.(3)
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Let s = pr , where p is a prime. Define a mapping Tr :Fs → Fp , called the trace,

as follows: Tr(x) = x + xp + xp2 + · · · + xpr−1
for any x ∈ Fs . Let

χ(x) = e2πi Tr(x)/p for any x ∈ Fs.(4)

This is a nontrivial additive character and is called the canonical additive character
of Fs . For s = 2, the canonical additive character is the usual contrast coding:
χ(0) = 1 and χ(1) = −1.

The following three lemmas are useful when evaluating projected A2 values.
Interested readers are referred to Xu and Wu [35] for proofs of the lemmas in this
section.

LEMMA 8. For s odd, let a ∈ F ∗
s , b, c ∈ Fs , and χ be a nontrivial additive

character. Then |∑x∈Fs
χ(ax2 + bx + c)|2 = s.

LEMMA 9. For s even, let a, b ∈ Fs and χ be the canonical additive character
of Fs defined in (4). Then

∑
x∈Fs

χ(ax2 +bx) = s if a = b2 and equals 0 otherwise.

LEMMA 10. Let G be a subset of Fs , |G| = k and χ be a nontrivial additive
character. Then

∑
u∈F ∗

s
|∑x∈G χ(ux)|2 = (s − k)k.

The following lemma follows from Lemmas 1–4 and 5a of Addelman and
Kempthorne [1].

LEMMA 11. Consider columns X2
1 + a1X1 + h1 and a2X1 + h2, where

h1, h2 ∈ L(X2, . . . ,Xn) and a1, a2 ∈ Fs .

(i) If h1 and h2 are independent, they are orthogonal.
(ii) For s odd, if h1 and h2 are dependent, they are semi-orthogonal.

(iii) For s even, if h1 and h2 are dependent and a1h2 = a2h1, they are orthog-
onal.

(iv) For s even, if h1 and h2 are dependent and a1h2 �= a2h1, they are semi-
orthogonal.

PROOF OF THEOREM 4. The columns of Q1(X1, . . . ,Xn) are X1 and X2
1 +

a1X1 + h1, and the columns of H(X1, . . . ,Xn) are X1 and a2X1 + h2, where
ai ∈ Fs and hi ∈ H(X2, . . . ,Xn). Since both H(X1, . . . ,Xn) and Q1(X1, . . . ,Xn)

are saturated OAs and they share column X1, the optimality of the column juxtapo-
sition of H(X1, . . . ,Xn) and Q∗

1(X1, . . . ,Xn) follows from Lemmas 3 and 5. By
Lemma 6, the overall A2(H ∪Q∗

1) = A2(Q
∗
1)+[(sn−s)/(s−1)](s−1) = (sn−s)

since Q∗
1 is an OA of strength 2.

(i) When s is odd, by Lemma 11, X2
1 + a1X1 + h1 and a2X1 + h2 are

semi-orthogonal if h1 = h2. Therefore, each column of Q∗
1(X1, . . . ,Xn) is semi-

orthogonal to s columns of H(X1, . . . ,Xn). Since there are (sn − 1)/(s − 1) − 1
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columns in Q∗
1(X1, . . . ,Xn), there are in total s(sn − s)/(s − 1) semi-orthogonal

pairs of columns with projected A2 = (s − 1)/s.
(ii) When s is even, by Lemma 11, X2

1 + a1X1 + h1 and a2X1 + h2 are semi-
orthogonal if h1 = h2 and a1 �= a2. Therefore, each column of Q∗

1(X1, . . . ,Xn) is
semi-orthogonal to s − 1 columns of H(X1, . . . ,Xn). Since there are (sn − 1)/

(s − 1) − 1 columns in Q∗
1(X1, . . . ,Xn), there are in total sn − s semi-orthogonal

pairs of columns with projected A2 = 1. �

PROOF OF COROLLARY 1. (i) Let Y1 = X1 and Y2 = X2
1 + X2. This is a

one-to-one mapping from (Y1, Y2) to (X1,X2). The columns of Q1(X1,X2) are
X1 = Y1 and X2

1 +aX1 +X2 = aY1 +Y2, where a ∈ Fs . Therefore, Q1(X1,X2) =
H(Y1, Y2) is isomorphic to H(X1,X2).

(ii) It follows from Theorems 8 and 9 to be proven later. �

LEMMA 12. Suppose hi ∈ L(X3, . . . ,Xn) and ai, bi ∈ Fs for i = 1,2.

