Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run Sizes

Hongquan Xu
Department of Statistics
University of California
Los Angeles, CA 90095-1554
(hqxu@stat.ucla.edu)

February 5, 2009

Fractional factorial designs are widely used in practice and typically chosen according to the minimum aberration criterion. A sequential algorithm is developed for constructing efficient fractional factorial designs. A construction procedure is proposed that only allows a design to be constructed from its minimum aberration projection in the sequential build-up process. To efficiently identify nonisomorphic designs, designs are divided into different categories according to their moment projection patterns. A fast isomorphism check procedure is developed by matching the factors using their delete-one-factor projections. This algorithm is used to completely enumerate all 128-run designs of resolution 4, all 256 -run designs of resolution 4 up to 17 factors, all 512-run designs of resolution 5, all 1024-run designs of resolution 6, and all 2048and 4096-run designs of resolution 7. A method is proposed for constructing minimum aberration designs using only a partial catalog of some good designs. Three approaches are further suggested for constructing good designs with a large number of factors. Efficient designs, often with minimum aberration, are tabulated up to $40,80,160,45,47$, and 65 factors for 128,256 , $512,1024,2048$, and 4096 runs, respectively.

KEY WORDS: Fractional factorial design, isomorphism, linear code, MacWilliams identity, minimum aberration, resolution

1 Introduction

Fractional factorial (FF) designs are widely used in many areas of science, engineering and industry. With the rapidly increasing computational power, more and more large FF designs are used in large scale computer experiments where physical processes are being simulated. Lin and Sitter (2008) reported that FF designs with over 600 runs and as many as 53 parameters were used in computer simulations at Los Alamos National Laboratory. Kleijnen et al. (2005) reported a few computer simulations that investigated dozens or hundreds of factors.

Two-level FF designs with several hundred or thousand runs can be very useful in real applications. Consider an application described by Mee (2004) and Telford (2007). The researchers at Johns Hopkins University employed several two-level FF designs in a ballistic missile defense project to assess the sensitivity of 47 parameters of an extended air defense simulation in two farterm scenarios over the first 10 days of a war. In the first scenario, a resolution IV design with 512 runs was initially used and followed by 17 additional designs (for a total of 352 additional runs) to resolve aliasing of two-factor interactions. In the second scenario, the researchers used a resolution V design with 4096 runs constructed by SAS PROC FACTEX. Half of the 4096 runs could have been saved if they had obtained a resolution V design with 2048 runs; see Section 4 for such a design.

FF designs are often chosen by the minimum aberration (MA) criterion (Fries and Hunter 1980), an extension of the maximum resolution criterion (Box and Hunter 1961). Most textbooks and references in the literature provide MA designs up to 128 runs only; see, among others, Box, Hunter, and Hunter (2005), Dean and Voss (1999), Montgomery (2005), Mukerjee and Wu (2006), and Wu and Hamada (2000). The construction of efficient designs is very challenging when the run size is large. Few algorithms are available and they are not effective.

It was four decades ago when Draper and Mitchell first attacked this challenging problem seriously. Draper and Mitchell $(1967,1968)$ developed a stage-by-stage algorithm and completely enumerated all 256 -run designs of resolution ≥ 5 and all even 512 -run designs of resolution ≥ 6. An even design contains entirely defining words of even length whereas an odd design has at least one defining word of odd length. Draper and Mitchell (1970) attempted but failed to construct the complete set of even 1024-run designs of resolution ≥ 6 and the complete set of odd 512-run designs of resolution ≥ 5. They obtained 4,043 distinct even 1024 -run designs of resolution ≥ 6; as we will see later, they missed about 30% designs.

The construction of efficient FF designs is relatively easier when the run size is smaller. Chen, Sun and Wu (1993, CSW hereafter) developed a sequential algorithm and enumerated all 8, 16, 27, 32 -run designs of resolution ≥ 3 and 64 -run designs of resolution ≥ 4. Xu (2005) extended their work and enumerated all 81 -run designs of resolution ≥ 3, 243-run designs of resolution ≥ 4, and 729 -run designs of resolution ≥ 5. Based on a conjecture, Block and Mee (2005) constructed MA 128 -run designs for 12 to 64 factors. Lin and Sitter (2008) developed an algorithm and enumerated all 128-run designs of resolution ≥ 4 up to 16 factors, all 512-run designs of resolution ≥ 5 up to 17 factors, and all even 1024-run designs of resolution ≥ 6 up to 18 factors.

A key step in any algorithmic construction of FF designs is to determine whether two designs are isomorphic. Two FF designs are isomorphic (or equivalent) if and only if one may be obtained from the other by relabeling the factors and/or relabeling the levels of one or more factors. Two designs are distinct if they are not equivalent. For large FF designs, the test of equivalence of two designs requires an excessive amount of computer time, so many test procedures have been proposed to quickly identify nonisomorphic designs. Draper and Mitchell (1967) used the wordlength pattern to distinguish designs. Unfortunately, two nonisomorphic designs can have the same wordlength pattern, so Draper and Mitchell (1970) used a "letter pattern comparison" to test the equivalency of two designs and conjectured that FF designs with the same letter pattern are isomorphic. However, Chen and Lin (1991) disproved their conjecture by constructing two nonisomorphic 2^{31-15} designs with the same letter pattern. Zhu and Zeng (2005) reported that counter examples exist for as small as 32 runs; they also proposed a more sensitive test based on the coset pattern, which still fails to determine a design uniquely. Block and Mee (2005) conjectured that two designs are isomorphic if their sets of delete-one-factor projections are equivalent. See Clark and Dean (2001), Ma, Fang, and Lin (2001), Xu (2005), and Lin and Sitter (2008) for other test procedures.

In this paper we develop a new algorithm for constructing efficient FF designs with large run sizes. As in other algorithms, we construct designs sequentially by adding one column at a time. We introduce an intelligent construction procedure that only allows a design to be constructed from its MA projection in the sequential build-up process. This procedure discards many isomorphic designs without performing time-consuming isomorphism checks. As we will see later, this procedure is more efficient than the procedure used by Lin and Sitter (2008) who adopted a combined approach from Bingham and Sitter (1999). To identify nonisomorphic designs, we divide designs into different categories according to their moment projection patterns. As demonstrated by Xu (2005), the use of moment projection patterns is more efficient than the use of letter patterns in terms of both
distinguishing designs and computation. To test whether two designs in the same category are isomorphic, we develop a fast isomorphism check procedure by matching the factors using their delete-one-factor projections. This procedure skips many unsuccessful relabeling maps and is much more efficient than the procedures used by CSW and Lin and Sitter (2008). The new algorithm enables us to completely enumerate all 128 -run designs of resolution ≥ 4, all 256 -run designs of resolution ≥ 4 up to 17 factors, all 512-run designs of resolution ≥ 5, all 1024-run designs of resolution ≥ 6, and all 2048- and 4096-run designs of resolution ≥ 7. Based on an upper bound on the wordlength pattern, we propose a method for constructing MA designs using only a partial catalog of some good designs. This enables us to construct MA designs efficiently when the run size or the number of factors is small. However, as both the run size and the number of factors increase, the construction of MA designs becomes infeasible thus we further propose three approaches for constructing good designs. We tabulate efficient designs up to $40,80,160,45,47$, and 65 factors for $128,256,512,1024,2048$, and 4096 runs, respectively. For clarity, we consider only two-level regular FF designs. The extension to multi-level designs is straightforward.

In Section 2, we review some basic concepts, definitions and preliminary results. We describe the construction methods in Section 3. Tables of designs with 128-4096 runs are given in Section 4 and concluding remarks are given in Section 5.

2 Basic concepts, definitions and preliminary results

A regular 2^{n-k} FF design, denoted by D, has n factors of two levels and 2^{n-k} runs. A factor is also called a letter or a column whereas a run is called a row. Associated with every regular 2^{n-k} design is a set of k independent defining words. The defining contrast subgroup of D consists of all possible products of the k defining words and has 2^{k} words (including the identity I). Let $A_{i}(D)$ be the number of words of length i. The vector $\left(A_{1}(D), \ldots, A_{n}(D)\right)$ is called the wordlength pattern. The resolution is the smallest i such that $A_{i}(D)>0$.

Let D_{1} and D_{2} be two regular 2^{n-k} designs. D_{1} is said to have less aberration than D_{2} if there exists an r such that $A_{i}\left(D_{1}\right)=A_{i}\left(D_{2}\right)$ for $i=1, \ldots, r-1$ and $A_{r}\left(D_{1}\right)<A_{r}\left(D_{2}\right) . D_{1}$ is said to have minimum aberration (MA) if there is no other regular design with less aberration than D_{1}.

A 2^{n-k} design D of resolution R is said to have weak $M A$ (Chen and Hedayat 1996) if it has maximum resolution and $A_{R}(D)$ is minimized among all regular designs.

