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Fractional factorial designs are widely used in practice and typically chosen according to the

minimum aberration criterion. A sequential algorithm is developed for constructing efficient

fractional factorial designs. A construction procedure is proposed that only allows a design to

be constructed from its minimum aberration projection in the sequential build-up process. To

efficiently identify nonisomorphic designs, designs are divided into different categories accord-

ing to their moment projection patterns. A fast isomorphism check procedure is developed by

matching the factors using their delete-one-factor projections. This algorithm is used to com-

pletely enumerate all 128-run designs of resolution 4, all 256-run designs of resolution 4 up to

17 factors, all 512-run designs of resolution 5, all 1024-run designs of resolution 6, and all 2048-

and 4096-run designs of resolution 7. A method is proposed for constructing minimum aberra-

tion designs using only a partial catalog of some good designs. Three approaches are further

suggested for constructing good designs with a large number of factors. Efficient designs, often

with minimum aberration, are tabulated up to 40, 80, 160, 45, 47, and 65 factors for 128, 256,

512, 1024, 2048, and 4096 runs, respectively.

KEY WORDS: Fractional factorial design, isomorphism, linear code, MacWilliams identity,

minimum aberration, resolution
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1 Introduction

Fractional factorial (FF) designs are widely used in many areas of science, engineering and industry.

With the rapidly increasing computational power, more and more large FF designs are used in large

scale computer experiments where physical processes are being simulated. Lin and Sitter (2008)

reported that FF designs with over 600 runs and as many as 53 parameters were used in computer

simulations at Los Alamos National Laboratory. Kleijnen et al. (2005) reported a few computer

simulations that investigated dozens or hundreds of factors.

Two-level FF designs with several hundred or thousand runs can be very useful in real appli-

cations. Consider an application described by Mee (2004) and Telford (2007). The researchers

at Johns Hopkins University employed several two-level FF designs in a ballistic missile defense

project to assess the sensitivity of 47 parameters of an extended air defense simulation in two far-

term scenarios over the first 10 days of a war. In the first scenario, a resolution IV design with 512

runs was initially used and followed by 17 additional designs (for a total of 352 additional runs) to

resolve aliasing of two-factor interactions. In the second scenario, the researchers used a resolution

V design with 4096 runs constructed by SAS PROC FACTEX. Half of the 4096 runs could have

been saved if they had obtained a resolution V design with 2048 runs; see Section 4 for such a

design.

FF designs are often chosen by the minimum aberration (MA) criterion (Fries and Hunter

1980), an extension of the maximum resolution criterion (Box and Hunter 1961). Most textbooks

and references in the literature provide MA designs up to 128 runs only; see, among others, Box,

Hunter, and Hunter (2005), Dean and Voss (1999), Montgomery (2005), Mukerjee and Wu (2006),

and Wu and Hamada (2000). The construction of efficient designs is very challenging when the run

size is large. Few algorithms are available and they are not effective.

It was four decades ago when Draper and Mitchell first attacked this challenging problem

seriously. Draper and Mitchell (1967, 1968) developed a stage-by-stage algorithm and completely

enumerated all 256-run designs of resolution ≥ 5 and all even 512-run designs of resolution ≥ 6.

An even design contains entirely defining words of even length whereas an odd design has at least

one defining word of odd length. Draper and Mitchell (1970) attempted but failed to construct

the complete set of even 1024-run designs of resolution ≥ 6 and the complete set of odd 512-run

designs of resolution ≥ 5. They obtained 4,043 distinct even 1024-run designs of resolution ≥ 6; as

we will see later, they missed about 30% designs.
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The construction of efficient FF designs is relatively easier when the run size is smaller. Chen,

Sun and Wu (1993, CSW hereafter) developed a sequential algorithm and enumerated all 8, 16, 27,

32-run designs of resolution ≥ 3 and 64-run designs of resolution ≥ 4. Xu (2005) extended their

work and enumerated all 81-run designs of resolution ≥ 3, 243-run designs of resolution ≥ 4, and

729-run designs of resolution ≥ 5. Based on a conjecture, Block and Mee (2005) constructed MA

128-run designs for 12 to 64 factors. Lin and Sitter (2008) developed an algorithm and enumerated

all 128-run designs of resolution ≥ 4 up to 16 factors, all 512-run designs of resolution ≥ 5 up to

17 factors, and all even 1024-run designs of resolution ≥ 6 up to 18 factors.

A key step in any algorithmic construction of FF designs is to determine whether two designs are

isomorphic. Two FF designs are isomorphic (or equivalent) if and only if one may be obtained from

the other by relabeling the factors and/or relabeling the levels of one or more factors. Two designs

are distinct if they are not equivalent. For large FF designs, the test of equivalence of two designs

requires an excessive amount of computer time, so many test procedures have been proposed to

quickly identify nonisomorphic designs. Draper and Mitchell (1967) used the wordlength pattern

to distinguish designs. Unfortunately, two nonisomorphic designs can have the same wordlength

pattern, so Draper and Mitchell (1970) used a “letter pattern comparison” to test the equivalency of

two designs and conjectured that FF designs with the same letter pattern are isomorphic. However,

Chen and Lin (1991) disproved their conjecture by constructing two nonisomorphic 231−15 designs

with the same letter pattern. Zhu and Zeng (2005) reported that counter examples exist for as small

as 32 runs; they also proposed a more sensitive test based on the coset pattern, which still fails to

determine a design uniquely. Block and Mee (2005) conjectured that two designs are isomorphic

if their sets of delete-one-factor projections are equivalent. See Clark and Dean (2001), Ma, Fang,

and Lin (2001), Xu (2005), and Lin and Sitter (2008) for other test procedures.

In this paper we develop a new algorithm for constructing efficient FF designs with large run

sizes. As in other algorithms, we construct designs sequentially by adding one column at a time. We

introduce an intelligent construction procedure that only allows a design to be constructed from its

MA projection in the sequential build-up process. This procedure discards many isomorphic designs

without performing time-consuming isomorphism checks. As we will see later, this procedure is

more efficient than the procedure used by Lin and Sitter (2008) who adopted a combined approach

from Bingham and Sitter (1999). To identify nonisomorphic designs, we divide designs into different

categories according to their moment projection patterns. As demonstrated by Xu (2005), the use

of moment projection patterns is more efficient than the use of letter patterns in terms of both
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distinguishing designs and computation. To test whether two designs in the same category are

isomorphic, we develop a fast isomorphism check procedure by matching the factors using their

delete-one-factor projections. This procedure skips many unsuccessful relabeling maps and is much

more efficient than the procedures used by CSW and Lin and Sitter (2008). The new algorithm

enables us to completely enumerate all 128-run designs of resolution ≥ 4, all 256-run designs of

resolution ≥ 4 up to 17 factors, all 512-run designs of resolution ≥ 5, all 1024-run designs of

resolution ≥ 6, and all 2048- and 4096-run designs of resolution ≥ 7. Based on an upper bound

on the wordlength pattern, we propose a method for constructing MA designs using only a partial

catalog of some good designs. This enables us to construct MA designs efficiently when the run size

or the number of factors is small. However, as both the run size and the number of factors increase,

the construction of MA designs becomes infeasible thus we further propose three approaches for

constructing good designs. We tabulate efficient designs up to 40, 80, 160, 45, 47, and 65 factors

for 128, 256, 512, 1024, 2048, and 4096 runs, respectively. For clarity, we consider only two-level

regular FF designs. The extension to multi-level designs is straightforward.

In Section 2, we review some basic concepts, definitions and preliminary results. We describe

the construction methods in Section 3. Tables of designs with 128–4096 runs are given in Section

4 and concluding remarks are given in Section 5.

2 Basic concepts, definitions and preliminary results

A regular 2n−k FF design, denoted by D, has n factors of two levels and 2n−k runs. A factor is

also called a letter or a column whereas a run is called a row. Associated with every regular 2n−k

design is a set of k independent defining words. The defining contrast subgroup of D consists of all

possible products of the k defining words and has 2k words (including the identity I). Let Ai(D) be

the number of words of length i. The vector (A1(D), . . . , An(D)) is called the wordlength pattern.

The resolution is the smallest i such that Ai(D) > 0.

Let D1 and D2 be two regular 2n−k designs. D1 is said to have less aberration than D2 if there

exists an r such that Ai(D1) = Ai(D2) for i = 1, . . . , r − 1 and Ar(D1) < Ar(D2). D1 is said to

have minimum aberration (MA) if there is no other regular design with less aberration than D1.

A 2n−k design D of resolution R is said to have weak MA (Chen and Hedayat 1996) if it has

maximum resolution and AR(D) is minimized among all regular designs.
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2.1 Connection with coding theory

The connection between factorial designs and linear codes is important in the development of our

algorithm. For an introduction to coding theory, see Hedayat, Sloane, and Stufken (1999, Chapter

4) and MacWilliams and Sloane (1977).

A regular 2n−k FF design D is also known as a linear code of length n and dimension n − k

over the binary field GF (2) in coding theory. Associated with every binary linear code is another

linear code, the dual code D⊥, that consists of all row vectors (u1, . . . , un) over GF (2) such that∑n
i=1 uivi = 0 for all (v1, . . . , vn) in D.