(i) If h1 and h2 are independent, X2
1 + a1X1 + b1X2 + h1 and X2

2 + a2X2 +
b2X1 + h2 are orthogonal.

(ii) If b2 �= 0, X2
1 + a1X1 + b1X2 +h1 and X2

2 + a2X2 + b2X1 are orthogonal.
(iii) If h1 and h2 are dependent, the pair of columns X2

1 + a1X1 + b1X2 + h1

and X2
2 + a2X2 + b2X1 + h2 has projected A2 = (s − 1)/s2 for s odd and A2 = 0

or 1 for s even.
(iv) For s odd, the pair of columns X2

1 + a1X1 + X2 and X2
2 + a2X2 + X1 has

projected A2 = (s − 1)2/s2.
(v) For s even, the pair of columns X2

1 + a1X1 +X2 and X2
2 + a2X2 +X1 has

projected A2 = 0, 1, 2 or 3.
(vi) For s = 4, the pair of columns X2

1 + a1X1 + X2 and X2
2 + a2X2 + X1 has

projected A2 = 3 if a1 = a2 = 0, A2 = 1 if both a1 �= 0 and a2 �= 0, and A2 = 0
otherwise.

PROOF OF THEOREM 5. Without loss of generality, we assume h1 = X1 and
h2 = X2. Since both QX1(X1, . . . ,Xn) and QX2(X1, . . . ,Xn) are saturated OAs,
the GMA optimality and the overall A2 = sn − 1 follow from Lemmas 3, 5 and 6.

(i) The columns of QX1(X1, . . . ,Xn) fall into three types: (a) X1, (b) X2
1 +

a1X1 + X2 and (c) X2
1 + a1X1 + b1X2 + g1, where a1, b1 ∈ Fs and g1 ∈

H(X3, . . . ,Xn). Similarly, the columns of QX2(X1, . . . ,Xn) fall into three types:
(a) X2, (b) X2

2 +a2X2 +X1 and (c) X2
2 +a2X2 +b2X1 +g2, where a2, b2 ∈ Fs and

g2 ∈ H(X3, . . . ,Xn). The projected A2 values of all possible pairs can be found
in Lemmas 11(ii), 11(i), 12(iv), 12(ii) and 12(i)(iii), respectively. In summary, we
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have the following aliasing patterns:

X2 X2
2 + a2X2 + X1 X2

2 + a2X2 + b2X1 + g2

X1 0 (s − 1)/s 0

X2
1 + a1X1 + X2 (s − 1)/s (s − 1)2/s2 0

X2
1 + a1X1 + b1X2 + g1 0 0 δg1,g2(s − 1)/s2

where δg1,g2 is equal to 1 if g1 and g2 are dependent and 0 otherwise. Each
type (c) column in QX1(X1, . . . ,Xn) is partially aliased with s2 type (c) columns
in QX2(X1, . . . ,Xn). The result follows from the fact that the numbers of columns
for each type are (a) 1, (b) s and (c) (sn − s2)/(s − 1), respectively.

(ii) From Lemmas 11 and 12, the possible projected A2 values are 0, 1, 2 or 3.
(iii) From Lemmas 11 and 12, the possible projected A2 values are 0, 1 or 3.

Lemma 12(vi) shows that there is one fully aliased pair: X2
1 + X2 and X2

2 + X1,
which has projected A2 = 3. Since the overall A2 = 4n − 1, there must be 4n − 4
pairs with projected A2 = 1. �

PROOF OF THEOREM 6. It follows from Theorem 5. �

PROOF OF THEOREM 7. We only need prove the GMA optimality. Since all
linear functions form a saturated OA, the number of coincidences between any
pair of rows of the resulting SSD is constant when k = (sn −1)/(s −1) and differs
by at most one when k = (sn − 1)/(s − 1) − 1. Therefore, the GMA optimality
follows from Lemma 3. �

LEMMA 13. Let G ⊂ Fs and |G| = k. Suppose X1 takes on values from G

only and all other Xi take on values from Fs . Suppose h1, h2 ∈ L(X2, . . . ,Xn)

and a1, a2 ∈ Fs .

(i) If h1 and h2 are independent, a1X1 + h1 and a2X1 + h2 are orthogonal.
(ii) If h1 = h2 and a1 �= a2, the pair of columns a1X1 + h1 and a2X1 + h2 has

projected A2 = (s − k)/k.