2.1 Connection with coding theory

The connection between factorial designs and linear codes is important in the development of our algorithm. For an introduction to coding theory, see Hedayat, Sloane, and Stufken (1999, Chapter 4) and MacWilliams and Sloane (1977).

A regular $2^{n-k} \mathrm{FF}$ design D is also known as a linear code of length n and dimension $n-k$ over the binary field $G F(2)$ in coding theory. Associated with every binary linear code is another linear code, the dual code D^{\perp}, that consists of all row vectors $\left(u_{1}, \ldots, u_{n}\right)$ over $G F(2)$ such that $\sum_{i=1}^{n} u_{i} v_{i}=0$ for all $\left(v_{1}, \ldots, v_{n}\right)$ in D.

The Hamming weight of a vector $\left(u_{1}, \ldots, u_{n}\right)$ is the number of nonzero components u_{i}. Let $B_{i}(D)$ and $B_{i}\left(D^{\perp}\right)$ be the number of rows with Hamming weight i in D and D^{\perp}, respectively. The vectors $\left(B_{0}(D), B_{1}(D), \ldots, B_{n}(D)\right)$ and $\left(B_{0}\left(D^{\perp}\right), B_{1}\left(D^{\perp}\right), \ldots, B_{n}\left(D^{\perp}\right)\right.$) are called the weight distributions of D and D^{\perp}.

The weight distributions of D and D^{\perp} are related through the MacWilliams identities.

$$
\begin{equation*}
B_{j}\left(D^{\perp}\right)=2^{-(n-k)} \sum_{i=0}^{n} P_{j}(i ; n) B_{i}(D) \text { for } j=0, \ldots, n, \tag{1}
\end{equation*}
$$

where $P_{j}(x ; n)=\sum_{i=0}^{j}(-1)^{i}\binom{x}{i}\binom{n-x}{j-i}$ are the Krawtchouk polynomials.
It is easy to see from the definitions that the defining contrast subgroup of D is indeed the dual code D^{\perp} and that the wordlength pattern of D is the weight distribution of D^{\perp}, that is,

$$
A_{i}(D)=B_{i}\left(D^{\perp}\right) \text { for } i=1, \ldots, n
$$

By definition, the wordlength pattern is computed via counting words in the defining contrast subgroup. This direct approach can be cumbersome when k is large, because there are 2^{k} words in a 2^{n-k} design. The connection with coding theory leads to an alternative approach. We can compute $A_{i}(D)$ via the weight distribution $B_{i}(D)$ and the MacWilliams identities (1). The Krawtchouk polynomials need to be computed once for each n and can be efficiently calculated via the following recursive identity:

$$
P_{j}(x ; n)=P_{j}(x-1 ; n)-P_{j-1}(x ; n)-P_{j-1}(x-1 ; n)
$$

and the initial values $P_{0}(x ; n)=1$ and $P_{j}(0 ; n)=\binom{n}{j}$. We use the alternative approach in our algorithm, because it is faster than the direct approach when $k>n-k$.

2.2 Delete-one-factor projections

For a 2^{n-k} design D and $i=1, \ldots, n$, let $D(-i)$ be the resulting $2^{(n-1)-(k-1)}$ design when the i th column is deleted. These sub-designs are called the delete-one-factor projections of D. Note that $D(-i)$ may be degenerate in the sense that it has less than 2^{n-k} distinct runs.

The next two properties about MA delete-one-factor projections are important in our construction.

Lemma 1. For a 2^{n-k} design D, if $D(-i)$ has $M A$ among all delete-one-factor projections of D, then the ith column is a product of some of the other columns and therefore $D(-i)$ is not degenerate.

Proof. Suppose the result is not true, then the i th column is independent of the other columns and therefore it does not appear in any word of D. Then we can choose another column that appears in some word and deleting that column would yield a design having less aberration than $D(-i)$, which is a contradiction.

Lemma 2. Suppose that D is a 2^{n-k} design of resolution R with δ_{n} words of length R. If $D(-i)$ has MA among all delete-one-factor projections of D, then $D(-i)$ has at most $\delta_{n}-\left\lceil R \cdot \delta_{n} / n\right\rceil$ words of length R, where $\lceil x\rceil$ is the smallest integer that is greater than or equal to x.

Proof. Each word of length R consists of R factors, so on average each factor appears in $R \cdot \delta_{n} / n$ words of length R. There must exist a factor that appears in at least $\left\lceil R \cdot \delta_{n} / n\right\rceil$ words. Deleting this factor yields a design that has at most $\delta_{n}-\left\lceil R \cdot \delta_{n} / n\right\rceil$ words of length R. The lemma follows from the fact that MA projection $D(-i)$ has the least number of words of length R.

3 Construction Methods

3.1 Basic idea

Following CSW, we construct designs sequentially by adding one factor at a time. We first review the basic idea of CSW's algorithm and then describe how to improve it.

Denote $r=n-k$. Let \mathbf{G} be an $r \times\left(2^{r}-1\right)$ matrix that consists of all nonzero r-tuples $\left(u_{1}, \ldots, u_{r}\right)^{T}$ from $G F(2)$. It is well known that every regular 2^{n-k} FF design can be viewed as n columns of an $2^{r} \times\left(2^{r}-1\right)$ matrix \mathbf{H}, which consists of all linear combinations of the rows of \mathbf{G} over $G F(2)$.

Let $C_{n, k}^{R}$ be the set of nonisomorphic 2^{n-k} designs of resolution $\geq R$. CSW constructed $C_{n+1, k+1}^{R}$ from $C_{n, k}^{R}$ by adding an additional column. For each design in $C_{n, k}^{R}$, there are $2^{r}-1-n$ ways to add a column to produce a design with $n+1$ columns. Let $\tilde{C}_{n+1, k+1}$ be the set of these designs. Obviously, $\left|\tilde{C}_{n+1, k+1}\right|=\left(2^{r}-1-n\right)\left|C_{n, k}^{R}\right|$. It is evident that $C_{n+1, k+1}^{R}$ is a subset of $\tilde{C}_{n+1, k+1}$. However, some designs in $\tilde{C}_{n+1, k+1}$ are isomorphic and some may have resolutions less than R. To construct $C_{n+1, k+1}^{R}$, it is necessary to eliminate these redundant designs. It is easy to eliminate designs of resolution $<R$ but is more difficult to eliminate isomorphic designs. To speed up the isomorphism check process, CSW divided all designs into different categories according to their wordlength patterns and letter patterns. Obviously, designs in different categories are not isomorphic. However, designs in the same category are not necessarily isomorphic and therefore a complete isomorphism check has to be applied to determine whether or not two designs are isomorphic.

3.2 A modified construction procedure

One problem with CSW's algorithm is that too many isomorphic designs are generated in the sequential build-up process, because a $2^{(n+1)-(k+1)}$ design can be generated from as many as $n+1$ distinct 2^{n-k} designs. We solve this problem by only allowing a design to be generated from its MA delete-one-factor projection.

We modify the construction procedure as follows. For any design D in $C_{n, k}^{R}$, adding a column to D yields a candidate design D_{c}. Discard D_{c} if its resolution is less than R or if D does not have MA among all delete-one-factor projections of D_{c}.

For illustration consider the construction of 2^{7-3} designs. According to CSW, there are four distinct 2^{6-2} designs and five distinct 2^{7-3} designs, labeled as $6-2 . i$ and $7-2 . j$, where the designs are ranked according to the MA criterion. For each 2^{6-2} design, we can add one of the remaining 9 columns to obtain a 2^{7-2} design. Table 1 shows the number of times that each 2^{7-3} design is generated in the (unmodified) sequential construction. For example, design 7-3.3 is generated three times from design 6-2.2, nine times from design 6-2.3 and four times from design 6-2.4. The modified construction procedure only allows design 7-3.3 to be generated from design 6-2.2, because it has MA among all delete-one-factor projections of design 7-3.3. Under the original construction procedure we need to entertain $4 \times 9=36$ designs whereas under the modified construction procedure we need to entertain only 14 designs (boldfaced in Table 1). Because there are five distinct 2^{7-3} designs, we reduce the number of isomorphism checks from 31 to 9 .