The Hamming weight of a vector (u1, . . . , un) is the number of nonzero components ui. Let

Bi(D) and Bi(D⊥) be the number of rows with Hamming weight i in D and D⊥, respectively.

The vectors (B0(D), B1(D), . . . , Bn(D)) and (B0(D⊥), B1(D⊥), . . . , Bn(D⊥)) are called the weight

distributions of D and D⊥.

The weight distributions of D and D⊥ are related through the MacWilliams identities.

Bj(D⊥) = 2−(n−k)
n∑

i=0

Pj(i;n)Bi(D) for j = 0, . . . , n, (1)

where Pj(x;n) =
∑j

i=0(−1)i
(
x
i

)(
n−x
j−i

)
are the Krawtchouk polynomials.

It is easy to see from the definitions that the defining contrast subgroup of D is indeed the dual

code D⊥ and that the wordlength pattern of D is the weight distribution of D⊥, that is,

Ai(D) = Bi(D⊥) for i = 1, . . . , n.

By definition, the wordlength pattern is computed via counting words in the defining contrast

subgroup. This direct approach can be cumbersome when k is large, because there are 2k words in a

2n−k design. The connection with coding theory leads to an alternative approach. We can compute

Ai(D) via the weight distribution Bi(D) and the MacWilliams identities (1). The Krawtchouk

polynomials need to be computed once for each n and can be efficiently calculated via the following

recursive identity:

Pj(x;n) = Pj(x− 1;n)− Pj−1(x;n)− Pj−1(x− 1;n)

and the initial values P0(x;n) = 1 and Pj(0;n) =
(
n
j

)
. We use the alternative approach in our

algorithm, because it is faster than the direct approach when k > n− k.
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2.2 Delete-one-factor projections

For a 2n−k design D and i = 1, . . . , n, let D(−i) be the resulting 2(n−1)−(k−1) design when the ith

column is deleted. These sub-designs are called the delete-one-factor projections of D. Note that

D(−i) may be degenerate in the sense that it has less than 2n−k distinct runs.

The next two properties about MA delete-one-factor projections are important in our construc-

tion.

Lemma 1. For a 2n−k design D, if D(−i) has MA among all delete-one-factor projections of D,

then the ith column is a product of some of the other columns and therefore D(−i) is not degenerate.

Proof. Suppose the result is not true, then the ith column is independent of the other columns and

therefore it does not appear in any word of D. Then we can choose another column that appears

in some word and deleting that column would yield a design having less aberration than D(−i),

which is a contradiction.

Lemma 2. Suppose that D is a 2n−k design of resolution R with δn words of length R. If D(−i)

has MA among all delete-one-factor projections of D, then D(−i) has at most δn−dR ·δn/ne words

of length R, where dxe is the smallest integer that is greater than or equal to x.

Proof. Each word of length R consists of R factors, so on average each factor appears in R · δn/n

words of length R. There must exist a factor that appears in at least dR · δn/ne words. Deleting

this factor yields a design that has at most δn − dR · δn/ne words of length R. The lemma follows

from the fact that MA projection D(−i) has the least number of words of length R.

3 Construction Methods

3.1 Basic idea

Following CSW, we construct designs sequentially by adding one factor at a time. We first review

the basic idea of CSW’s algorithm and then describe how to improve it.

Denote r = n − k. Let G be an r × (2r − 1) matrix that consists of all nonzero r-tuples

(u1, . . . , ur)T from GF (2). It is well known that every regular 2n−k FF design can be viewed as n

columns of an 2r × (2r − 1) matrix H, which consists of all linear combinations of the rows of G

over GF (2).
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Let CR
n,k be the set of nonisomorphic 2n−k designs of resolution ≥ R. CSW constructed CR

n+1,k+1

from CR
n,k by adding an additional column. For each design in CR

n,k, there are 2r − 1 − n ways to

add a column to produce a design with n + 1 columns. Let C̃n+1,k+1 be the set of these designs.

Obviously, |C̃n+1,k+1| = (2r − 1 − n)|CR
n,k|. It is evident that CR

n+1,k+1 is a subset of C̃n+1,k+1.

However, some designs in C̃n+1,k+1 are isomorphic and some may have resolutions less than R. To

construct CR
n+1,k+1, it is necessary to eliminate these redundant designs. It is easy to eliminate

designs of resolution < R but is more difficult to eliminate isomorphic designs. To speed up

the isomorphism check process, CSW divided all designs into different categories according to

their wordlength patterns and letter patterns. Obviously, designs in different categories are not

isomorphic. However, designs in the same category are not necessarily isomorphic and therefore

a complete isomorphism check has to be applied to determine whether or not two designs are

isomorphic.

3.2 A modified construction procedure

One problem with CSW’s algorithm is that too many isomorphic designs are generated in the

sequential build-up process, because a 2(n+1)−(k+1) design can be generated from as many as n+ 1

distinct 2n−k designs. We solve this problem by only allowing a design to be generated from its

MA delete-one-factor projection.

We modify the construction procedure as follows. For any design D in CR
n,k, adding a column

to D yields a candidate design Dc. Discard Dc if its resolution is less than R or if D does not have

MA among all delete-one-factor projections of Dc.

For illustration consider the construction of 27−3 designs. According to CSW, there are four

distinct 26−2 designs and five distinct 27−3 designs, labeled as 6-2.i and 7-2.j, where the designs

are ranked according to the MA criterion. For each 26−2 design, we can add one of the remaining

9 columns to obtain a 27−2 design. Table 1 shows the number of times that each 27−3 design is

generated in the (unmodified) sequential construction. For example, design 7-3.3 is generated three

times from design 6-2.2, nine times from design 6-2.3 and four times from design 6-2.4. The modified

construction procedure only allows design 7-3.3 to be generated from design 6-2.2, because it has MA

among all delete-one-factor projections of design 7-3.3. Under the original construction procedure

we need to entertain 4×9 = 36 designs whereas under the modified construction procedure we need

to entertain only 14 designs (boldfaced in Table 1). Because there are five distinct 27−3 designs,

we reduce the number of isomorphism checks from 31 to 9.
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Table 1: Number of Times that 27−3 Designs are Generated in the Sequential Construction

27−3 Designs

Design A3 7-3.1 7-3.2 7-3.3 7-3.4 7-3.5

6-2.1 0 2 6 0 1 0

6-2.2 1 0 6 3 0 0

6-2.3 2 0 0 9 0 0

6-2.4 2 0 2 4 1 2

Table 2: Number of Designs Entertained in Creating Catalogs of 128-run Designs of Resolution ≥ 4

n

Procedure 8 9 10 11 12 13 14 15 16

CSW 99 458 1,104 2,597 6,632 16,200 36,192 79,064 160,040

Bingham and Sitter 99 186 506 1,367 3,499 7,950 15,798 29,062 48,889

Author 99 299 341 502 890 1,952 4,028 7,969 14,176

True 5 13 33 92 249 623 1,535 3,522 7,500

Bingham and Sitter (1999) proposed a construction procedure that combines the search table

method of Franklin and Bailey (1977) and Franklin (1985) with the sequential approach. Table

2 shows the comparison of the construction procedures in the construction of 128-run designs of

resolution ≥ 4. The last row of the table shows the number of distinct designs. As the table shows,

both the combined procedure of Bingham and Sitter (1999) and our modified procedure signifi-

cantly reduce the number of designs entertained. For n ≥ 10, our modified procedure entertains

substantially fewer designs than the other two procedures.

We now show, by induction, that every possible 2n−k design of resolution ≥ R in 2r runs is

isomorphic to a design in CR
n,k under the modified construction procedure. It is trivial that this

is true for n = r + 1. Suppose this is true for n = r + k. Consider n + 1 = r + k + 1. Let

D = (c1, . . . , cn+1) be a 2(n+1)−(k+1) design of resolution ≥ R in 2r runs. Suppose that D(−i)

has MA among all possible delete-one-factor projections of D. Lemma 1 implies that D(−i) must

be a non-degenerate 2n−k design of resolution ≥ R. By the assumption for 2n−k designs, there

exists a design Dn in CR
n,k that is isomorphic to D(−i). Let π be the isomorphic map from D(−i)

to Dn, i.e., Dn = π(D(−i)). Note that π(ci) is uniquely defined under this isomorphic map.
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Let π(D) = (Dn, π(ci)). Clearly π(D) is entertained in the modified construction procedure and

therefore D is isomorphic to a design in CR
n+1,k+1. This completes the proof.

3.3 A nonisomorphism classification procedure

Xu (2005) observed that the use of wordlength patterns and letter patterns is not efficient in

identifying nonisomorphic designs for three-level FF designs. Following Xu (2005), we divide designs

into different categories according to their weight distributions and moment projection patterns (to

be defined next). As explained in Section 2.1, the use of weight distributions is equivalent to

the use of wordlength patterns in terms of distinguishing designs but is more efficient in terms of

computation (when k > r).

