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Nonregular fractional factorial designs, such as Plackett–Burman designs, are widely used in industrial
experiments for run size economy and flexibility. A novel criterion, called moment aberration projection,
is proposed to rank and classify nonregular designs. It measures the goodness of a design through moments
of the number of coincidences between the rows of its projection designs. The new criterion is used to rank
and classify designs of 16, 20, and 27 runs. Examples are given to illustrate that the ranking of designs is
supported by other design criteria.

KEY WORDS: Generalized minimum aberration; Hadamard matrix; Hamming distance; Orthogonal
array; Plackett–Burman design; Projection property.

1. INTRODUCTION

Consider a door panel stamping experiment for investigat-
ing the effects of the following seven factors on the formability
of a panel: (A) concentration of lubricant, (B) panel thickness,
(C) force on the outer portion of the door, (D) force on the inner
portion of the door, (E) punch speed, (F) thickness of lubrica-
tion, and (G) manufacturers of lubricant. Each factor has two
levels. The engineer plans to conduct a 20-run experiment due
to budget limitation. He could choose seven columns from the
20-run Plackett–Burman design (Plackett and Burman 1946).
Because there are many choices, he faces a practical question:
How to select a design with good design properties?

The selection of fractional factorial designs for the prob-
lem described in the previous paragraph has always been an
important issue in the area of experimental design. Two-level
and three-level fractional factorial designs are frequently used
in various scientific investigations. A regular design is deter-
mined by a defining relation (see, e.g., Box and Hunter 1961)
and hence has a simple aliasing structure in that any two effects
are either orthogonal or fully aliased. The run size is always
a power of 2 or 3, and thus the “gaps” between possible run
sizes are getting wider as the power increases. Box and Hunter
(1961) first introduced the concept of resolution for a regular
fractional factorial design. Fries and Hunter (1980) proposed
a refined criterion called minimum aberration to further differ-
entiate designs with the same resolution. There are many ad-
ditional works on minimum aberration designs (see Wu and
Hamada 2000 for further references).

Nonregular factorial designs are commonly obtained from
Plackett–Burman designs or Hadamard matrices in general by
selecting a subset of the columns, which forms a projection.
A Hadamard matrix of order N is an N × N matrix with the
elements ±1 whose columns (and rows) are orthogonal to each
other. One can always “normalize” a Hadamard matrix by sign
changes within complete rows so that its first column con-
sists of all 1’s. Removing the first column, one obtains a sat-
urated two-level orthogonal array (OA) with N runs and N − 1
columns, which is a nonregular design if N is a multiple of 4
but not a power of 2. Other widely used nonregular designs

are three-level and mixed-level OAs, as described by Dey and
Mukerjee (1999), Hedayat, Sloane, and Stufken (1999), and Wu
and Hamada (2000). Nonregular designs are useful for factor
screening, and they fill the gaps between regular designs in
terms of various run sizes. Unlike regular designs, nonregular
designs exhibit a complex aliasing structure; that is, there exists
at least one pair of effects that are neither orthogonal nor fully
aliased. One can argue that this property is not a drawback. For
regular designs, once the effects are confounded, they cannot
be separated. For nonregular designs, if the effects are partially
confounded, they may be simultaneously estimable. Hamada
and Wu (1992) proposed an analysis strategy to turn the liability
of complex aliasing structure into the virtue of model estimabil-
ity (see Wu and Hamada 2000, chap. 8, for further references).

Nonregular factorial designs had not received sufficient at-
tention due to their complex aliasing structure until recently.
In the last decade, numerous authors studied the projection
properties of two-level nonregular designs (see, e.g., Lin and
Draper 1992; Wang and Wu 1995; Cheng 1995, 1998; Box and
Tyssedal 1996; Dean and Draper 1999). More recently, Deng
and Tang (1999, 2002) proposed generalized resolution and
generalized minimum aberration for ranking nonregular two-
level designs in a systematic way. Their work shows a promis-
ing direction in the study of nonregular designs; however, their
approach works only for two-level designs.