Table 1: Number of Times that 2^{7-3} Designs are Generated in the Sequential Construction

		2^{7-3} Designs					
Design	A_{3}	$7-3.1$	$7-3.2$	$7-3.3$	$7-3.4$	$7-3.5$	
$6-2.1$	0	$\mathbf{2}$	$\mathbf{6}$	0	$\mathbf{1}$	0	
$6-2.2$	1	0	6	$\mathbf{3}$	0	0	
$6-2.3$	2	0	0	9	0	0	
$6-2.4$	2	0	2	4	1	$\mathbf{2}$	

Table 2: Number of Designs Entertained in Creating Catalogs of 128-run Designs of Resolution ≥ 4

	n									
Procedure	8	9	10	11	12	13	14	15	16	
CSW	99	458	1,104	2,597	6,632	16,200	36,192	79,064	160,040	
Bingham and Sitter	99	186	506	1,367	3,499	7,950	15,798	29,062	48,889	
Author	99	299	341	502	890	1,952	4,028	7,969	14,176	
True	5	13	33	92	249	623	1,535	3,522	7,500	

Bingham and Sitter (1999) proposed a construction procedure that combines the search table method of Franklin and Bailey (1977) and Franklin (1985) with the sequential approach. Table 2 shows the comparison of the construction procedures in the construction of 128-run designs of resolution ≥ 4. The last row of the table shows the number of distinct designs. As the table shows, both the combined procedure of Bingham and Sitter (1999) and our modified procedure significantly reduce the number of designs entertained. For $n \geq 10$, our modified procedure entertains substantially fewer designs than the other two procedures.

We now show, by induction, that every possible 2^{n-k} design of resolution $\geq R$ in 2^{r} runs is isomorphic to a design in $C_{n, k}^{R}$ under the modified construction procedure. It is trivial that this is true for $n=r+1$. Suppose this is true for $n=r+k$. Consider $n+1=r+k+1$. Let $D=\left(c_{1}, \ldots, c_{n+1}\right)$ be a $2^{(n+1)-(k+1)}$ design of resolution $\geq R$ in 2^{r} runs. Suppose that $D(-i)$ has MA among all possible delete-one-factor projections of D. Lemma 1 implies that $D(-i)$ must be a non-degenerate 2^{n-k} design of resolution $\geq R$. By the assumption for 2^{n-k} designs, there exists a design D_{n} in $C_{n, k}^{R}$ that is isomorphic to $D(-i)$. Let π be the isomorphic map from $D(-i)$ to D_{n}, i.e., $D_{n}=\pi(D(-i))$. Note that $\pi\left(c_{i}\right)$ is uniquely defined under this isomorphic map.

Let $\pi(D)=\left(D_{n}, \pi\left(c_{i}\right)\right)$. Clearly $\pi(D)$ is entertained in the modified construction procedure and therefore D is isomorphic to a design in $C_{n+1, k+1}^{R}$. This completes the proof.

3.3 A nonisomorphism classification procedure

Xu (2005) observed that the use of wordlength patterns and letter patterns is not efficient in identifying nonisomorphic designs for three-level FF designs. Following Xu (2005), we divide designs into different categories according to their weight distributions and moment projection patterns (to be defined next). As explained in Section 2.1, the use of weight distributions is equivalent to the use of wordlength patterns in terms of distinguishing designs but is more efficient in terms of computation (when $k>r$).

For a 2^{n-k} design D and an integer $p, p<n$, there are $\binom{n}{p} p$-factor projections. For each p-factor projection, say D_{p}, and an integer t, compute the t th power moment

$$
K_{t}\left(D_{p}\right)=\sum_{i=0}^{p}(p-i)^{t} B_{i}\left(D_{p}\right),
$$

where $B_{i}\left(D_{p}\right)$ is the number of row vectors of D_{p} with Hamming weight i. The power moment K_{t} was introduced by Xu (2003) and Xu and Deng (2005) for ranking and classifying nonregular designs. The frequency distribution of K_{t}-values of all p-factor projections is called the p-dimensional K_{t}-value distribution. It is evident that isomorphic designs have the same p-dimensional K_{t}-value distribution for all positive integers t and $p<n$. Whenever two designs have different p-dimensional K_{t}-value distributions for some t and p, these two designs must be nonisomorphic.

To ease the computation, we fix t and let p vary from $n-1$ to $n-q$, where q is a pre-chosen small number, say 2 or 3 . The corresponding $q K_{t}$-value distributions are called the moment projection pattern. It requires $O\left(n^{q}\right)$ operations to compute the moment projection pattern. The choice of t does not make a difference provided $t>5$ in most cases. In the algorithm, we fix t arbitrarily at $t=10$.

Table 3 shows the numbers of designs identified by the wordlength pattern (WLP), letter pattern (LP), moment projection pattern (MPP) with $q=1$ and 2 in the construction of 128-run designs of resolution ≥ 4 for $n \leq 16$. Note that the moment projection pattern with $q=1$ and the letter pattern identify the same numbers of designs. The moment projection pattern with $q=2$ correctly identifies all nonisomorphic designs for $n \leq 16$.

As Table 3 shows, the moment projection pattern check with $q=1$ has the same or nearly the same classification power as the letter patten check whereas the moment projection pattern check

Table 3: Number of Designs Identified for 128-Run Designs of Resolution ≥ 4

	n									
Method	8	9	10	11	12	13	14	15	16	
WLP	5	13	28	68	152	297	518	889	1,425	
LP	5	13	33	92	247	617	1,506	3,467	7,229	
$\operatorname{MPP}(q=1)$	5	13	33	92	247	617	1,506	3,467	7,229	
$\operatorname{MPP}(q=2)$	5	13	33	92	249	623	1,535	3,522	7,500	

with $q=2$ or 3 typically has more classification power. Furthermore, when k is large, the moment projection pattern check is faster than the letter pattern check.

3.4 A fast isomorphism check procedure

We first review the isomorphism check procedure proposed by CSW. Consider two 2^{7-3} designs defined by

$$
D_{1}: 5=123,6=124,7=13 \text { and } D_{2}: 5=12,6=124,7=234
$$

which have the same wordlength pattern and letter pattern. CSW's procedure works as follows:

1. Select four independent columns from D_{2}, say, $\{1,2,3,6\}$. There are $\binom{7}{4}$ choices.
2. Select a relabeling map from $\{1,2,3,6\}$ to $\{a, b, c, d\}$, say, $a=1, b=2, c=3$, and $d=6$. There are 4! choices.
3. Write the remaining columns, $\{4,5,7\}$, in D_{2} as interactions of $\{a, b, c, d\}$, i.e., $4=a b d$, $5=a b$, and $7=a c d$. Then D_{2} can be written as $\{a, b, c, d, a b, a b d, a c d\}$.
4. Compare the new representation of D_{2} with that of D_{1}. If they match, D_{1} and D_{2} are isomorphic, and the process stops. Otherwise, return to step 2 and try another map of $\{a, b, c, d\}$. When all the relabeling maps are exhausted, return to step 1 and find next four columns.

If two designs are isomorphic, an isomorphic map will be found eventually. Otherwise, two designs are not isomorphic. In the worst case, it requires $O\left(n\binom{n}{r} r!\right)$ operations to declare that two 2^{n-k} designs are not isomorphic.

Table 4: Weight Distributions of Delete-One-Factor Projections

D_{1}								D_{2}							
Projection	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	Projection	B_{0}	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}
$D_{1}(-1)$	1	0	4	6	3	2	0	$D_{2}(-1)$	1	0	4	6	3	2	0
$D_{1}(-2)$	1	0	4	6	3	2	0	$D_{2}(-2)$	1	0	4	6	3	2	0
$D_{1}(-3)$	1	0	4	6	3	2	0	$D_{2}(-3)$	1	1	2	6	5	1	0
$D_{1}(-4)$	1	1	2	6	5	1	0	$D_{2}(-4)$	1	0	4	6	3	2	0
$D_{1}(-5)$	1	0	4	6	3	2	0	$D_{2}(-5)$	1	0	3	8	3	0	1
$D_{1}(-6)$	1	1	2	6	5	1	0	$D_{2}(-6)$	1	0	4	6	3	2	0
$D_{1}(-7)$	1	0	3	8	3	0	1	$D_{2}(-7)$	1	1	2	6	5	1	0

We improve the isomorphism check procedure by considering delete-one-factor projections. Let π be a permutation of $\{1, \ldots, n\}$. If π is an isomorphic map from D_{1} to $D_{2}, D_{1}(-i)$ and $D_{2}(-\pi(i))$ must be isomorphic and therefore they must have the same weight distribution. So π cannot be an isomorphic map if $D_{1}(-i)$ and $D_{2}(-\pi(i))$ do not have the same weight distribution for some i.

For convenience, we call a permutation π feasible if $D_{1}(-i)$ and $D_{2}(-\pi(i))$ have the same weight distribution for every i. A relabeling map is feasible if its induced permutation is feasible. The key idea of our new isomorphism check procedure is to entertain only feasible relabeling maps by matching the factors using the weight distributions of the delete-one-factor projections.

We illustrate our procedure with the two 2^{7-3} designs mentioned earlier. Here are the steps.