For a 2n−k design D and an integer p, p < n, there are
(
n
p

)
p-factor projections. For each

p-factor projection, say Dp, and an integer t, compute the tth power moment

Kt(Dp) =
p∑

i=0

(p− i)tBi(Dp),

where Bi(Dp) is the number of row vectors of Dp with Hamming weight i. The power moment Kt

was introduced by Xu (2003) and Xu and Deng (2005) for ranking and classifying nonregular de-

signs. The frequency distribution of Kt-values of all p-factor projections is called the p-dimensional

Kt-value distribution. It is evident that isomorphic designs have the same p-dimensional Kt-value

distribution for all positive integers t and p < n. Whenever two designs have different p-dimensional

Kt-value distributions for some t and p, these two designs must be nonisomorphic.

To ease the computation, we fix t and let p vary from n−1 to n−q, where q is a pre-chosen small

number, say 2 or 3. The corresponding q Kt-value distributions are called the moment projection

pattern. It requires O(nq) operations to compute the moment projection pattern. The choice of t

does not make a difference provided t > 5 in most cases. In the algorithm, we fix t arbitrarily at

t = 10.

Table 3 shows the numbers of designs identified by the wordlength pattern (WLP), letter pattern

(LP), moment projection pattern (MPP) with q = 1 and 2 in the construction of 128-run designs

of resolution ≥ 4 for n ≤ 16. Note that the moment projection pattern with q = 1 and the letter

pattern identify the same numbers of designs. The moment projection pattern with q = 2 correctly

identifies all nonisomorphic designs for n ≤ 16.

As Table 3 shows, the moment projection pattern check with q = 1 has the same or nearly the

same classification power as the letter patten check whereas the moment projection pattern check
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Table 3: Number of Designs Identified for 128-Run Designs of Resolution ≥ 4

n

Method 8 9 10 11 12 13 14 15 16

WLP 5 13 28 68 152 297 518 889 1,425

LP 5 13 33 92 247 617 1,506 3,467 7,229

MPP (q = 1) 5 13 33 92 247 617 1,506 3,467 7,229

MPP (q = 2) 5 13 33 92 249 623 1,535 3,522 7,500

with q = 2 or 3 typically has more classification power. Furthermore, when k is large, the moment

projection pattern check is faster than the letter pattern check.

3.4 A fast isomorphism check procedure

We first review the isomorphism check procedure proposed by CSW. Consider two 27−3 designs

defined by

D1 : 5 = 123, 6 = 124, 7 = 13 and D2 : 5 = 12, 6 = 124, 7 = 234,

which have the same wordlength pattern and letter pattern. CSW’s procedure works as follows:

1. Select four independent columns from D2, say, {1, 2, 3, 6}. There are
(
7
4

)
choices.

2. Select a relabeling map from {1, 2, 3, 6} to {a, b, c, d}, say, a = 1, b = 2, c = 3, and d = 6.

There are 4! choices.

3. Write the remaining columns, {4, 5, 7}, in D2 as interactions of {a, b, c, d}, i.e., 4 = abd,

5 = ab, and 7 = acd. Then D2 can be written as {a, b, c, d, ab, abd, acd}.

4. Compare the new representation of D2 with that of D1. If they match, D1 and D2 are

isomorphic, and the process stops. Otherwise, return to step 2 and try another map of

{a, b, c, d}. When all the relabeling maps are exhausted, return to step 1 and find next four

columns.

If two designs are isomorphic, an isomorphic map will be found eventually. Otherwise, two designs

are not isomorphic. In the worst case, it requires O(n
(
n
r

)
r!) operations to declare that two 2n−k

designs are not isomorphic.
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Table 4: Weight Distributions of Delete-One-Factor Projections

D1 D2

Projection B0 B1 B2 B3 B4 B5 B6

D1(−1) 1 0 4 6 3 2 0

D1(−2) 1 0 4 6 3 2 0

D1(−3) 1 0 4 6 3 2 0

D1(−4) 1 1 2 6 5 1 0

D1(−5) 1 0 4 6 3 2 0

D1(−6) 1 1 2 6 5 1 0

D1(−7) 1 0 3 8 3 0 1

Projection B0 B1 B2 B3 B4 B5 B6

D2(−1) 1 0 4 6 3 2 0

D2(−2) 1 0 4 6 3 2 0

D2(−3) 1 1 2 6 5 1 0

D2(−4) 1 0 4 6 3 2 0

D2(−5) 1 0 3 8 3 0 1

D2(−6) 1 0 4 6 3 2 0

D2(−7) 1 1 2 6 5 1 0

We improve the isomorphism check procedure by considering delete-one-factor projections. Let

π be a permutation of {1, . . . , n}. If π is an isomorphic map from D1 to D2, D1(−i) and D2(−π(i))

must be isomorphic and therefore they must have the same weight distribution. So π cannot be an

isomorphic map if D1(−i) and D2(−π(i)) do not have the same weight distribution for some i.

For convenience, we call a permutation π feasible if D1(−i) and D2(−π(i)) have the same weight

distribution for every i. A relabeling map is feasible if its induced permutation is feasible. The

key idea of our new isomorphism check procedure is to entertain only feasible relabeling maps by

matching the factors using the weight distributions of the delete-one-factor projections.

We illustrate our procedure with the two 27−3 designs mentioned earlier. Here are the steps.

1. Compute the weight distributions of the delete-one-factor projections (delete-one weight dis-

tributions, for short) for both designs; see Table 4. For each column of D1, count the frequency

that each delete-one weight distribution appears. Let ni be the frequency for the ith column.

Here n1 = n2 = n3 = n5 = 4, n4 = n6 = 2 and n7 = 1.

2. Relabel the columns of D1 by selecting four new independent columns so that their frequency

numbers ni are as small as possible. For example, we select columns {7, 4, 6, 1} as the new

independent columns. We relabel them as {a, b, c, d}, i.e., a = 7, b = 4, c = 6, d = 1, and

write the remaining three columns as their interactions, i.e., 2 = bcd, 3 = ad, and 5 = abcd.

So after relabeling, D1 becomes D′1 : {a, b, c, d, ad, bcd, abcd}. The purpose of this step is to

reduce the number of feasible relabeling maps to be considered in the next step.

3. Select four independent columns from D2 that have the same delete-one weight distributions
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Table 5: Time to Create Catalogs of 128-Run Designs of Resolution ≥ 4

n

Algorithm 8 9 10 11 12 13 14 15 16

CSW 0s 1s 4s 27s 2m32s 10m30s 37m48s 2h27m 6h43m

Author 0s 0s 0s 1s 1s 4s 8s 16s 39s

NOTE: The CSW’s algorithm is modified so that two algorithms differ only in the isomorphism

check procedures used. The h, m, and s stand for hour, minute, and second, respectively.

as the four independent columns from D′1, and relabel the columns. To obtain a feasible map

from D2 to D′1, we must relabel column 5 of D2 as a, because only column 5 has the same

delete-one weight distribution as factor a of D′1. Similarly, we must relabel column 3 or 7 of

D2 as b or c. We can relabel column 1, 2, 4, or 6 of D2 as d. There are 1× 2× 4 = 8 choices

of feasible relabeling maps. For example, we choose a = 5, b = 3, c = 7, d = 1 and write the

remaining columns as 2 = ad, 4 = abcd, 6 = bcd. It is clear now that D2 is isomorphic to D′1

and hence to D1.

4. If two designs do not match after relabeling the independent columns, consider another choice

of relabeling and/or another choice of independent columns in step 3. If none of the choices

yields to an identical design, two designs are not isomorphic.

In the above example, we entertain only eight feasible relabeling maps out of
(
7
4

)
4! = 840

possible choices of relabeling maps. It can be verified that any of the eight feasible relabeling maps

leads to an isomorphic map. This is not true in general.

In theory our new isomorphism check procedure still requires O(n
(
n
r

)
r!) operations in the worst

case. In practice, the new isomorphism check procedure saves tremendous amount of computing

time, because the worst case happens rarely.

To see the computational advantage of the our new isomorphism check procedure, we develop

two algorithms with everything the same except isomorphism check procedures, one with the orig-

inal procedure by CSW and the other with our new procedure. Table 5 shows the real time

comparison of these two procedures in constructing 128-run designs of resolution ≥ 4. The savings

are tremendous and become larger for larger designs. The times are taken on a 2GHz PowerPC G5

computer.
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Table 6: Illustration of Constructing MA 256-Run Designs for n ≤ 28

n 9 10 11 12 13 14 15 16 17 18

δn 0 0 0 0 0 1 2 3 5 7

|C4
n,k(δn)| 5 9 11 14 15 124 617 1,836 14,158 46,929

n 19 20 21 22 23 24 25 26 27 28

δn 9 12 16 20 25 31 38 46 54 64

|C4
n,k(δn)| 56,821 104,654 258,535 136,105 65,070 23,981 5,610 661 6 1

The isomorphism check can be made faster in some situations. It is evident that two designs are

isomorphic if and only if their dual codes are isomorphic. So when k < r, we perform isomorphism

checks on the dual codes. This technique was previously used by Lin and Sitter (2008).