PROOF OF THEOREM 8. Without loss of generality, take X1 as the branch-
ing column. The columns are aX1 + h, where a ∈ Fs and h ∈ H(X2, . . . ,Xn). By
Lemma 13, each column is partially aliased with s − 1 columns with projected
A2 = (s − k)/k and orthogonal to all other columns. Since there are (sn − s)/

(s − 1) columns, there are (sn − s)/2 pairs of nonorthogonal columns with pro-
jected A2 = (s − k)/k. Therefore, the overall A2 = (sn − s)(s − k)/(2k). Finally,
the GMA optimality follows from Lemmas 3 and 5. �

LEMMA 14. Let G ⊂ Fs and |G| = k. Take X2
1 +X2 as the branching column

of Q1(X1, . . . ,Xn), that is, suppose all Xi , i �= 2, take on values from Fs and
X2

1 + X2 takes on values from G only. Suppose h ∈ H(X3, . . . ,Xn) and a1, a2,

b1, b2 ∈ Fs .
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(i) The pair of columns X1 and X2
1 +a1X1 +X2 has projected A2 = (s−k)/k.

(ii) If a1 �= a2, the pair of columns X2
1 + a1X1 + X2 and X2

1 + a2X1 + X2 has
projected A2 = (s − k)/k.

(iii) For s odd, if b1 �= b2, the pair of columns X2
1 + a1X1 + b1X2 + h and

X2
1 + a2X1 + b2X2 + h has projected A2 = (s − k)/(ks).
(iv) For s even, if b1 �= b2 and a1 �= a2, the pair of columns X2

1 + a1X1 +
b1X2 + h and X2

1 + a2X1 + b2X2 + h has projected A2 ≤ 1.
(v) For s = 4, if b1 �= b2 and a1 �= a2, the pair of columns X2

1 + a1X1 +
b1X2 + h and X2

1 + a2X1 + b2X2 + h has projected A2 = 0 or 1 for k = 2, and
projected A2 = 1/9 for k = 3.

PROOF OF THEOREM 9. The GMA optimality follows from Lemmas 3 and 5.
Since both designs in Theorems 8 and 9 have GMA, they must have the same
overall A2 = (sn − s)(s − k)/(2k).

(i) The columns of Q1(X1, . . . ,Xn) are X1, X2
1 + aX1 + X2 and X2

1 + aX1 +
bX2 + h, where a, b ∈ Fs and h ∈ H(X3, . . . ,Xn). By Lemma 14(i), the pair of
columns X1 and X2

1 + aX1 + X2 has projected A2 = (s − k)/k when a �= 0, and
there are s − 1 such pairs; by Lemma 14(ii), the pair of columns X2

1 + a1X1 + X2

and X2
1 + a2X1 + X2 has projected A2 = (s − k)/k when a1 �= a2, and there are(s−1

2

)
such pairs since column X2

1 +X2 is removed; and by Lemma 14(iii), the pair
of columns X2

1 +a1X1 +b1X2 +h and X2
1 +a2X1 +b2X2 +h has projected A2 =

(s − k)/(ks) when b1 �= b2, and there are s2(s
2

)
(sn−2 − 1)/(s − 1) = s(sn − s2)/2

such pairs. It is easy to verify that all other pairs of columns are orthogonal.
(ii) and (iii) The proofs are similar to (i) and are omitted. �

6. Some small designs and comparison. Applying the construction meth-
ods, we can obtain many optimal multi-level SSDs. Tables 1–3 list the frequencies
of nonzero projected A2 values for some optimal 3-, 4- and 5-level SSDs. All SSDs
have the property that the number of coincidences between any pair of rows dif-
fers from each other by at most one; therefore, their overall A2 values achieve the
lower bound in Theorem 1 and they are optimal under GMA.