1. Compute the weight distributions of the delete-one-factor projections (delete-one weight distributions, for short) for both designs; see Table 4. For each column of D_{1}, count the frequency that each delete-one weight distribution appears. Let n_{i} be the frequency for the i th column. Here $n_{1}=n_{2}=n_{3}=n_{5}=4, n_{4}=n_{6}=2$ and $n_{7}=1$.
2. Relabel the columns of D_{1} by selecting four new independent columns so that their frequency numbers n_{i} are as small as possible. For example, we select columns $\{7,4,6,1\}$ as the new independent columns. We relabel them as $\{a, b, c, d\}$, i.e., $a=7, b=4, c=6, d=1$, and write the remaining three columns as their interactions, i.e., $2=b c d, 3=a d$, and $5=a b c d$. So after relabeling, D_{1} becomes $D_{1}^{\prime}:\{a, b, c, d, a d, b c d, a b c d\}$. The purpose of this step is to reduce the number of feasible relabeling maps to be considered in the next step.
3. Select four independent columns from D_{2} that have the same delete-one weight distributions

Table 5: Time to Create Catalogs of 128 -Run Designs of Resolution ≥ 4

	n									
Algorithm	8	9	10	11	12	13	14	15	16	
CSW	0 s	1 s	4 s	27 s	2 m 32 s	10 m 30 s	37 m 48 s	2 h 27 m	6 h 43 m	
Author	0 s	0 s	0 s	1 s	1 s	4 s	8 s	16 s	39 s	

NOTE: The CSW's algorithm is modified so that two algorithms differ only in the isomorphism check procedures used. The h, m, and s stand for hour, minute, and second, respectively.
as the four independent columns from D_{1}^{\prime}, and relabel the columns. To obtain a feasible map from D_{2} to D_{1}^{\prime}, we must relabel column 5 of D_{2} as a, because only column 5 has the same delete-one weight distribution as factor a of D_{1}^{\prime}. Similarly, we must relabel column 3 or 7 of D_{2} as b or c. We can relabel column $1,2,4$, or 6 of D_{2} as d. There are $1 \times 2 \times 4=8$ choices of feasible relabeling maps. For example, we choose $a=5, b=3, c=7, d=1$ and write the remaining columns as $2=a d, 4=a b c d, 6=b c d$. It is clear now that D_{2} is isomorphic to D_{1}^{\prime} and hence to D_{1}.
4. If two designs do not match after relabeling the independent columns, consider another choice of relabeling and/or another choice of independent columns in step 3. If none of the choices yields to an identical design, two designs are not isomorphic.

In the above example, we entertain only eight feasible relabeling maps out of $\binom{7}{4} 4!=840$ possible choices of relabeling maps. It can be verified that any of the eight feasible relabeling maps leads to an isomorphic map. This is not true in general.

In theory our new isomorphism check procedure still requires $O\left(n\binom{n}{r} r!\right)$ operations in the worst case. In practice, the new isomorphism check procedure saves tremendous amount of computing time, because the worst case happens rarely.

To see the computational advantage of the our new isomorphism check procedure, we develop two algorithms with everything the same except isomorphism check procedures, one with the original procedure by CSW and the other with our new procedure. Table 5 shows the real time comparison of these two procedures in constructing 128-run designs of resolution ≥ 4. The savings are tremendous and become larger for larger designs. The times are taken on a 2 GHz PowerPC G5 computer.

Table 6: Illustration of Constructing MA 256-Run Designs for $n \leq 28$

n	9	10	11	12	13	14	15	16	17	18
δ_{n}	0	0	0	0	0	1	2	3	5	7
$\left\|C_{n, k}^{4}\left(\delta_{n}\right)\right\|$	5	9	11	14	15	124	617	1,836	14,158	46,929
n	19	20	21	22	23	24	25	26	27	28
δ_{n}	9	12	16	20	25	31	38	46	54	64
$\left\|C_{n, k}^{4}\left(\delta_{n}\right)\right\|$	56,821	104,654	258,535	136,105	65,070	23,981	5,610	661	6	1

The isomorphism check can be made faster in some situations. It is evident that two designs are isomorphic if and only if their dual codes are isomorphic. So when $k<r$, we perform isomorphism checks on the dual codes. This technique was previously used by Lin and Sitter (2008).

As an alternative, we can match columns using their letter patterns. It can be shown that the use of delete-one weight distributions is equivalent to the use of letter patterns. We use the former because it is faster to compute delete-one weight distributions than letter patterns when $k>r$.

Clark and Dean (2001) presented a method of determining isomorphism of any two FF designs, regular or nonregular, by examining the Hamming distances of their projection designs. They also developed an algorithm for checking the isomorphism of two-level designs. Their isomorphism check procedure, adopted by Lin and Sitter (2008), is inferior to ours for the regular design case, because it ignores the special properties of regular designs and requires $O\left(n(n!)^{2}\right)$ operations in theory for the worst case.

3.5 Construction of MA designs

It is infeasible to enumerate all designs in many situations. Here we propose a method for constructing MA designs by enumerating a subset of good designs.

Let $C_{n, k}^{R}\left(\delta_{n}\right)$ be the set of nonisomorphic 2^{n-k} designs of resolution $\geq R$ with at most δ_{n} words of length R. We can sequentially build up $C_{n, k}^{R}\left(\delta_{n}\right)$ as before. To construct $C_{n, k}^{R}\left(\delta_{n}\right)$, according to Lemma 2, it is sufficient to add a column to every design in $C_{n-1, k-1}^{R}\left(\delta_{n-1}\right)$, where

$$
\begin{equation*}
\delta_{n-1}=\delta_{n}-\left\lceil\frac{R \cdot \delta_{n}}{n}\right\rceil . \tag{2}
\end{equation*}
$$

For illustration, consider the construction of MA 256-run designs for $n \leq 28$. It is known from Block (2003) that there is a resolution IV 2^{28-20} design with $A_{4}=64$. We set $R=4, \delta_{28}=64$,
and compute δ_{n-1} backward using (2) recursively for $n=28, \ldots, 10$. Then we build up $C_{n, k}^{4}\left(\delta_{n}\right)$ forward for $n=9, \ldots, 28$. By completely enumerating $C_{n, k}^{4}\left(\delta_{n}\right)$, we obtain all MA 256 -run designs for $n \leq 28$. Table 6 shows the value of δ_{n} and the cardinality of $C_{n, k}^{4}\left(\delta_{n}\right)$. From the table, we know that there is a unique resolution IV 2^{28-20} design with $A_{4} \leq 64$. The 14,158 designs that must be considered at $n=17$ (to verify that the 28 -factor design has MA) represent fewer than 1% of the resolution IV designs.

As the example shows, the method is very effective in reducing the number of designs to be evaluated in the construction of MA designs. It works well when the run size or the number of factors is small, or as long as we can enumerate all the distinct designs encountered at each stage. However, this becomes infeasible when both the run size and the number of factors are large, simply because there are too many designs to be enumerated. Indeed, we fail to construct MA 256run designs for $n \geq 29$ because we encounter several million designs which exhaust the computer memory. The construction of MA designs is extremely difficult, if not infeasible, for larger runs and larger n.

3.6 Construction of good designs

Good designs with dozens of factors and several hundred or thousand runs are also useful in real applications but require further effort to obtain them. Here we propose three approaches, similar to what Block (2003) used in the construction of 256 -run designs.

The first approach is a simple modification of the basic algorithm. We limit the number of distinct designs retained in the sequential search. Specially, we sort the designs according to the MA criterion, then build up from them to at most M designs at each stage. To speed up the search, we often skip the isomorphism check and distinguish designs using wordlength patterns only. This simple modification works well for small n when the basic algorithm fails. Indeed, most of the MA designs can be quickly obtained in this way. Two shortcomings of this approach are (i) there may be no eligible designs at some stage and (ii) the resulting designs may depend on those retained in the previous stages. To alleviate these shortcomings, we randomize the order of the columns to be added in the sequential build-up process and run the algorithm a few times, which may lead to some improved designs.

The second approach is to perform a random stepwise search and maintain a list of best designs during the search. We randomly generate designs by adding one column at a time. At each stage we retain only one design, compare it with the best design in the list using the MA criterion and

Table 7: Methods Used in the Construction of Good Designs

	Run Size						
Method	128	256	512	1024	2048	4096	
Basic Algorithm	≤ 40	≤ 28	≤ 25	≤ 24	≤ 23	≤ 24	
Approach 1		$29-40$	$26-50$	$25-31 \& 34-45$	$35-40$	$25-30$	
Approach 2		$41-80$	$51-98$		$24-31$	$31-41$	
Approach 3			$99-160$	$32-33$	$32-34 \& 41-47$	$42-65$	

update the list if it is better. If a better design is found, we further perform a naive backward search which compares its MA delete-one-factor projection with the best design in the list. We repeat the naive backward search until no better projection designs can be found. The random search, only involving the computation and comparison of wordlength patterns, is very fast; therefore, we can repeat the whole process a large number of times, say L times. This approach can construct some good designs with large n when the first approach fails. For example, we obtain MA 256 -run designs with $n=69-80$ via this approach; see next section for more details.