As an alternative, we can match columns using their letter patterns. It can be shown that the

use of delete-one weight distributions is equivalent to the use of letter patterns. We use the former

because it is faster to compute delete-one weight distributions than letter patterns when k > r.

Clark and Dean (2001) presented a method of determining isomorphism of any two FF designs,

regular or nonregular, by examining the Hamming distances of their projection designs. They also

developed an algorithm for checking the isomorphism of two-level designs. Their isomorphism check

procedure, adopted by Lin and Sitter (2008), is inferior to ours for the regular design case, because

it ignores the special properties of regular designs and requires O(n(n!)2) operations in theory for

the worst case.

3.5 Construction of MA designs

It is infeasible to enumerate all designs in many situations. Here we propose a method for con-

structing MA designs by enumerating a subset of good designs.

Let CR
n,k(δn) be the set of nonisomorphic 2n−k designs of resolution ≥ R with at most δn words

of length R. We can sequentially build up CR
n,k(δn) as before. To construct CR

n,k(δn), according to

Lemma 2, it is sufficient to add a column to every design in CR
n−1,k−1(δn−1), where

δn−1 = δn −
⌈
R · δn
n

⌉
. (2)

For illustration, consider the construction of MA 256-run designs for n ≤ 28. It is known from

Block (2003) that there is a resolution IV 228−20 design with A4 = 64. We set R = 4, δ28 = 64,
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and compute δn−1 backward using (2) recursively for n = 28, . . . , 10. Then we build up C4
n,k(δn)

forward for n = 9, . . . , 28. By completely enumerating C4
n,k(δn), we obtain all MA 256-run designs

for n ≤ 28. Table 6 shows the value of δn and the cardinality of C4
n,k(δn). From the table, we know

that there is a unique resolution IV 228−20 design with A4 ≤ 64. The 14,158 designs that must be

considered at n = 17 (to verify that the 28-factor design has MA) represent fewer than 1% of the

resolution IV designs.

As the example shows, the method is very effective in reducing the number of designs to be

evaluated in the construction of MA designs. It works well when the run size or the number of

factors is small, or as long as we can enumerate all the distinct designs encountered at each stage.

However, this becomes infeasible when both the run size and the number of factors are large,

simply because there are too many designs to be enumerated. Indeed, we fail to construct MA 256-

run designs for n ≥ 29 because we encounter several million designs which exhaust the computer

memory. The construction of MA designs is extremely difficult, if not infeasible, for larger runs

and larger n.

3.6 Construction of good designs

Good designs with dozens of factors and several hundred or thousand runs are also useful in real

applications but require further effort to obtain them. Here we propose three approaches, similar

to what Block (2003) used in the construction of 256-run designs.

The first approach is a simple modification of the basic algorithm. We limit the number of

distinct designs retained in the sequential search. Specially, we sort the designs according to the

MA criterion, then build up from them to at most M designs at each stage. To speed up the search,

we often skip the isomorphism check and distinguish designs using wordlength patterns only. This

simple modification works well for small n when the basic algorithm fails. Indeed, most of the MA

designs can be quickly obtained in this way. Two shortcomings of this approach are (i) there may

be no eligible designs at some stage and (ii) the resulting designs may depend on those retained

in the previous stages. To alleviate these shortcomings, we randomize the order of the columns to

be added in the sequential build-up process and run the algorithm a few times, which may lead to

some improved designs.

The second approach is to perform a random stepwise search and maintain a list of best designs

during the search. We randomly generate designs by adding one column at a time. At each stage

we retain only one design, compare it with the best design in the list using the MA criterion and

14



Table 7: Methods Used in the Construction of Good Designs

Run Size

Method 128 256 512 1024 2048 4096

Basic Algorithm ≤ 40 ≤ 28 ≤ 25 ≤ 24 ≤ 23 ≤ 24

Approach 1 29–40 26–50 25–31 & 34–45 35–40 25–30

Approach 2 41–80 51–98 24–31 31–41

Approach 3 99–160 32–33 32–34 & 41–47 42–65

update the list if it is better. If a better design is found, we further perform a naive backward search

which compares its MA delete-one-factor projection with the best design in the list. We repeat

the naive backward search until no better projection designs can be found. The random search,

only involving the computation and comparison of wordlength patterns, is very fast; therefore, we

can repeat the whole process a large number of times, say L times. This approach can construct

some good designs with large n when the first approach fails. For example, we obtain MA 256-run

designs with n=69–80 via this approach; see next section for more details.

The third approach is to start with some known good designs with large n and perform a

naive backward search. The doubling method proposed by Chen and Cheng (2006) can be used

to construct good resolution IV designs with large n. Specially, by repeatedly doubling the 25−1

design defined by I = ABCDE, we can construct a resolution IV design with 16 × 2k runs and

5 × 2k factors for any k ≥ 1. Chen and Cheng (2006) showed that such a design has MA and its

projection designs are also good when n is close to 5× 2k. For resolution V designs, the doubling

method does not work. Since a 2n−k design of resolution V is equivalent to a binary linear code

with length n, dimension k and minimum distance 5, we can use some existing linear codes. In

particular, we obtain 233−23, 247−36 and 265−53 designs of resolution V from the corresponding

linear codes in Chen (1991) and Brouwer (1998). By folding over the first two designs, we further

obtain 234−23 and 248−36 designs of resolution VI. This approach gives us a few more good designs

with large n.

When the basic algorithm fails, we try all three approaches to construct good designs. Table

7 shows the methods used in the construction of good designs presented in the next section. The

basic algorithm can generate all MA designs up to 40 factors for 128 runs and up to 23–28 factors

for 256–4096 runs. For 128 runs, the basic algorithm can be used to construct all MA designs with
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Table 8: Comparison of Some Good Designs

Run Size Method n = 25 n = 30 n = 35 n = 40 n = 45

256 Author A4 = 34 A4 = 93 A4 = 200 A4 = 370 A4 = 760

SAS A4 = 40 A4 = 119 A4 = 285 A4 = 580 A4 =1,010

512 Author A4 = 4 A4 = 22 A4 = 60 A4 = 133 A4 = 250

SAS A4 = 4 A4 = 22 A4 = 63 A4 = 614 A4 =1,427

1024 Author A5 = 22 A5 = 152 A4 = 10 A4 = 34 A4 = 76

SAS A5 = 55 A5 = 163 A4 = 180 A4 = 783 A4 =1,480

2048 Author A6 = 119 A6 = 677 A5 = 121 A5 = 331 A5 = 673

SAS A6 = 139 A6 = 690 A5 = 112 A5 = 351 –

4096 Author A6 = 15 A6 = 195 A6 = 856 A6 =2,086 A6 =4,490

SAS A6 = 56 A6 = 329 A6 = 971 A6 =2,117 –

NOTE: SAS is run for up to 30 minutes on a MacBook with a 2.16 Ghz Intel Core 2 Duo CPU for

each case. SAS fails to construct a resolution V design with 2048 runs for n = 45 and a resolution

VI design with 4096 runs for n = 45.

some existing theories; see the next section. The first approach performs well for relatively small n

while the second approach is more effective for medium to large n. In order to obtain good designs

in a reasonable time, we set M =10,000 for resolution IV designs and M = 1, 000 for resolution V

or VI designs in the first approach and set L =100,000 for 256 runs and L = 10, 000 for 512–4096

runs in the second approach. It takes about 15 and 9 minutes on a MacBook to search designs with

1024 runs and n ≤ 45 using the first and second approach, respectively.

To determine the efficiency of our methods and designs, we use SAS PROC FACTEX to con-

struct MA designs and compare them to ours. Table 8 lists the minimum A4, A5, or A6 values for

resolution IV, V, or VI designs with 256–4096 runs and n = 25, 30, 35, 40 and 45. Our designs

are much better than the SAS designs except for three cases. For 512 runs and n = 25 or 30, our

design has the same A4 value as the SAS design. For 2048 runs and n = 35, our design has a larger

A5 value and is worse. In all other cases, our designs have smaller A4, A5 or A6 values and thus

are better. The differences are the most substantial for 1024 runs and n = 35, 40, and 45.
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4 Tables of designs

Using the basic algorithm we completely enumerate all 128-run designs of resolution ≥ 4 up to 32

factors, all 256-run designs of resolution ≥ 4 up to 17 factors, all 512-run designs of resolution ≥ 5,

all 1024-run designs of resolution ≥ 6, and all 2048- and 4096-run designs of resolution ≥ 7. Table

9 shows the number of nonisomorphic designs for various run sizes and resolutions. The complete

set of designs can be obtained from the author upon request.

We further enumerate separately all odd 128-run designs of resolution ≥ 4, which exist for

n ≤ 40, and all even 128-run designs of resolution ≥ 4 for n ≤ 32. For n > 32 all even 128-run

designs of resolution IV can be obtained via their complementary even designs; see Butler (2003)

and Xu and Cheng (2008). Therefore, all 128-run designs of resolution IV can be obtained. We

also completely enumerate all even 256-run designs of resolution ≥ 4 for n ≤ 19. Table 10 shows

the number of nonisomorphic even and odd designs for 128, 256, 512, and 1024 runs. According

to Table 10, there are 5,710 nonisomorphic even 1024-run designs of resolution ≥ 6. Draper and

Mitchell (1970) identified 4,043 even designs using the letter pattern check, so they missed 1,667

(about 30%) even designs.