When s = 4 and n = 2, according to Theorem 6, the column juxtaposition of
all five saturated OAs has 10 pairs of fully aliased columns. After removing one
column from each pair, we obtain 15 columns with projected A2 = 0 or 1. It can
be verified that the resulting SSD has an overall A2 value of 45 and achieves the
lower bound in Theorem 1; therefore, it is optimal under GMA. Similarly, when
s = 4 and n = 3, the column juxtaposition of all 21 saturated OAs has 210 pairs of
fully aliased columns. After removing one column from each pair, we obtain 231
columns with projected A2 = 0 or 1. It can be verified that the resulting SSD has
an overall A2 value of 3465 and achieves the lower bound in Theorem 1; therefore,
it is also optimal under GMA.
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TABLE 1
Some optimal three-level supersaturated designs

Projected A2 values

N m 1/6 2/9 4/9 1/2 2/3 Source

6 3 3 Theorem 8, n = 2, k = 2
9 7 9 Theorem 4, n = 2
9 12 54 Theorem 7, n = 2, k = 4
9 16 54 36 Theorem 6, n = 2, k = 4

18 12 12 Theorem 8, n = 3, k = 2
18 12 27 3 Theorem 9, n = 3, k = 2
27 25 36 Theorem 4, n = 3
27 26 81 9 6 Theorem 6, n = 3, k = 2
27 156 6318 702 Theorem 7, n = 3, k = 13
27 169 6318 702 468 Theorem 6, n = 3, k = 13
54 39 39 Theorem 8, n = 4, k = 2
54 39 108 3 Theorem 9, n = 4, k = 2

We compare our SSDs based on Theorems 6 and 7 with existing designs from
[2, 13, 22]. Since most designs are optimal under overall A2 [or ave(χ2)], we
compare designs in terms of max(χ2), ave(f ) and max(f ). Tables 4 and 5 show
the comparisons for N = 9,16,25 and 27 runs in terms of ave(f ) and max(f ).
For SSDs from Theorem 7, the first m columns are used to evaluate these criteria.
It is possible to find better designs if other columns are chosen.

Tables 4 and 5 indicate that our SSDs are competitive in terms of max(f ) but
less competitive in terms of ave(f ). For N = 9,25 and 27, SSDs based on The-
orem 7 are better than existing ones in terms of both max(χ2) and max(f ). In

TABLE 2
Some optimal four-level supersaturated designs

Projected A2 values

N m 1/9 1/3 1 Source

8 4 6 Theorem 8, n = 2, k = 2
12 4 6 Theorem 8, n = 2, k = 3
16 9 12 Theorem 4, n = 2
16 15 45 Theorem 6a, n = 2, k = 5
32 20 30 Theorem 8, n = 3, k = 2
48 20 30 Theorem 8, n = 3, k = 3
48 20 72 6 Theorem 9, n = 3, k = 3
64 41 60 Theorem 4, n = 3
64 231 3465 Theorem 6a, n = 3, k = 21

aThe design is obtained by removing fully aliased columns.
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TABLE 3
Some optimal five-level supersaturated designs

Projected A2 values

N m 2/15 1/4 3/10 16/25 2/3 4/5 3/2 Source

10 5 10 Theorem 8, n = 2, k = 2
15 5 10 Theorem 8, n = 2, k = 3
20 5 10 Theorem 8, n = 2, k = 4
25 11 25 Theorem 4, n = 2
25 30 375 Theorem 7, n = 2, k = 6
25 36 375 150 Theorem 6, n = 2, k = 6
50 30 60 Theorem 8, n = 3, k = 2
50 30 250 10 Theorem 9, n = 3, k = 2
75 30 60 Theorem 8, n = 3, k = 3
75 30 250 10 Theorem 9, n = 3, k = 3

terms of ave(f ), our SSDs are worse than existing ones for N = 9,25 but better
for N = 27. For N = 16, our SSDs are less competitive.

TABLE 4
Comparison of supersaturated designs in terms of ave(f )

Authors Aggarwal

N s m Theorem 6 Theorem 7 Fang et al. Lu and Sun and Gupta

9 3 8 2.57 3.00 2.57 2.57 2.43
9 3 12 3.27 3.27 3.27 3.27 3.06
9 3 16 3.60 3.60 3.60
9 3 28 4.00

16 4 10 6.04 4.36 4.84 4.93
16 4 15 6.86 5.60 6.23 6.27
16 4 20 6.25 6.95
16 4 40 7.87
25 5 12 8.33 9.55 6.42 8.06 7.45
25 5 18 10.78 10.98 8.41 10.42 9.52
25 5 24 11.96 11.67 10.20 11.66 10.86
25 5 30 12.64 12.07 12.33 11.33
25 5 36 13.10 12.73
27 3 26 3.66 3.77 3.78 4.26
27 3 39 4.81 4.81 5.27 5.63
27 3 52 5.38 5.97 5.98 6.32
27 3 65 5.71 6.28 6.73
27 3 156 6.49 6.97
27 3 169 6.53
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TABLE 5
Comparison of supersaturated designs in terms of max(f )