The third approach is to start with some known good designs with large n and perform a naive backward search. The doubling method proposed by Chen and Cheng (2006) can be used to construct good resolution IV designs with large n. Specially, by repeatedly doubling the 2^{5-1} design defined by $I=A B C D E$, we can construct a resolution IV design with 16×2^{k} runs and 5×2^{k} factors for any $k \geq 1$. Chen and Cheng (2006) showed that such a design has MA and its projection designs are also good when n is close to 5×2^{k}. For resolution V designs, the doubling method does not work. Since a 2^{n-k} design of resolution V is equivalent to a binary linear code with length n, dimension k and minimum distance 5 , we can use some existing linear codes. In particular, we obtain $2^{33-23}, 2^{47-36}$ and 2^{65-53} designs of resolution V from the corresponding linear codes in Chen (1991) and Brouwer (1998). By folding over the first two designs, we further obtain 2^{34-23} and 2^{48-36} designs of resolution VI. This approach gives us a few more good designs with large n.

When the basic algorithm fails, we try all three approaches to construct good designs. Table 7 shows the methods used in the construction of good designs presented in the next section. The basic algorithm can generate all MA designs up to 40 factors for 128 runs and up to 23-28 factors for 256-4096 runs. For 128 runs, the basic algorithm can be used to construct all MA designs with

Table 8: Comparison of Some Good Designs

Run Size	Method	$n=25$	$n=30$	$n=35$	$n=40$	$n=45$
256	Author	$A_{4}=34$	$A_{4}=93$	$A_{4}=200$	$A_{4}=370$	$A_{4}=760$
	SAS	$A_{4}=40$	$A_{4}=119$	$A_{4}=285$	$A_{4}=580$	$A_{4}=1,010$
512	Author	$A_{4}=4$	$A_{4}=22$	$A_{4}=60$	$A_{4}=133$	$A_{4}=250$
	SAS	$A_{4}=4$	$A_{4}=22$	$A_{4}=63$	$A_{4}=614$	$A_{4}=1,427$
1024	Author	$A_{5}=22$	$A_{5}=152$	$A_{4}=10$	$A_{4}=34$	$A_{4}=76$
	SAS	$A_{5}=55$	$A_{5}=163$	$A_{4}=180$	$A_{4}=783$	$A_{4}=1,480$
4048	Author	$A_{6}=119$	$A_{6}=677$	$A_{5}=121$	$A_{5}=331$	$A_{5}=673$
	SAS	$A_{6}=139$	$A_{6}=690$	$A_{5}=112$	$A_{5}=351$	-
	Author	$A_{6}=15$	$A_{6}=195$	$A_{6}=856$	$A_{6}=2,086$	$A_{6}=4,490$
	SAS	$A_{6}=56$	$A_{6}=329$	$A_{6}=971$	$A_{6}=2,117$	-

NOTE: SAS is run for up to 30 minutes on a MacBook with a 2.16 Ghz Intel Core 2 Duo CPU for each case. SAS fails to construct a resolution V design with 2048 runs for $n=45$ and a resolution VI design with 4096 runs for $n=45$.
some existing theories; see the next section. The first approach performs well for relatively small n while the second approach is more effective for medium to large n. In order to obtain good designs in a reasonable time, we set $M=10,000$ for resolution IV designs and $M=1,000$ for resolution V or VI designs in the first approach and set $L=100,000$ for 256 runs and $L=10,000$ for 512-4096 runs in the second approach. It takes about 15 and 9 minutes on a MacBook to search designs with 1024 runs and $n \leq 45$ using the first and second approach, respectively.

To determine the efficiency of our methods and designs, we use SAS PROC FACTEX to construct MA designs and compare them to ours. Table 8 lists the minimum A_{4}, A_{5}, or A_{6} values for resolution IV, V, or VI designs with 256-4096 runs and $n=25,30,35,40$ and 45. Our designs are much better than the SAS designs except for three cases. For 512 runs and $n=25$ or 30 , our design has the same A_{4} value as the SAS design. For 2048 runs and $n=35$, our design has a larger A_{5} value and is worse. In all other cases, our designs have smaller A_{4}, A_{5} or A_{6} values and thus are better. The differences are the most substantial for 1024 runs and $n=35,40$, and 45 .

4 Tables of designs

Using the basic algorithm we completely enumerate all 128-run designs of resolution ≥ 4 up to 32 factors, all 256 -run designs of resolution ≥ 4 up to 17 factors, all 512 -run designs of resolution ≥ 5, all 1024-run designs of resolution ≥ 6, and all 2048- and 4096-run designs of resolution ≥ 7. Table 9 shows the number of nonisomorphic designs for various run sizes and resolutions. The complete set of designs can be obtained from the author upon request.

We further enumerate separately all odd 128 -run designs of resolution ≥ 4, which exist for $n \leq 40$, and all even 128 -run designs of resolution ≥ 4 for $n \leq 32$. For $n>32$ all even 128 -run designs of resolution IV can be obtained via their complementary even designs; see Butler (2003) and Xu and Cheng (2008). Therefore, all 128 -run designs of resolution IV can be obtained. We also completely enumerate all even 256 -run designs of resolution ≥ 4 for $n \leq 19$. Table 10 shows the number of nonisomorphic even and odd designs for $128,256,512$, and 1024 runs. According to Table 10, there are 5,710 nonisomorphic even 1024 -run designs of resolution ≥ 6. Draper and Mitchell (1970) identified 4,043 even designs using the letter pattern check, so they missed 1,667 (about 30%) even designs.

The 128 -run designs are of special interest because MA designs are given by CSW up to 64 runs. Block and Mee (2005) constructed MA and weak MA 128-run designs for $n=12-64$. They achieved this by enumerating all odd designs of resolution IV and all even designs for $n \leq 22$, based on their conjecture. By comparing the numbers of even and odd designs, we conclude that their set of odd designs is complete and their set of even designs is also complete for $n \leq 22$. The numbers of even designs for $n=21$ and 22 in their table 6 are not correct, though. So their conjecture is correct for all the cases they considered and their designs do have weak MA as claimed except for a few typos in their table 2 with 15, 19-21, and 30-32 factors (see Corrigenda). For easy reference, we give all MA and weak MA designs for 128 runs up to 40 factors in Table 11, constructed according to the procedure in Section 3.5. Note from Table 11 that MA designs are in sequential order for $n=32-40$. However, this is not true for $n=31$, which agrees with the theoretical result of Xu and Cheng (2008). For $40<n \leq 64$, MA designs can be obtained via deleting the MA complementary even designs from the unique even 2^{64-57} design; see Butler (2003), Block and Mee (2005) and Xu and Cheng (2008) for details. Again, this can be achieved by enumerating a set of good even designs. We confirm that MA designs are unique except for $n=41,42,43,44$, and 50 . For $n>64$, MA designs can also be obtained via complementary designs; see Chen and Hedayat (1996), Tang
and Wu (1996), Butler (2003), and Xu and Cheng (2008). Thus, all MA 128-run designs can be constructed.

Table 12 gives all MA and weak MA 256 -run designs up to 28 factors, constructed via the basic algorithm; Table 13 lists some good designs up to 80 factors, constructed via the first two approaches described in Section 3.6. To save space, we omit a design or its generator columns in Table 13 and other tables if it can be derived from another design. For instance, designs with $n=30-32$ columns can be constructed as the first n columns of the design with 33 columns which are explicitly given in Table 13; designs with $n=72-79$ columns, not listed in Table 13, can be constructed as the first n columns of the design with 80 columns.

Block (2003) previously obtained a list of 256 -run designs up to 80 factors. For $n=24,30,41-$ 44, his designs have larger A_{4} values than the designs given in Tables 12 and 13. For $n=25$, his design is isomorphic to design 25-17.2 in Table 12 and thus does not have MA. For $n=71$, his design has the same A_{4} and A_{5} values as the design given in Table 13 but has a larger A_{6} value than our design. For all other cases, his designs have the same A_{4}, A_{5} and A_{6} values as the designs in Table 13. According to Xu and Cheng (2008), the designs in Table 13 have MA for $n=69-80$. Other designs in Table 13 may not have MA.

Table 14 gives MA 512-run designs up to 25 factors and Table 15 gives some good 512-run designs up to 160 factors. These designs have resolution ≥ 6 for $n \leq 18$, resolution V for $19 \leq n \leq 23$, and resolution IV for $24 \leq n \leq 160$. The $2^{160-151}$ design is constructed by the doubling method; see Section 3.6. Draper and Mitchell (1970) conjectured that all 2^{23-14} designs of resolution V are equivalent. We confirm this; see Table 9 .

Table 16 gives efficient 1024-run designs up to 45 factors. These designs have resolution ≥ 6 and MA for $n \leq 24$, resolution V for $25 \leq n \leq 33$ and resolution IV for $34 \leq n \leq 45$. The 2^{33-23} design is derived from a linear code in Chen (1991).