The 128-run designs are of special interest because MA designs are given by CSW up to 64 runs.

Block and Mee (2005) constructed MA and weak MA 128-run designs for n=12–64. They achieved

this by enumerating all odd designs of resolution IV and all even designs for n ≤ 22, based on their

conjecture. By comparing the numbers of even and odd designs, we conclude that their set of odd

designs is complete and their set of even designs is also complete for n ≤ 22. The numbers of even

designs for n = 21 and 22 in their table 6 are not correct, though. So their conjecture is correct

for all the cases they considered and their designs do have weak MA as claimed except for a few

typos in their table 2 with 15, 19–21, and 30–32 factors (see Corrigenda). For easy reference, we

give all MA and weak MA designs for 128 runs up to 40 factors in Table 11, constructed according

to the procedure in Section 3.5. Note from Table 11 that MA designs are in sequential order for

n=32–40. However, this is not true for n = 31, which agrees with the theoretical result of Xu and

Cheng (2008). For 40 < n ≤ 64, MA designs can be obtained via deleting the MA complementary

even designs from the unique even 264−57 design; see Butler (2003), Block and Mee (2005) and

Xu and Cheng (2008) for details. Again, this can be achieved by enumerating a set of good even

designs. We confirm that MA designs are unique except for n=41, 42, 43, 44, and 50. For n > 64,

MA designs can also be obtained via complementary designs; see Chen and Hedayat (1996), Tang
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and Wu (1996), Butler (2003), and Xu and Cheng (2008). Thus, all MA 128-run designs can be

constructed.

Table 12 gives all MA and weak MA 256-run designs up to 28 factors, constructed via the

basic algorithm; Table 13 lists some good designs up to 80 factors, constructed via the first two

approaches described in Section 3.6. To save space, we omit a design or its generator columns

in Table 13 and other tables if it can be derived from another design. For instance, designs with

n=30–32 columns can be constructed as the first n columns of the design with 33 columns which

are explicitly given in Table 13; designs with n=72–79 columns, not listed in Table 13, can be

constructed as the first n columns of the design with 80 columns.

Block (2003) previously obtained a list of 256-run designs up to 80 factors. For n = 24, 30, 41–

44, his designs have larger A4 values than the designs given in Tables 12 and 13. For n = 25, his

design is isomorphic to design 25-17.2 in Table 12 and thus does not have MA. For n = 71, his

design has the same A4 and A5 values as the design given in Table 13 but has a larger A6 value

than our design. For all other cases, his designs have the same A4, A5 and A6 values as the designs

in Table 13. According to Xu and Cheng (2008), the designs in Table 13 have MA for n = 69–80.

Other designs in Table 13 may not have MA.

Table 14 gives MA 512-run designs up to 25 factors and Table 15 gives some good 512-run designs

up to 160 factors. These designs have resolution ≥ 6 for n ≤ 18, resolution V for 19 ≤ n ≤ 23,

and resolution IV for 24 ≤ n ≤ 160. The 2160−151 design is constructed by the doubling method;

see Section 3.6. Draper and Mitchell (1970) conjectured that all 223−14 designs of resolution V are

equivalent. We confirm this; see Table 9.

Table 16 gives efficient 1024-run designs up to 45 factors. These designs have resolution ≥ 6

and MA for n ≤ 24, resolution V for 25 ≤ n ≤ 33 and resolution IV for 34 ≤ n ≤ 45. The 233−23

design is derived from a linear code in Chen (1991).

Table 17 gives efficient 2048-run designs up to 47 factors. These designs have resolution ≥ 7

and MA for n ≤ 23, resolution VI for 24 ≤ n ≤ 34, and resolution V for 35 ≤ n ≤ 47. The 234−23

design is a foldover of the 233−23 design given in Table 16 and the 247−36 design is derived from a

linear code in Chen (1991).

Table 18 gives efficient 4096-run designs up to 65 factors. These designs have resolution ≥ 8

and MA for n ≤ 24, resolution VI for 25 ≤ n ≤ 48, and resolution V for 49 ≤ n ≤ 65. The 248−36

design is a foldover of the 247−36 design given in Table 17 and the 265−53 design is derived from a

cyclic linear code in Brouwer (1998).
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In Tables 11–18, each 2n−k design is labeled as n− k or n− k.i, where the index i reflects the

ordering based on the MA criterion. Every 2n−k design is represented by a set of n columns in the

Yates order. To save space, we omit the independent columns, which are {1, 2, . . . , 2n−k−1}, and give

only a set of k columns. For illustration, consider design 9-2.1 in Table 11 which has columns {31,

103}. Denote the nine factors as {x1, . . . , x9}, where {x1, . . . , x7} represent independent columns,

that is, xi = 2i−1 for i = 1, . . . , 7. Then x8 = x1 · x2 · x3 · x4 · x5 and x9 = x1 · x2 · x3 · x6 · x7

because 31 = 20 + 21 + 22 + 23 + 24 and 103 = 20 + 21 + 22 + 25 + 26. The wordlength pattern of

this design is A6 = 3 and Ai = 0 for i 6= 6. If a design with n columns is not explicitly given, then

it can be constructed as the first n columns of the smallest design that has more than n columns

and is explicitly listed in the tables.

5 Concluding Remarks

We develop a sequential algorithm for constructing large FF designs. The new algorithm has the

following features:

1. A construction procedure that allows a design to be constructed only from its MA projection

in the sequential build-up process,

2. A nonisomorphism classification procedure that uses moment projection patterns to identify

nonisomorphic designs efficiently,

3. A fast isomorphism check procedure that matches factors using their delete-one weight dis-

tributions,

4. A method for constructing MA designs using a partial catalog of good designs.

With some proper modifications, these features can be used to construct designs more efficiently

for other situations such as blocked designs, split-plot designs, and robust parameter designs.

We further propose three approaches for constructing good designs with a large number of

factors. Efficient designs are tabulated for 128–4096 runs and up to 40-160 factors. This largely

extends what is available in the literature and can at least partially fulfill the increasing demand

for efficient two-level FF designs with several hundred or thousand runs and dozens of factors.

The construction becomes much more challenging as both the run size and the number of factors

increase, which calls for further research.
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Table 9: Number of Nonisomorphic Designs

Run Size (Resolution ≥ R)
n 128(4) 256(4) 256(5) 512(5) 1024(6) 2048(7) 4096(7) 4096(8)
8 5
9 13 6 5

10 33 21 9 6
11 92 74 11 16 6
12 249 311 14 36 14 6
13 623 1,429 15 92 24 9 7 6
14 1,535 7,344 11 282 47 7 17 7
15 3,522 42,581 6 1,011 98 7 27 4
16 7,500 271,784 1 4,019 185 7 48 5
17 14,438 1,798,534 1 13,759 380 3 95 5
18 25,064 ? 0 29,373 919 2 113 2
19 39,335 ? 31,237 1,701 1 84 1
20 57,920 ? 14,135 1,682 1 35 1
21 82,496 ? 2,373 739 1 22 1
22 118,444 ? 128 128 1 17 1
23 173,092 ? 1 8 1 17 1
24 256,654 ? 0 1 0 13 1
25 376,382 ? 0 0 0
26 537,907 ?
27 735,111 ?
28 956,190 ?
29 1,174,404 ?
30 1,363,003 ?
31 1,489,183 ?
32 1,535,167 ?

Total 8,948,362 ? 73 96,468 5,932 46 495 35
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Table 10: Number of Nonisomorphic Even and Odd Designs

Run Size (Resolution ≥ R)
128(4) 256(4) 512(5) 1024(6)

n Even Odd Even Odd Even Odd Even Odd
8 3 2
9 6 7 3 3

10 14 19 9 12 3 3
11 30 62 24 50 4 12 3 3
12 69 180 80 231 5 31 7 7
13 136 487 241 1,188 5 87 11 13
14 295 1,240 839 6,505 5 277 23 24
15 596 2,926 3,029 39,552 5 1,006 51 47
16 1,292 6,208 12,487 259,297 3 4,016 125 60
17 2,651 11,787 55,331 1,743,203 1 13,758 332 48
18 5,598 19,466 265,798 ? 1 29,372 908 11
19 11,341 27,994 1,314,705 ? 0 31,237 1,695 6
20 22,728 35,192 ? ? 14,135 1,681 1
21 43,295 39,201 ? ? 2,373 738 1
22 79,597 38,847 ? ? 128 127 1
23 138,224 34,868 ? ? 1 8 0
24 228,521 28,133 ? ? 0 1
25 355,813 20,569 ? ? 0
26 524,409 13,498 ? ?
27 727,036 8,075 ? ?
28 951,906 4,284 ? ?
29 1,172,255 2,149 ? ?
30 1,362,027 976 ? ?
31 1,488,750 433 ? ?
32 1,534,970 197 ? ?
33 101 ? ?
34 31 ? ?
35 13 ? ?
36 8 ? ?
37 3 ? ?
38 2 ? ?
39 1 ? ?
40 1 ? ?