Authors Aggarwal

N s m Theorem 6 Theorem 7 Fang et al. Lu and Sun and Gupta

9 3 8 6 4 6 6 8
9 3 12 6 4 6 6 8
9 3 16 6 6 6
9 3 28 6

16 4 10 16 12 12 12
16 4 15 16 12 12 14
16 4 20 16 12
16 4 40 16
25 5 12 20 14 22 18 24
25 5 18 20 14 24 20 24
25 5 24 20 14 30 20 32
25 5 30 20 14 22 32
25 5 36 20 22
27 3 26 18 12 16 16
27 3 39 18 12 18 16
27 3 52 18 12 18 16
27 3 65 18 12 16
27 3 156 18 12
27 3 169 18

We also compare our SSDs based on Theorems 8 and 9 with designs from Lu,
Hu and Zheng [21], who constructed some small SSDs based on resolvable bal-
anced incomplete block designs. We find that our designs have the same max(χ2)

and max(f ) values as theirs. Note that their methods depend on the existence of
resolvable balanced incomplete block designs, which is not an easy task itself. In
contrast, our algebraic construction is general and works for any s and n. Indeed,
SSDs based on Theorems 8 and 9 with n ≥ 3 are not available in [21].

We have presented several classes of optimal SSDs whose columns are rep-
resented by linear and quadratic polynomials and analytically studied the alias-
ing structure among columns. SSDs based on Theorem 7 are generally preferred
to those based on Theorems 4 and 6, because the former have smaller maximum
pairwise aliasing in terms of both max(χ2) and max(f ). Nevertheless, SSDs based
on Theorem 4 are useful in some situations. For example, when the experimenter
isolates one important factor and wants to estimate it efficiently, then that factor
should be assigned to column X1 which is orthogonal to all other columns.

For easy reference, the Appendix lists some small SSDs based on Theorems
6 and 7. All SSDs in Tables 1–3 are explicitly listed online at www.stat.ucla.edu/
~hqxu/.

www.stat.ucla.edu/~hqxu/
www.stat.ucla.edu/~hqxu/
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7. Mixed-level SSDs. The GMA criterion works for mixed-level SSDs. The
following lemma shows that ave(χ2) is again equivalent to A2 for mixed-level
SSDs. The proof is similar to Lemma 4(i) and is thus omitted.

LEMMA 15. For an SSD(N, s1s2 · · · sm), ave(χ2) = NA2/[m(m − 1)/2].
The following lower bound of A2 for mixed-level SSDs generalizes Lemma 2.

THEOREM 10. For an SSD(N, s1s2 · · · sm), A2 ≥ (
∑m

k=1 sk − m)(
∑m

k=1 sk −
m − N + 1)/[2(N − 1)].

PROOF. Let D = [xik] be the N ×m design matrix. Let δ
(w)
ij (D) = ∑m

k=1 sk ×
δ(xik , xjk) be the weighted number of coincidences between the rows i and j ,

where δ(x, y) = 1 if x = y and 0 otherwise. Define Jt (D) = ∑
1≤i<j≤N [δ(w)

ij (D)]t
for t = 1,2. Xu ([32], Lemma 2) showed that J2(D) = N2A2(D) + N[Nm(m −
1) + N

∑
sk − (

∑
sk)

2]/2. The proof there also implies that J1(D) = N(Nm −∑
sk)/2. Thus, the lower bound of A2(D) follows from the Cauchy–Schwarz in-

equality [N(N − 1)/2]J2(D) ≥ [J1(D)]2 and some straightforward algebra. �

The lower bound in Theorem 10 is equivalent to the lower bound of ave(χ2)

given by Yamada and Matsui ([38], Theorem 1) and the lower bound of K2 given
by Xu ([33], Theorem 6).

The situation for mixed-level SSDs is more complicated than that for multi-
level SSDs. Further development is needed to learn whether mixed-level SSDs
achieving the lower bound in Theorem 10 are optimal under GMA.