Table 17 gives efficient 2048-run designs up to 47 factors. These designs have resolution ≥ 7 and MA for $n \leq 23$, resolution VI for $24 \leq n \leq 34$, and resolution V for $35 \leq n \leq 47$. The 2^{34-23} design is a foldover of the 2^{33-23} design given in Table 16 and the 2^{47-36} design is derived from a linear code in Chen (1991).

Table 18 gives efficient 4096-run designs up to 65 factors. These designs have resolution ≥ 8 and MA for $n \leq 24$, resolution VI for $25 \leq n \leq 48$, and resolution V for $49 \leq n \leq 65$. The 2^{48-36} design is a foldover of the 2^{47-36} design given in Table 17 and the 2^{65-53} design is derived from a cyclic linear code in Brouwer (1998).

In Tables 11-18, each 2^{n-k} design is labeled as $n-k$ or $n-k . i$, where the index i reflects the ordering based on the MA criterion. Every 2^{n-k} design is represented by a set of n columns in the Yates order. To save space, we omit the independent columns, which are $\left\{1,2, \ldots, 2^{n-k-1}\right\}$, and give only a set of k columns. For illustration, consider design 9-2.1 in Table 11 which has columns \{31, $103\}$. Denote the nine factors as $\left\{x_{1}, \ldots, x_{9}\right\}$, where $\left\{x_{1}, \ldots, x_{7}\right\}$ represent independent columns, that is, $x_{i}=2^{i-1}$ for $i=1, \ldots, 7$. Then $x_{8}=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5}$ and $x_{9}=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{6} \cdot x_{7}$ because $31=2^{0}+2^{1}+2^{2}+2^{3}+2^{4}$ and $103=2^{0}+2^{1}+2^{2}+2^{5}+2^{6}$. The wordlength pattern of this design is $A_{6}=3$ and $A_{i}=0$ for $i \neq 6$. If a design with n columns is not explicitly given, then it can be constructed as the first n columns of the smallest design that has more than n columns and is explicitly listed in the tables.

5 Concluding Remarks

We develop a sequential algorithm for constructing large FF designs. The new algorithm has the following features:

1. A construction procedure that allows a design to be constructed only from its MA projection in the sequential build-up process,
2. A nonisomorphism classification procedure that uses moment projection patterns to identify nonisomorphic designs efficiently,
3. A fast isomorphism check procedure that matches factors using their delete-one weight distributions,
4. A method for constructing MA designs using a partial catalog of good designs.

With some proper modifications, these features can be used to construct designs more efficiently for other situations such as blocked designs, split-plot designs, and robust parameter designs.

We further propose three approaches for constructing good designs with a large number of factors. Efficient designs are tabulated for 128-4096 runs and up to 40-160 factors. This largely extends what is available in the literature and can at least partially fulfill the increasing demand for efficient two-level FF designs with several hundred or thousand runs and dozens of factors. The construction becomes much more challenging as both the run size and the number of factors increase, which calls for further research.

Acknowledgments

The research was supported by National Science Foundation grants DMS-0505728 and DMS0806137. The author thanks Robert Mee and Robert Block for sharing their designs and helpful communications, and Randy Sitter for sharing their manuscript. Thanks also go to the editor, an associate editor, and three referees for their constructive comments that led to an improvement of the paper.

REFERENCES

Bingham, D., and Sitter, R. R. (1999), "Minimum Aberration Two-Level Fractional Factorial Split-Plot Designs," Technometrics, 41, 62-70.

Block, R. M. (2003), Theory and Construction Methods for Large Regular Resolution IV Designs, Ph.D. dissertation, University of Tennessee, Knoxville.

Block, R. M., and Mee, R. W. (2005), "Resolution IV Designs With 128 Runs," Journal of Quality Technology, 37, 282-293. Corrigenda, (2006), 38, 196.

Box, G. E. P., and Hunter, J. S. (1961), "The 2^{k-p} Fractional Factorial Designs," Technometrics, 3, 311-351, 449-458.

Box, G. E. P., Hunter, W. G., and Hunter, J. S. (2005), Statistics for Experimenters, 2nd ed., New York: Wiley.

Brouwer, A. E., (1998), "Bounds on Linear Codes," Handbook of Coding Theory, V. S. Pless and W. C. Huffman (Eds.), New York: Elsevier, 295-461.

Butler, N. A. (2003), "Some Theory for Constructing Minimum Aberration Fractional Factorial Designs," Biometrika, 90, 233-238.

Chen, C. L. (1991), "Construction of Some Binary Linear Codes of Minimum Distance Five," IEEE Transactions on Information Theory, 37, 1429-1432.

Chen, H., and Hedayat, A. S. (1996), " 2^{n-l} Designs With Weak Minimum Aberration," The Annals of Statistics, 24, 2536-2548.

Chen, J., and Lin, D. K. J. (1991), "On the Identity Relationship of 2^{k-p} Designs," Journal of Statistical Planning and Inference, 28, 95-98.

Chen, J., Sun, D. X., and Wu, C. F. J. (1993), "A Catalogue of Two-Level and Three-Level Fractional Factorial Designs With Small Runs," International Statistical Review, 61, 131145.

Clark, J. B., and Dean, A. M. (2001), "Equivalence of Fractional Factorial Designs," Statistica Sinica, 11, 537-547.

Dean, A. M., and Voss, D. T. (1999), Design and Analysis of Experiments, New York: Springer.
Draper, N. R., and Mitchell, T. J. (1967), "The Construction of Saturated 2_{V}^{k-p} Designs," The Annals of Mathematical Statistics, 38, 1110-1126.

Draper, N. R., and Mitchell, T. J. (1968), "Construction of the Set of 256-Run Designs of Resolution ≥ 5 and the Set of Even 512-Run Designs of Resolution ≥ 6 With Special Reference to the Unique Saturated Designs," The Annals of Mathematical Statistics, 39, 246-255.

Draper, N. R., and Mitchell, T. J. (1970), "Construction of a Set of 512-Run Designs of Resolution ≥ 5 and a Set of Even 1024-Run Designs of Resolution ≥ 6," The Annals of Mathematical Statistics, 41, 876-887.

Franklin, M. F. (1985), "Selecting Defining Contrasts and Confounded Effects in p^{n-m} Factorial Experiments," Technometrics, 27, 165-172.

Franklin, M. F., and Bailey, R. A. (1977), "Selection of Defining Contrasts and Confounded Effects in Two-Level Experiments," Applied Statistics, 26, 321-326.

Fries, A., and Hunter, W. G. (1980), "Minimum Aberration 2^{k-p} Designs," Technometrics, 22, 601-608.

Hedayat, A. S., Sloane, N. J. A., and Stufken, J. (1999), Orthogonal Arrays: Theory and Applications, New York: Springer-Verlag.

Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., and Cioppa, T. M. (2005), "State-of-the-Art Review: a User's Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, 17, 263-289.

Lin, C. D., and Sitter, R. R. (2008), "An Isomorphism Check for Two-Level Fractional Factorial Designs," Journal of Statistical Planning and Inference, 138, 1085-1101.

Ma, C.-X., Fang, K.-T., and Lin, D. K. J. (2001). "On the Isomorphism of Fractional Factorial Designs," Journal of Complexity, 17, 86-97.

MacWilliams, F. J., and Sloane, N. J. A. (1977), The Theory of Error-Correcting Codes, Amsterdam: North-Holland.

Mee, R. W. (2004), "Efficient Two-Level Designs for Estimating Main Effects and Two-Factor Interactions," Journal of Quality Technology, 36, 400-412.

Montgomery, D. C. (2005), Design and Analysis of Experiments, 6th ed., New York: Wiley.
Mukerjee, R., and Wu, C. F. J. (2006), A Modern Theory of Factorial Designs, New York: Springer.

Tang, B., and Wu, C. F. J. (1996), "Characterization of Minimum Aberration 2^{n-m} Designs in Terms of Their Complementary Designs," The Annals of Statistics, 24, 2549-2559.

Telford, J. K. (2007), "A Brief Introduction to Design of Experiments," Johns Hopkins APL Technical Digest, 27, 224-232.

Wu, C. F. J., and Hamada, M. (2000), Experiments: Planning, Analysis and Parameter Design Optimization, New York: Wiley.

Xu, H. (2003), "Minimum Moment Aberration for Nonregular Designs and Supersaturated Designs," Statistica Sinica, 13, 691-708.

Xu, H. (2005), "A Catalogue of Three-Level Regular Fractional Factorial Designs," Metrika, 62, 259-281.

Xu, H., and Cheng, C. -S. (2008), "A Complementary Design Theory for Doubling," The Annals of Statistics, 36, 445-457.

Xu, H., and Deng, L. -Y. (2005), "Moment Aberration Projection for Nonregular Fractional Factorial Designs," Technometrics, 47, 121-131.

Zhu, Y., and Zeng, P. (2005), "On the Coset Pattern Matrices and Minimum M-Aberration of 2^{n-p} Designs," Statistica Sinica, 15, 717-730.