Total 296,960 ? ? 32 96,436 5,710 222
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Table 11: Weak MA 128-Run Designs for n ≤ 40
Design (A4, A5, . . .) Columns
8-1.1 0 0 0 0 1 127
9-2.1 0 0 3 0 0 31 103
10-3.1 0 3 3 1 0 31 103 43
11-4.1 0 6 6 2 1 31 103 43 85
12-5.1 1 8 12 8 31 103 43 85 121
12-5.2 1 10 10 5 31 103 43 85 44
12-5.3 1 10 11 4 31 103 43 85 46
13-6.1 2 16 18 10 31 103 43 85 44 86
13-6.2 2 16 20 8 31 103 43 85 46 61
14-7.1 3 24 36 16 31 103 43 85 46 61 114
15-8.1 7 32 52 40 31 103 43 85 46 61 114 67
15-8.2 7 34 46 42 31 103 43 85 44 86 88 53
15-8.3 7 38 44 28 31 103 43 85 46 61 114 13
16-9.1 10 48 72 31 103 43 85 44 86 88 53 110
17-10.1 15 60 130 31 103 43 85 46 61 114 67 78 116
17-10.2 15 66 110 31 103 43 85 46 61 114 67 78 55
17-10.3 15 68 106 31 103 43 85 44 86 88 53 38 58
17-10.4 15 72 102 31 103 43 85 46 61 114 67 13 55
18-11.1 20 80 200 31 103 43 85 46 61 114 67 78 116 121
18-11.2 20 92 160 31 103 43 85 46 61 114 67 78 55 58
19-12.1 27 120 235 31 103 43 85 46 61 114 67 78 55 58 86
20-13.1 36 152 340 31 103 43 85 46 61 114 67 78 55 58 86 91
21-14.1 51 200 414 31 103 43 85 44 82 54 56 88 78 123 125 104 25
21-14.2 51 202 400 31 103 43 85 44 86 88 53 38 58 79 83 110 124
22-15.1 65 248 572 31 103 43 85 44 86 88 53 78 58 83 97 28 104 114
22-15.2 65 256 552 31 103 43 85 44 82 54 56 88 78 123 125 104 25 112
23-16.1 83 316 744 31 103 43 85 44 82 54 56 88 78 123 125 104 25 112 49
23-16.2 83 318 734 31 103 43 85 44 86 88 53 38 58 79 83 110 124 97 104
24-17.1 102 384 992 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105
24-17.2 102 394 985 31 103 43 85 44 86 88 53 38 58 79 83 110 124 97 104 114
25-18.1 124 482 1312 31 103 43 85 44 86 88 53 38 58 79 83 110 124 97 104 114 123
26-19.1 152 568 1704 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105 62 77
27-20.1 180 690 2200 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105 62 77 112
28-21.1 210 840 2800 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105 62 77 112 127
29-22.1 266 945 3472 31 103 43 85 44 86 88 53 110 19 28 57 67 98 100 26 105 62 77 112 127 124
30-23.1 335 972 4662 31 103 43 81 45 26 114 127 22 67 56 94 116 7 38 108 14 69 53 25 73 121 28
31-24.1 391 1134 5826 same as design 30-23.1, plus 91
31-24.2 391 1134 5827 same as design 30-23.1, plus 51
32-25.1 452 1322 7219 same as design 30-23.1, plus 51 97
32-25.2 452 1323 7218 same as design 30-23.1, plus 91 51
32-25.3 452 1324 7219 same as design 30-23.1, plus 51 62
33-26.1 518 1543 8863 same as design 30-23.1, plus 51 97 70
33-26.2 518 1544 8863 same as design 30-23.1, plus 91 51 62
34-27.1 589 1800 same as design 30-23.1, plus 51 97 70 79
34-27.2 589 1801 same as design 30-23.1, plus 51 97 70 87
35-28.1 665 2100 same as design 30-23.1, plus 51 97 70 79 93
35-28.2 665 2101 same as design 30-23.1, plus 51 97 70 79 91
36-29.1 756 2401 same as design 30-23.1, plus 51 97 70 79 93 62
37-30.1 854 2744 same as design 30-23.1, plus 51 97 70 79 93 62 87
38-31.1 959 3136 same as design 30-23.1, plus 51 97 70 79 93 62 87 88
39-32.1 1071 3584 same as design 30-23.1, plus 51 97 70 79 93 62 87 88 91
40-33.1 1190 4096 same as design 30-23.1, plus 51 97 70 79 93 62 87 88 91 106
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Table 12: Weak MA 256-Run Designs for n ≤ 28
Design (A4, A5, . . .) Columns
9-1.1 0 0 0 0 0 1 255
10-2.1 0 0 1 2 0 0 63 199
11-3.1 0 0 6 0 1 0 127 143 179
12-4.1 0 0 12 0 3 127 143 179 213
13-5.1 0 3 12 12 127 143 179 213 105
14-6.1 0 9 18 16 127 143 179 213 105 27
15-7.1 0 15 30 26 127 143 179 213 105 27 46
16-8.1 0 24 44 40 127 143 179 85 150 75 108 189
17-9.1 0 34 68 68 127 143 179 85 150 75 108 189 229
18-10.1 3 36 114 127 143 179 213 105 27 46 182 92 194
18-10.2 3 42 102 127 143 179 213 105 27 46 152 203 214
18-10.3 3 44 98 127 143 179 213 105 27 46 92 152 203
18-10.4 3 46 92 127 143 179 85 150 75 108 189 229 7
18-10.5 3 47 95 127 143 179 213 105 27 46 77 158 185
18-10.6 3 48 94 127 143 179 213 105 27 46 77 185 234
18-10.7 3 48 96 127 143 179 85 150 75 108 118 184 234
18-10.8 3 48 102 127 143 179 213 105 27 46 158 164 185
19-11.1 4 48 168 127 143 179 213 105 27 46 182 92 194 229
19-11.2 4 56 152 127 143 179 213 105 27 46 152 203 214 236
19-11.3 4 60 144 127 143 179 213 105 27 46 152 203 214 92
19-11.4 4 64 140 127 143 179 213 105 27 46 77 158 185 234
19-11.5 4 64 152 127 143 179 213 105 27 46 158 164 185 234
20-12.1 5 64 240 127 143 179 213 105 27 46 182 92 194 229 248
20-12.2 5 80 208 127 143 179 213 105 27 46 152 203 214 236 92
21-13.1 9 104 268 127 143 179 213 105 27 46 152 203 214 236 92 45
22-14.1 14 137 346 127 143 179 213 105 27 46 77 158 185 234 164 88 201
23-15.1 20 172 450 127 143 179 213 105 27 46 77 158 185 234 201 88 43 236
24-16.1 26 216 584 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165
25-17.1 34 262 760 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 49
25-17.2 34 266 752 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78
26-18.1 43 325 963 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78 113
26-18.2 43 326 960 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78 124
27-19.1 53 395 1224 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78 113 124
28-20.1 64 476 1550 127 143 179 213 105 27 46 77 158 185 84 248 166 83 146 165 78 113 124 228
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Table 13: Good 256-Run Designs for 29 ≤ n ≤ 80

Design (A4, A5, . . .) Columns

29-21 78 579 251 244 174 99 198 27 109 92 133 87 225 73 57 137 62 51 209 148 147 44 74

30-22 93 672

31-23 113 792

32-24 133 932

33-25 153 1095 239 179 188 101 149 63 75 226 121 223 216 30 25 204 182 45 142 228 53 71 118 93
115 167 176

34-26 176 1280

35-27 200 1488

36-28 225 1728 239 179 188 101 149 63 75 226 121 223 216 30 25 204 182 45 142 228 53 71 118 93
115 167 233 23 195 141

37-29 264 2004

38-30 297 2304

39-31 333 2632

40-32 370 3008 253 230 115 186 45 89 156 240 107 62 236 55 95 153 215 146 120 57 200 222 21 134
182 212 168 207 67 101 251 138 15 161

41-33 468 3134 254 173 31 116 57 147 203 241 86 163 194 142 91 253 71 232 44 43 101 223 99 26
176 39 187 149 193 204 208 85 106 105 150

42-34 525 3516

43-35 598 3882 247 61 91 240 30 143 106 195 86 252 79 54 210 108 180 85 101 232 201 47 177 206
138 113 56 19 174 187 250 173 41 249 151 235 126

44-36 679 4032 223 124 55 197 113 216 106 230 137 134 189 212 45 149 14 254 146 224 187 131 90
194 243 31 235 167 172 73 176 123 103 182 158 83 170 79

45-37 760 4792

48-40 1019 6648 254 179 199 232 153 53 15 102 88 229 171 127 210 201 148 69 41 249 227 54 219
244 81 84 59 76 174 206 141 30 196 107 19 60 114 186 191 167 247 239