Finally, optimal mixed-level SSDs can be generated from multi-level SSDs via
the method of replacement. For the method of replacement, see [15] and Wu
and Hamada ([31], Section 7.7). Xu and Wu [34] showed that the generalized
wordlength patterns are invariant with respect to the choice of orthonormal con-
trasts. As a result, when one or more s-level columns are replaced with a saturated
OA of run size s and strength 2, the resulting mixed-level SSD has the same overall
A2 values as the original multi-level SSD, and the maximum projected A2 value
of the mixed-level SSD is always less than or equal to that of the original multi-
level SSD. Furthermore, if the original multi-level SSD achieves the lower bound
of A2 in Lemma 2, then the mixed-level SSD achieves the lower bound of A2 in
Theorem 10 and thus is A2 optimal.

The following example illustrates these ideas. The SSD(81,9100) from Theo-
rem 6 (with n = 2, s = 9 and k = 10) has overall A2 = 3600 and maximum pro-
jected A2 = 8/9. We obtain an SSD(81,9100−i34i ) by replacing i 9-level columns
with four 3-level columns that form an OA(9,4,3,2) for 1 ≤ i < 100. All these
mixed-level SSDs have overall A2 = 3600 and projected A2 ≤ 8/9. In addition, all
these mixed-level SSDs achieve the lower bound of A2 in Theorem 10; thus, they
are optimal under both A2 and ave(χ2). However, we do not know whether they
are optimal under GMA.
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APPENDIX

TABLE 6
SSD(9,316) and SSD(9,312) via Theorems 6 and 7 (n = 2, s = 3, k = 4)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 1 1 1 2 0 1 1 2 0 1 1 2 0
3 0 2 2 2 2 1 0 2 2 1 0 2 2 1 0 2
4 1 1 2 0 0 1 1 1 1 2 0 1 2 2 1 0
5 1 2 0 1 1 2 0 1 2 2 1 0 0 1 1 1
6 1 0 1 2 2 2 1 0 0 1 1 1 1 2 0 1
7 2 1 0 2 0 2 2 2 2 0 2 1 1 0 1 2
8 2 2 1 0 1 0 1 2 0 2 2 2 2 0 2 1
9 2 0 2 1 2 0 2 1 1 0 1 2 0 2 2 2

NOTES. (i) All columns form an SSD(9,316) with overall A2 = 48; the possible projected A2 values
are 0, 4/9 and 2/3 with frequencies 30, 54 and 36. (ii) Removing columns (1, 5, 9, 13) yields an
SSD(9,312) with overall A2 = 24; the possible projected A2 values are 0 and 4/9 with frequencies
12 and 54.

TABLE 7
SSD(16,415) via Theorem 6 (n = 2, s = 4, k = 5)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 1 1 1 0 3 2 1 3 2 1 0 1
3 0 2 2 2 2 2 1 0 2 2 0 2 2 1 2
4 0 3 3 3 3 3 1 3 0 3 3 0 3 1 3
5 1 1 0 3 2 0 1 1 1 1 2 3 2 0 3
6 1 0 1 2 3 1 1 2 3 0 1 1 3 0 2
7 1 3 2 1 0 2 0 1 3 3 2 1 0 1 1
8 1 2 3 0 1 3 0 2 1 2 1 3 1 1 0
9 2 3 1 0 2 0 2 2 2 2 2 0 3 3 1

10 2 2 0 1 3 1 2 1 0 3 1 2 2 3 0
11 2 1 3 2 0 2 3 2 0 0 2 2 1 2 3
12 2 0 2 3 1 3 3 1 2 1 1 0 0 2 2
13 3 2 1 3 0 0 3 3 3 3 0 3 1 3 2
14 3 3 0 2 1 1 3 0 1 2 3 1 0 3 3
15 3 0 3 1 2 2 2 3 1 1 0 1 3 2 0
16 3 1 2 0 3 3 2 0 3 0 3 3 2 2 1

NOTES. (i) This design is obtained by removing a column from each pair of fully
aliased columns. (ii) The overall A2 value is 45; the possible projected A2 values
are 0 and 1 with frequencies 60 and 45.