Table 9: Number of Nonisomorphic Designs

n	Run Size (Resolution $\geq R$)							
	128(4)	256(4)	256(5)	512(5)	1024(6)	2048(7)	4096(7)	4096(8)
8	5							
9	13	6	5					
10	33	21	9	6				
11	92	74	11	16	6			
12	249	311	14	36	14	6		
13	623	1,429	15	92	24	9	7	6
14	1,535	7,344	11	282	47	7	17	7
15	3,522	42,581	6	1,011	98	7	27	4
16	7,500	271,784	1	4,019	185	7	48	5
17	14,438	1,798,534	1	13,759	380	3	95	5
18	25,064	?	0	29,373	919	2	113	2
19	39,335	?		31,237	1,701	1	84	1
20	57,920	?		14,135	1,682	1	35	1
21	82,496	?		2,373	739	1	22	1
22	118,444	?		128	128	1	17	1
23	173,092	?		1	8	1	17	1
24	256,654	?		0	1	0	13	1
25	376,382	?			0		0	0
26	537,907	?						
27	735,111	?						
28	956,190	?						
29	1,174,404	?						
30	1,363,003	?						
31	1,489,183	?						
32	1,535,167	?						
Total	8,948,362	?	73	96,468	5,932	46	495	35

Table 10: Number of Nonisomorphic Even and Odd Designs

n	Run Size (Resolution $\geq R$)							
	128(4)		$256(4)$		512(5)		1024(6)	
	Even	Odd	Even	Odd	Even	Odd	Even	Odd
8	3	2						
9	6	7	3	3				
10	14	19	9	12	3	3		
11	30	62	24	50	4	12	3	3
12	69	180	80	231	5	31	7	7
13	136	487	241	1,188	5	87	11	13
14	295	1,240	839	6,505	5	277	23	24
15	596	2,926	3,029	39,552	5	1,006	51	47
16	1,292	6,208	12,487	259,297	3	4,016	125	60
17	2,651	11,787	55,331	1,743,203	1	13,758	332	48
18	5,598	19,466	265,798	?	1	29,372	908	11
19	11,341	27,994	1,314,705	?	0	31,237	1,695	6
20	22,728	35,192	?	?		14,135	1,681	1
21	43,295	39,201	?	?		2,373	738	1
22	79,597	38,847	?	?		128	127	1
23	138,224	34,868	?	?		1	8	0
24	228,521	28,133	?	?		0	1	
25	355,813	20,569	?	?			0	
26	524,409	13,498	?	?				
27	727,036	8,075	?	?				
28	951,906	4,284	?	?				
29	1,172,255	2,149	?	?				
30	1,362,027	976	?	?				
31	1,488,750	433	?	?				
32	1,534,970	197	?	?				
33		101	?	?				
34		31	?	?				
35		13	?	?				
36		8	?	?				
37		3	?	?				
38		2	?	?				
39		1	?	?				
40		1	?	?				
Total		296,960	?	?	32	96,436	5,710	222

Table 11: Weak MA 128-Run Designs for $n \leq 40$

Design	$\left(A_{4}, A_{5}, \ldots\right)$	Columns
8-1.1	00001	127
9-2.1	00300	31103
10-3.1	03310	3110343
11-4.1	06621	311034385
12-5.1	18128	311034385121
12-5.2	110105	31103438544
12-5.3	110114	31103438546
13-6.1	2161810	3110343854486
13-6.2	216208	3110343854661
14-7.1	3243616	3110343854661114
15-8.1	7325240	311034385466111467
15-8.2	7344642	31103438544868853
15-8.3	7384428	311034385466111413
16-9.1	104872	31103438544868853110
17-10.1	1560130	31103438546611146778116
17-10.2	1566110	3110343854661114677855
17-10.3	1568106	311034385448688533858
17-10.4	1572102	3110343854661114671355
18-11.1	2080200	31103438546611146778116121
18-11.2	2092160	311034385466111467785558
19-12.1	27120235	31103438546611146778555886
20-13.1	36152340	3110343854661114677855588691
21-14.1	51200414	31103438544825456887812312510425
21-14.2	51202400	3110343854486885338587983110124
22-15.1	65248572	311034385448688537858839728104114
22-15.2	65256552	31103438544825456887812312510425112
23-16.1	83316744	3110343854482545688781231251042511249
23-16.2	83318734	311034385448688533858798311012497104
24-17.1	102384992	31103438544868853110192857679810026105
24-17.2	102394985	311034385448688533858798311012497104114
25-18.1	1244821312	311034385448688533858798311012497104114123
26-19.1	1525681704	311034385448688531101928576798100261056277
27-20.1	1806902200	311034385448688531101928576798100261056277112
28-21.1	2108402800	311034385448688531101928576798100261056277112127
29-22.1	2669453472	311034385448688531101928576798100261056277112127124
30-23.1	3359724662	311034381452611412722675694116738108146953257312128
31-24.1	39111345826	same as design 30-23.1, plus 91
31-24.2	39111345827	same as design 30-23.1, plus 51
32-25.1	45213227219	same as design 30-23.1, plus 5197
32-25.2	45213237218	same as design 30-23.1, plus 9151
32-25.3	45213247219	same as design 30-23.1, plus 5162
33-26.1	51815438863	same as design 30-23.1, plus 519770
33-26.2	51815448863	same as design 30-23.1, plus 915162
34-27.1	5891800	same as design 30-23.1, plus 51977079
34-27.2	5891801	same as design 30-23.1, plus 51977087
35-28.1	6652100	same as design 30-23.1, plus 5197707993
35-28.2	6652101	same as design 30-23.1, plus 5197707991
36-29.1	7562401	same as design 30-23.1, plus 519770799362
37-30.1	8542744	same as design 30-23.1, plus 51977079936287
38-31.1	9593136	same as design 30-23.1, plus 5197707993628788
39-32.1	10713584	same as design 30-23.1, plus 519770799362878891
40-33.1	11904096	same as design 30-23.1, plus 519770799362878891106

Table 12: Weak MA 256-Run Designs for $n \leq 28$

Table 13: Good 256-Run Designs for $29 \leq n \leq 80$

Design	$\left(A_{4}, A_{5}, \ldots\right)$	Columns
29-21	78579	25124417499198271099213387225735713762512091481474474
30-22	93672	
31-23	113792	
32-24	133932	
33-25	1531095	2391791881011496375226121223216302520418245142228537111893
34-26	1761280	
35-27	2001488	
36-28	2251728	11516723323195141
37-29	2642004	
38-30	2972304	
39-31	3332632	
40-32	3703008	25323011518645891562401076223655951532151461205720022221134 1822121682076710125113815161
41-33	4683134	254173311165714720324186163194142912537123244431012239926 1763918714919320420885106105150
42-34	5253516	
43-35	5983882	2476191240301431061958625279542101081808510123220147177206 138113561917418725017341249151235126
44-36	6794032	22312455197113216106230137134189212451491425414622418713190 19424331235167172731761231031821588317079
45-37	7604792	
48-40	10196648	254179199232153531510288229171127210201148694124922754219 24481845976174206141301961071960114186191167247239
51-43	13659100	2545579227154106601331092161131914620315625111823018416769
		834318230732338419617976221164215162502452421341319321153
54-46	176911152	2532307955156851086215423317619615917412367248149137219227 254200742391992441141471852242051932342472101672412061501370 92257341
55-47	191112240	25447121227180114170223178591032331771512365325239141165124 193224104785628134127851962277131622471521991975208202230 2511919031
58-50	253415120	25410714361216301802111389519610446185501022512716810149124 14623712221203194761711561931662271311916773165214241199221 81242711956121186
71-63	627336014	251941991172328958173551392110313413324717977140227276741 170145107841482522069721116118123020821820187229127108214146 194164612211201671151529815917674357022464918524252
80-72	1030065536	251941991172328958173551392110313413324717977140227276741 170145107841482522069721116118123020821820187229127108214146 19416461221120167115152981591767435702246491852421968228190 118152413723952

Table 14: MA 512-Run Designs for $n \leq 25$

Design	$\left(A_{4}, A_{5}, \ldots\right)$	Columns
10-1.1	0000001	511
11-2.1	0002100	127399
12-3.1	0024100	127399179
13-4.1	0048300	127399179341
14-5.1	00716700	127399179341489
15-6.1	00250300	127391155301206501
16-7.1	00440450	127391155301206188358
17-8.1	00680850	127391155301206188358369
18-9.1	001020153	127391155301206188358369468
19-10.1	01284156	127143307181211285327105427473
20-11.1	016120240	127143307181211285327105427473485
21-12.1	021168360	127143307181211285327105427473485510
22-13.1	063189325	127391155301206188358350507105298275369
23-14.1	084252445	127391155301206188358233404304359045099
24-15.1	2102332	1273915553012061883582346938022677441116420
25-16.1	4127428	1271433071812112851054273313373945660453162198