51-43 1365 9100 254 55 79 227 154 106 60 133 109 216 113 191 46 203 156 251 118 230 184 167 69
83 43 182 30 73 233 84 196 179 76 221 164 215 162 50 245 242 134 13 193 21 153

54-46 1769 11152 253 230 79 55 156 85 108 62 154 233 176 196 159 174 123 67 248 149 137 219 227
254 200 74 239 199 244 114 147 185 224 205 193 234 247 210 167 241 206 150 13 70
92 25 73 41

55-47 1911 12240 254 47 121 227 180 114 170 223 178 59 103 233 177 151 236 53 25 239 141 165 124
193 224 104 78 56 28 134 127 85 196 22 77 131 62 247 152 199 19 75 208 202 230
251 191 90 31

58-50 2534 15120 254 107 143 61 216 30 180 211 138 95 196 104 46 185 50 102 251 27 168 101 49 124
146 237 122 21 203 194 76 171 156 193 166 227 131 191 67 73 165 214 241 199 221
81 242 7 119 56 121 186

71-63 6273 36014 251 94 199 117 232 89 58 173 55 139 21 103 134 133 247 179 77 140 227 27 67 41
170 145 107 84 148 252 206 97 211 161 181 230 208 218 201 87 229 127 108 214 146
194 164 61 221 120 167 115 152 98 159 176 74 35 70 22 46 49 185 242 52

80-72 10300 65536 251 94 199 117 232 89 58 173 55 139 21 103 134 133 247 179 77 140 227 27 67 41
170 145 107 84 148 252 206 97 211 161 181 230 208 218 201 87 229 127 108 214 146
194 164 61 221 120 167 115 152 98 159 176 74 35 70 22 46 49 185 242 196 82 28 190
118 15 241 37 239 52
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Table 14: MA 512-Run Designs for n ≤ 25

Design (A4, A5, . . .) Columns

10-1.1 0 0 0 0 0 0 1 511

11-2.1 0 0 0 2 1 0 0 127 399

12-3.1 0 0 2 4 1 0 0 127 399 179

13-4.1 0 0 4 8 3 0 0 127 399 179 341

14-5.1 0 0 7 16 7 0 0 127 399 179 341 489

15-6.1 0 0 25 0 30 0 127 391 155 301 206 501

16-7.1 0 0 44 0 45 0 127 391 155 301 206 188 358

17-8.1 0 0 68 0 85 0 127 391 155 301 206 188 358 369

18-9.1 0 0 102 0 153 127 391 155 301 206 188 358 369 468

19-10.1 0 12 84 156 127 143 307 181 211 285 327 105 427 473

20-11.1 0 16 120 240 127 143 307 181 211 285 327 105 427 473 485

21-12.1 0 21 168 360 127 143 307 181 211 285 327 105 427 473 485 510

22-13.1 0 63 189 325 127 391 155 301 206 188 358 350 507 105 298 275 369

23-14.1 0 84 252 445 127 391 155 301 206 188 358 23 340 430 435 90 450 99

24-15.1 2 102 332 127 391 155 301 206 188 358 23 469 380 226 77 441 116 420

25-16.1 4 127 428 127 143 307 181 211 285 105 427 331 337 39 456 60 453 162 198
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Table 15: Good 512-Run Designs for 26 ≤ n ≤ 160

Design (A4, A5) Columns

26-17 6 158

27-18 9 195

28-19 13 236

29-20 17 285 501 47 440 382 242 361 422 306 189 461 401 270 427 106 343 59 480 222 487 196

30-21 22 337

31-22 27 402

32-23 35 470 445 118 345 199 468 59 334 156 497 356 99 430 15 85 383 153 233 165 387 443 261
339 308

33-24 43 556 445 118 345 199 468 59 334 156 497 356 99 430 15 85 383 153 233 165 387 443 261
339 172 182

34-25 52 644 493 283 174 87 107 310 220 435 201 462 340 113 416 298 269 104 406 427 181 135
31 505 469 250 496

35-26 60 756

36-27 72 872 493 283 174 87 107 310 220 435 201 462 340 113 416 298 269 104 406 427 181 135
31 505 469 250 140 58 496

37-28 84 1004 319 482 171 327 241 109 472 510 116 23 393 282 308 353 451 313 496 154 86 391
267 429 242 471 495 334 149 75

38-29 99 1146

39-30 115 1312 415 110 333 171 472 421 91 156 338 353 383 390 116 237 7 296 161 99 54 146 394
184 431 211 283 404 350 93 441 337

40-31 133 1484 445 115 230 295 506 31 333 403 75 297 420 245 383 414 452 488 175 368 497 101
342 92 162 306 120 206 353 168 156 125 459

41-32 153 1694

42-33 174 1930 445 115 230 295 506 31 333 403 75 297 420 245 383 414 452 488 175 368 497 101
342 92 162 306 120 206 125 459 281 208 426 355 255

43-34 197 2184

44-35 222 2440 439 121 227 351 496 426 220 78 201 396 114 308 255 486 364 489 119 445 338 307
56 214 178 455 19 265 348 159 39 285 417 234 262 508 408

45-36 250 2730 439 121 227 351 496 426 220 78 201 396 114 308 255 486 364 489 119 445 338 307
56 214 178 455 19 265 348 159 39 285 417 234 262 408 279 194

46-37 280 3051

47-38 311 3411 471 122 434 302 283 191 227 462 246 177 135 43 449 77 208 492 344 357 165 496
121 110 228 408 466 397 211 323 473 388 278 31 44 50 184 332 103 506

48-39 346 3775 382 391 458 465 355 428 443 317 438 326 360 89 461 55 227 14 191 303 500 338 214
417 410 292 101 252 251 277 347 206 409 147 141 176 199 170 268 95 487

49-40 384 4175 253 286 428 471 155 313 506 372 175 105 209 204 394 71 449 478 117 243 484 339
203 354 468 328 489 438 43 432 423 319 131 268 405 302 15 133 177 151 25 230

50-41 427 4603 439 109 496 286 155 188 454 227 393 291 255 232 58 339 78 410 245 479 341 91 352
263 141 308 421 175 364 81 297 119 273 379 150 382 473 212 344 482 461 400 102
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Table 15: Continued
Design (A4, A5) Columns

51-42 468 5088 501 234 121 314 364 431 220 103 479 169 480 27 166 446 504 109 85 270 158 362
419 335 215 338 428 344 127 406 284 281 410 205 441 426 46 413 293 239 219 294
139 145

52-43 521 5600 494 307 127 481 471 171 90 252 149 270 198 178 301 358 329 208 219 452 376 395
89 231 280 161 292 180 418 13 193 506 56 432 108 99 46 425 142 404 86 349 403
279 447

54-45 643 6648 477 59 391 364 410 331 229 309 207 438 86 226 119 441 452 233 279 298 69 186 134
120 491 415 291 467 139 219 500 392 74 346 345 26 431 81 37 261 369 220 286 151
148 21 416

61-52 1164 11994 239 314 457 124 406 484 419 269 240 89 503 195 476 363 86 401 236 59 302 330 324
349 475 138 504 251 90 466 61 79 226 151 167 83 444 354 454 319 157 119 229 41
133 374 359 309 396 360 52 443 510 99

68-59 1959 20034 494 181 295 223 348 118 443 470 190 449 275 363 224 140 381 237 297 166 131 202
281 290 440 378 242 358 235 115 364 323 318 209 334 196 124 43 91 511 30 249 508
501 179 44 343 438 29 101 398 386 271 325 338 353 137 278 389 266 474

78-69 3870 37963 505 370 220 279 59 397 419 195 380 267 86 490 453 190 400 420 251 178 145 30 79
503 218 169 61 294 470 467 328 184 76 346 205 213 165 392 463 357 355 217 261 88
367 126 341 74 55 270 345 457 486 386 326 333 208 480 411 305 13 385 274 21 276
142 157 405 280 151 472

87-78 6407 60906 379 399 87 481 189 358 43 90 418 203 281 439 440 309 180 50 478 365 168 117 76
155 60 460 491 297 97 292 214 262 236 284 499 349 405 304 505 488 344 410 307
319 251 84 69 465 120 279 211 46 7 322 387 19 138 484 274 267 230 310 240 508
352 339 111 370 254 455 49 37 206 335 375 106 428 30 223 457

98-89 11409 90646 379 248 341 316 94 481 141 407 239 338 454 203 54 242 396 161 329 138 181 304
224 241 418 494 477 215 314 446 374 302 45 233 191 156 186 25 369 501 468 435
506 19 97 458 227 218 292 204 295 511 400 283 125 244 351 309 108 91 365 84 484
453 323 31 436 234 150 49 385 289 112 102 26 441 478 465 421 42 79 424 463 14
122 251 135 286 352 344 11