2834
H

.X
U

A
N

D
C

.F.J.W
U

TABLE 8
SSD(25,536) and SSD(25,530) via Theorems 6 and 7 (n = 2, s = 5, k = 6)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 1 1 1 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0 1 1 2 3 4 0
3 0 2 2 2 2 2 2 4 1 3 0 2 2 4 1 3 0 2 2 4 1 3 0 2 2 4 1 3 0 2 2 4 1 3 0 2
4 0 3 3 3 3 3 3 4 2 0 3 1 3 4 2 0 3 1 3 4 2 0 3 1 3 4 2 0 3 1 3 4 2 0 3 1
5 0 4 4 4 4 4 4 1 0 4 3 2 4 1 0 4 3 2 4 1 0 4 3 2 4 1 0 4 3 2 4 1 0 4 3 2
6 1 1 2 3 4 0 0 1 1 1 1 1 1 2 3 4 0 1 2 0 2 4 1 3 3 0 3 1 4 2 4 2 1 0 4 3
7 1 2 3 4 0 1 1 2 3 4 0 1 2 0 2 4 1 3 3 0 3 1 4 2 4 2 1 0 4 3 0 1 1 1 1 1
8 1 3 4 0 1 2 2 0 2 4 1 3 3 0 3 1 4 2 4 2 1 0 4 3 0 1 1 1 1 1 1 2 3 4 0 1
9 1 4 0 1 2 3 3 0 3 1 4 2 4 2 1 0 4 3 0 1 1 1 1 1 1 2 3 4 0 1 2 0 2 4 1 3

10 1 0 1 2 3 4 4 2 1 0 4 3 0 1 1 1 1 1 1 2 3 4 0 1 2 0 2 4 1 3 3 0 3 1 4 2
11 2 4 1 3 0 2 0 2 2 2 2 2 2 1 3 0 2 4 4 3 2 1 0 4 1 3 4 0 1 2 3 1 4 2 0 3
12 2 0 2 4 1 3 1 3 4 0 1 2 3 1 4 2 0 3 0 2 2 2 2 2 2 1 3 0 2 4 4 3 2 1 0 4
13 2 1 3 0 2 4 2 1 3 0 2 4 4 3 2 1 0 4 1 3 4 0 1 2 3 1 4 2 0 3 0 2 2 2 2 2
14 2 2 4 1 3 0 3 1 4 2 0 3 0 2 2 2 2 2 2 1 3 0 2 4 4 3 2 1 0 4 1 3 4 0 1 2
15 2 3 0 2 4 1 4 3 2 1 0 4 1 3 4 0 1 2 3 1 4 2 0 3 0 2 2 2 2 2 2 1 3 0 2 4
16 3 4 2 0 3 1 0 3 3 3 3 3 3 2 0 3 1 4 1 4 0 1 2 3 4 4 3 2 1 0 2 2 4 1 3 0
17 3 0 3 1 4 2 1 4 0 1 2 3 4 4 3 2 1 0 2 2 4 1 3 0 0 3 3 3 3 3 3 2 0 3 1 4
18 3 1 4 2 0 3 2 2 4 1 3 0 0 3 3 3 3 3 3 2 0 3 1 4 1 4 0 1 2 3 4 4 3 2 1 0
19 3 2 0 3 1 4 3 2 0 3 1 4 1 4 0 1 2 3 4 4 3 2 1 0 2 2 4 1 3 0 0 3 3 3 3 3
20 3 3 1 4 2 0 4 4 3 2 1 0 2 2 4 1 3 0 0 3 3 3 3 3 3 2 0 3 1 4 1 4 0 1 2 3
21 4 1 0 4 3 2 0 4 4 4 4 4 4 0 4 3 2 1 3 3 1 4 2 0 2 3 0 2 4 1 1 0 1 2 3 4
22 4 2 1 0 4 3 1 0 1 2 3 4 0 4 4 4 4 4 4 0 4 3 2 1 3 3 1 4 2 0 2 3 0 2 4 1
23 4 3 2 1 0 4 2 3 0 2 4 1 1 0 1 2 3 4 0 4 4 4 4 4 4 0 4 3 2 1 3 3 1 4 2 0
24 4 4 3 2 1 0 3 3 1 4 2 0 2 3 0 2 4 1 1 0 1 2 3 4 0 4 4 4 4 4 4 0 4 3 2 1
25 4 0 4 3 2 1 4 0 4 3 2 1 3 3 1 4 2 0 2 3 0 2 4 1 1 0 1 2 3 4 0 4 4 4 4 4

NOTES. (i) All columns form an SSD(25,536) with overall A2 = 360; the possible projected A2 values are 0, 16/25 and 4/5 with frequencies 105, 375

and 150. (ii) Removing columns (1, 7, 13, 19, 25, 31) yields an SSD(25,530) with overall A2 = 240; the possible projected A2 values are 0 and 16/25
with frequencies 60 and 375.
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