Table 15: Good 512-Run Designs for $26 \leq n \leq 160$

Design	$\left(A_{4}, A_{5}\right)$	Columns
26-17	6158	
27-18	9195	
28-19	13236	
29-20	17285	5014744038224236142230618946140127042710634359480222487196
30-21	22337	
31-22	27402	
32-23	35470	44511834519946859334156497356994301585383153233165387443261 339308
33-24	43556	44511834519946859334156497356994301585383153233165387443261 339172182
34-25	52644	49328317487107310220435201462340113416298269104406427181135 31505469250496
35-26	60756	
36-27	72872	49328317487107310220435201462340113416298269104406427181135 3150546925014058496
37-28	841004	$\begin{aligned} & 3194821713272411094725101162339328230835345131349615486391 \\ & 26742924247149533414975 \end{aligned}$
38-29	991146	
39-30	1151312	4151103331714724219115633835338339011623772961619954146394 18443121128340435093441337
40-31	1331484	4451152302955063133340375297420245383414452488175368497101 34292162306120206353168156125459
41-32	1531694	
42-33	1741930	4451152302955063133340375297420245383414452488175368497101 34292162306120206125459281208426355255
43-34	1972184	
44-35	2222440	43912122735149642622078201396114308255486364489119445338307 562141784551926534815939285417234262508408
45-36	2502730	43912122735149642622078201396114308255486364489119445338307 562141784551926534815939285417234262408279194
46-37	2803051	
47-38	3113411	4711224343022831912274622461771354344977208492344357165496
		121110228408466397211323473388278314450184332103506
48-39	3463775	382391458465355428443317438326360894615522714191303500338214
49-40	3844175	41741029210125225127734720640914714117619917026895487 25328642847115531350637217510520920439471449478117243484339
		203354468328489438434324233191312684053021513317715125230
50-41	4274603	439109496286155188454227393291255232583397841024547934191352 26314130842117536481297119273379150382473212344482461400102

Table 15: Continued

Design	$\left(A_{4}, A_{5}\right)$	Columns
51-42	4685088	5012341213143644312201034791694802716644650410985270158362
		41933521533842834412740628428141020544142646413293239219294
52-43	5215600	49430712748147117190252149270198178301358329208219452376395
		892312801612921804181319350656432108994642514240486349403 279447
54-45	6436648	477593913644103312293092074388622611944145223327929869186134
		12049141529146713921950039274346345264318137261369220286151 14821416
61-52	116411994	239314457124406484419269240895031954763638640123659302330324
		3494751385042519046661792261511678344435445431915711922941
		1333743593093963605244351099
68-59	195920034	494181295223348118443470190449275363224140381237297166131202
		281290440378242358235115364323318209334196124439151130249508
		5011794434343829101398386271325338353137278389266474
78-69	387037963	50537022027959397419195380267864904531904004202511781453079
		503218169612944704673281847634620521316539246335735521726188
		36712634174552703454574863863263332084804113051338527421276
		142157405280151472
87-78	640760906	3793998748118935843904182032814394403091805047836516811776
		1556046049129797292214262236284499349405304505488344410307
		319251846946512027921146732238719138484274267230310240508
		352339111370254455493720633537510642830223457
98-89	1140990646	3792483413169448114140723933845420354242396161329138181304
		2242414184944772153144463743024523319115618625369501468435
		50619974582272182922042955114002831252443513091089136584484
		453323314362341504938528911210226441478465421427942446314
		12225113528635234411
160-151	855601048576	5062064032173421716326948025228345792365298958127653390231
		3004004384124783665054754174546618330380495339279152149359
		39230713748373440243131166138573172007416810827358356234120
		50315019327432148547729445540945211634131841021246539524098
		4861552551409746420346738917850043018022829190415246293165
		27012333643717734512621532242333241842969189218335472303370
		1170458125195436929730436082119604923520538367280363111233 203443194143259245

Table 16: Efficient 1024-Run Designs for $n \leq 45$

Design	$\left(A_{4}, A_{5}, \ldots\right)$	Columns
11-1.1	000000	1023
12-2.1	000030	127911
13-3.1	000430	127911435
14-4.1	000870	127911435725
15-5.1	0001515	127911435725873
16-6.1	0062515	127911435725873158
17-7.1	001241	127911435725873158327
18-8.1	001966	127911435725873158327490
19-9.1	0028104	127911435725873158327490626
20-10.1	0040160	127911435725873158327490626697
21-11.1	0056240	127911435725873158327490626697860
22-12.1	0077352	127911435725873158327490626697860932
23-13.1	002510	127911179341614158968283805466555508535
24-14.1	003360	127911179341614158790440964625995234334589
25-15	022336	
26-16	044358	43989217421384710964729998531805716339701222231
27-17	068392	41589217463190110794493295716314527793697940605586
28-18	090483	41589217463190110794493295716314527793753676455270669
29-19	0118586	638100928398224484454117480912167783545347461520796050392
30-20	0152703	998127433861527714681286299908376220242135975763189610836938
31-21	0189863	638100928398224484454117480912167783545367054401169621778390 957
32-22	02311056	
33-23	02751287	979877351101239136221397430790541281163911418768820292669572 848870534
35-25	10365	
38-28	22564	7024938654227222831002405251953471015899882101163474736554563 7338795738315165171646
40-30	34728	
42-32	48940	859757227557914124988463214678488939154464231023867876396630 537583696805921712822169500754618743
45-35	761344	83096742847522018260184465470351929863635329969929565918875 111725755624307456399832792805386506366621008

Table 17: Efficient 2048-Run Designs for $n \leq 47$

Design	$\left(A_{5}, A_{6}, \ldots\right)$	Columns
12-1.1	000000	2047
13-2.1	000120	2551807
14-3.1	000700	1279111459
15-4.1	0001500	12791114591749
16-5.1	0003000	127911145917491897
17-6.1	0016300	127911145917491897470
18-7.1	0032460	127911145917491897470739
19-8.1	0052780	127911145917491897470739826
20-9.1	0080130	1279111459174918974707398261272
21-10.1	00120210	12791114591749189747073982612721309
22-11.1	00176330	127911145917491897470739826127213091614
23-12.1	00253506	1279111459174918974707398261272130916141956
24-13	085272	
25-14	0119336	
26-15	0166416	
27-16	0230512	16461438247174812276351807494135696919648542047129915211378
28-17	04210	1946186310011660757671433136162625412215512004107815493971402
29-18	05370	159874319311367426147369611443581754174963517971615185810121500 179
30-19	06770	164682314941693109682968186912431294133010094946289911872376 10671453
31-20	08450	172237993516234941426223527129496216706371816248108114831500 1453409747
32-21	010480	
33-22	012850	
34-23	015620	7439541387152410778801417204742110012147901454618108215741709 17363131474731654913
35-24	1211069	
40-29	3312170	1822164510121423118755511801137202745319901511528295818362185 132113569416071713825139412978048481198243
45-34	6734493	
47-36	8465922	1243995381165419931063916188815502002162471982357211806891299 8901342183163572626935033712541532108019981352123719781443531 1701306

Table 18: Efficient 4096-Run Designs for $n \leq 65$

Design	$\left(A_{5}, A_{6}, \ldots\right)$	Columns
13-1.1	000000	4095
14-2.1	000021	5113615
15-3.1	000340	25518072867
16-4.1	000780	255180728673413
17-5.1	0001416	2551807286734133734
18-6.1	000450	204721112503277729223308
19-7.1	000780	2047211125032777292233082996
20-8.1	0001300	20472111250327772922330829963441
21-9.1	0002100	204721112503277729223308299634413482
22-10.1	0003300	2047211125032777292233082996344134823670
23-11.1	0005060	20472111250327772922330829963441348236703747
24-12.1	0007590	204721112503277729223308299634413482367037473853
25-13	015196	40313914165727711507255274634729133273318622062693
26-14	036249	
27-15	057309	40313914165727711507255228412978167513383249296423821253212
28-16	090396	403134294718893922328930336223459338494623852540172128842700
29-17	0130488	40313914165727711507291725522841297816751338350742315835331984 301
30-18	0195544	403139141657277115077502552319028411675324935654048333436492204 14283644
31-19	0282633	4088123132543427403818831457158732452961335337002764381936103404 9572142996
32-20	0402448	3821152219319492239843726289920772486270638341918285932053985 484361131962360
35-23	08560	351189027342531623398831661349195524651657913671278921199733683 21419812927365217723964
40-28	020860	
41-29	024600	3447719143829654076141728742246337382320042497744247835062698 36477013277108214793172381539479973091235629111952
45-33	044900	
48-36	067680	40872862146822353530165886634511707316635891423260116845513656
		3851355625573968325417353345604189330484712630286933134911585 2840243538032249
65-53	222321840	300612453924215914412808815172133521887165312343560365910633590 25454579979153300382317312508109836658603132145842933821555609 1433308722272435374737762313242315314083399019312402333228281581 191017582191018