160-151 85560 1048576 506 206 403 217 342 171 63 269 480 252 283 457 92 365 298 95 81 276 53 390 231
300 400 438 412 478 366 505 475 417 45 466 183 30 380 495 339 279 152 149 359
392 307 137 483 73 440 243 131 166 138 57 317 200 74 168 108 273 58 356 234 120
503 150 193 274 321 485 477 294 455 409 452 116 341 318 410 212 465 395 240 98
486 155 255 140 97 46 420 346 7 389 178 500 430 180 228 29 190 415 246 293 165
270 123 336 437 177 345 126 215 322 423 332 418 429 69 189 218 335 472 303 370
11 70 458 125 19 54 369 297 304 360 82 119 60 492 35 205 383 67 280 363 111 233
203 443 194 143 259 245
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Table 16: Efficient 1024-Run Designs for n ≤ 45

Design (A4, A5, . . .) Columns

11-1.1 0 0 0 0 0 0 1023

12-2.1 0 0 0 0 3 0 127 911

13-3.1 0 0 0 4 3 0 127 911 435

14-4.1 0 0 0 8 7 0 127 911 435 725

15-5.1 0 0 0 15 15 127 911 435 725 873

16-6.1 0 0 6 25 15 127 911 435 725 873 158

17-7.1 0 0 12 41 127 911 435 725 873 158 327

18-8.1 0 0 19 66 127 911 435 725 873 158 327 490

19-9.1 0 0 28 104 127 911 435 725 873 158 327 490 626

20-10.1 0 0 40 160 127 911 435 725 873 158 327 490 626 697

21-11.1 0 0 56 240 127 911 435 725 873 158 327 490 626 697 860

22-12.1 0 0 77 352 127 911 435 725 873 158 327 490 626 697 860 932

23-13.1 0 0 251 0 127 911 179 341 614 158 968 283 805 466 555 508 535

24-14.1 0 0 336 0 127 911 179 341 614 158 790 440 964 625 995 234 334 589

25-15 0 22 336

26-16 0 44 358 439 892 174 213 847 109 647 299 985 31 805 716 339 701 222 231

27-17 0 68 392 415 892 174 631 901 107 94 493 295 716 314 527 793 697 940 605 586

28-18 0 90 483 415 892 174 631 901 107 94 493 295 716 314 527 793 753 676 455 270 669

29-19 0 118 586 638 1009 283 982 244 844 541 174 809 121 677 835 453 474 615 207 960 503 92

30-20 0 152 703 998 127 433 861 527 714 681 286 299 908 376 220 242 135 975 763 189 610 836 938

31-21 0 189 863 638 1009 283 982 244 844 541 174 809 121 677 835 453 670 54 401 169 621 778 390
957

32-22 0 231 1056

33-23 0 275 1287 979 877 351 1012 391 362 213 974 307 905 412 811 639 114 187 688 202 92 669 572
848 870 534

35-25 10 365

38-28 22 564 702 493 865 422 722 283 1002 405 251 953 47 1015 899 882 101 163 474 736 554 563
733 879 57 383 151 651 71 646

40-30 34 728

42-32 48 940 859 757 227 557 914 124 988 463 214 678 488 939 154 46 423 1023 867 876 396 630
537 583 696 805 921 712 822 169 500 754 618 743

45-35 76 1344 830 967 428 475 220 182 601 844 654 703 519 298 636 353 29 969 929 565 918 875
111 725 755 624 307 456 399 832 792 805 386 506 366 62 1008
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Table 17: Efficient 2048-Run Designs for n ≤ 47

Design (A5, A6, . . .) Columns

12-1.1 0 0 0 0 0 0 2047

13-2.1 0 0 0 1 2 0 255 1807

14-3.1 0 0 0 7 0 0 127 911 1459

15-4.1 0 0 0 15 0 0 127 911 1459 1749

16-5.1 0 0 0 30 0 0 127 911 1459 1749 1897

17-6.1 0 0 16 30 0 127 911 1459 1749 1897 470

18-7.1 0 0 32 46 0 127 911 1459 1749 1897 470 739

19-8.1 0 0 52 78 0 127 911 1459 1749 1897 470 739 826

20-9.1 0 0 80 130 127 911 1459 1749 1897 470 739 826 1272

21-10.1 0 0 120 210 127 911 1459 1749 1897 470 739 826 1272 1309

22-11.1 0 0 176 330 127 911 1459 1749 1897 470 739 826 1272 1309 1614

23-12.1 0 0 253 506 127 911 1459 1749 1897 470 739 826 1272 1309 1614 1956

24-13 0 85 272

25-14 0 119 336

26-15 0 166 416

27-16 0 230 512 1646 1438 247 1748 1227 635 1807 494 1356 969 1964 854 2047 1299 1521 1378

28-17 0 421 0 1946 1863 1001 1660 757 671 433 1361 626 254 1221 551 2004 1078 1549 397 1402

29-18 0 537 0 1598 743 1931 1367 426 1473 696 1144 358 1754 1749 635 1797 1615 1858 1012 1500
179

30-19 0 677 0 1646 823 1494 1693 109 682 968 1869 1243 1294 1330 1009 494 628 991 1872 376
1067 1453

31-20 0 845 0 1722 379 935 1623 494 1426 223 527 1294 962 1670 637 1816 248 1081 1483 1500
1453 409 747

32-21 0 1048 0

33-22 0 1285 0

34-23 0 1562 0 743 954 1387 1524 1077 880 1417 2047 421 1001 214 790 1454 618 1082 1574 1709
1736 313 1474 731 654 913

35-24 121 1069

40-29 331 2170 1822 1645 1012 1423 1187 555 1180 1137 2027 453 1990 151 1528 295 818 362 185
1321 1356 94 1607 1713 825 1394 1297 804 848 1198 243

45-34 673 4493

47-36 846 5922 1243 995 381 1654 1993 1063 916 1888 1550 2002 1624 719 823 572 1180 689 1299
890 1342 183 1635 726 269 350 337 1254 1532 1080 1998 1352 1237 1978 1443 531
1701 306
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Table 18: Efficient 4096-Run Designs for n ≤ 65

Design (A5, A6, . . .) Columns

13-1.1 0 0 0 0 0 0 4095

14-2.1 0 0 0 0 2 1 511 3615

15-3.1 0 0 0 3 4 0 255 1807 2867

16-4.1 0 0 0 7 8 0 255 1807 2867 3413

17-5.1 0 0 0 14 16 255 1807 2867 3413 3734

18-6.1 0 0 0 45 0 2047 2111 2503 2777 2922 3308

19-7.1 0 0 0 78 0 2047 2111 2503 2777 2922 3308 2996

20-8.1 0 0 0 130 0 2047 2111 2503 2777 2922 3308 2996 3441

21-9.1 0 0 0 210 0 2047 2111 2503 2777 2922 3308 2996 3441 3482

22-10.1 0 0 0 330 0 2047 2111 2503 2777 2922 3308 2996 3441 3482 3670

23-11.1 0 0 0 506 0 2047 2111 2503 2777 2922 3308 2996 3441 3482 3670 3747

24-12.1 0 0 0 759 0 2047 2111 2503 2777 2922 3308 2996 3441 3482 3670 3747 3853

25-13 0 15 196 4031 3914 1657 2771 1507 2552 746 347 2913 3273 3186 2206 2693

26-14 0 36 249

27-15 0 57 309 4031 3914 1657 2771 1507 2552 2841 2978 1675 1338 3249 2964 238 2125 3212

28-16 0 90 396 4031 3429 471 889 3922 3289 303 3622 3459 3384 946 2385 2540 1721 2884 2700

29-17 0 130 488 4031 3914 1657 2771 1507 2917 2552 2841 2978 1675 1338 350 742 3158 3533 1984
301

30-18 0 195 544 4031 3914 1657 2771 1507 750 2552 3190 2841 1675 3249 3565 4048 3334 3649 2204
1428 3644

31-19 0 282 633 4088 1231 3254 3427 4038 1883 1457 1587 3245 2961 3353 3700 2764 3819 3610 3404
957 2142 996

32-20 0 402 448 3821 1522 1931 949 223 984 3726 2899 2077 2486 2706 3834 1918 2859 3205 3985
484 3611 3196 2360

35-23 0 856 0 3511 890 2734 253 1623 3988 3166 1349 1955 2465 1657 913 671 2789 2119 973 3683
214 1981 2927 3652 1772 3964

40-28 0 2086 0

41-29 0 2460 0 3447 719 1438 2965 4076 1417 2874 2246 3373 823 2004 2497 744 2478 3506 2698
3647 701 3277 1082 1479 3172 3815 3947 997 3091 2356 2911 1952

45-33 0 4490 0

48-36 0 6768 0 4087 2862 1468 2235 3530 1658 866 3451 1707 3166 3589 1423 2601 1684 551 3656
3851 3556 2557 3968 3254 1735 3345 604 1893 3048 471 2630 2869 3313 491 1585
2840 2435 3803 2249

65-53 2223 21840 3006 1245 3924 2159 1441 2808 815 1721 3352 1887 1653 1234 3560 3659 1063 3590
2545 457 997 915 3300 3823 1731 2508 1098 3665 860 3132 1458 429 3382 1555 609
1433 3087 2227 2435 3747 3776 2313 2423 1531 4083 3990 1931 2402 3332 2828 1581
1910 1758 219 1018
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