In this article, we propose a novel criterion, called moment
aberration projection (MAP), to rank and classify nonregular
designs (including multilevel designs). The key innovation is
to investigate the relationship between the runs (i.e., rows), in-
stead of the relationship between the factors (i.e., columns). For
each design, we consider its projection designs and compute
the power moments of the number of coincidences between the
rows of its projection designs. The new criterion then assesses
the goodness of designs by comparing the distribution of the
power moments.
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The number of noncoincidences is called Hamming distance
and has been studied extensively in the area of coding the-
ory. Recently it has become popular in the area of design of
experiment. Clark and Dean (2001) and Ma, Fang, and Lin
(2001) studied the isomorphism of fractional factorial designs
by means of the Hamming distances between the rows of their
projection designs. Two designs are isomorphic (or equiva-
lent) if one can be obtained from the other by permuting the
rows, the columns, and the levels of each column. Clark and
Dean (2001) proposed an algorithm for verifying the equiva-
lence or nonequivalence of two-level designs and also devel-
oped some theoretical results on the equivalence of multilevel
designs. Ma et al. (2001) proposed an algorithm for detecting
nonequivalence of multilevel designs, and Ma and Fang (2001)
proposed a criterion based on Hamming distances to rank mul-
tilevel designs. Although it is important to know whether two
designs are nonequivalent, it is more important to rank them.
Our primary goal here is ranking designs, and classification is
secondary.

Section 2 describes the MAP criterion and its connections
with other familiar criteria. Section 3 applies MAP to search
for good designs for 16, 20, and 27 runs. For 16- and 20-run
designs, the rankings by MAP and generalized minimum aber-
ration are fairly consistent, but not identical. Nevertheless, the
former has a better classification power than the latter. In partic-
ular, MAP can completely classify all 16-run OAs. For 27 runs,
many nonregular designs are found to have better projection
properties than regular designs. Section 4 studies the design se-
lection for the door panel stamping experiment. Other criteria,
such as estimation capacity and projection properties, are used
to evaluate designs. Empirical studies show that the MAP rank-
ing is fairly consistent with the number of estimable models
and is supported by estimation capacity and hidden projection
properties. Section 5 gives concluding remarks.

2. MOMENT ABERRATION PROJECTION

2.1 Power Moments and Moment Aberration

A design of N runs and m factors is represented by an N × m
matrix, where each row corresponds to a run (i.e., treatment)
and each column corresponds to a factor. A design has s levels if
each column takes on s different values. For an N × m design d
and a positive integer t, define the tth power moment as

Kt(d) =
∑

1≤i<j≤N

[δij(d)]t, (1)

where δij(d) is the number of coincidences between the ith and
jth rows. For two row vectors (x1, . . . , xm) and ( y1, . . . , ym), the
number of coincidences is the number of i’s such that xi = yi.

The power moments measure the similarity among runs (i.e.,
rows). The first and second power moments measure the aver-
age and variance of the similarity among runs. Minimizing the
power moments makes runs as dissimilar as possible. There-
fore, good designs should have small power moments. This
leads to the minimum moment aberration criterion (Xu 2003),
which is used to sequentially minimize the power moments
K1,K2, . . . .

Although computation of the power moments involves the
number of coincidences between rows, the power moments

also measure the orthogonality among columns. This important
observation was first made by Xu (2003). Specifically, for an
N × m design d with s levels, Xu showed that

K1(d) ≥ Nm(N − s)

2s
, (2)

with equality if and only if every column of d is balanced (i.e.,
each level appears equally often), and

K2(d) ≥ Nm(N(m + s − 1) − ms2)

2s2
, (3)

with equality if and only if d is an OA. Note that Kt defined
in (1) is N(N − 1)/2 times that defined by Xu (2003). Based on
a generalization of (3), Xu (2002) developed an efficient algo-
rithm for constructing OAs and nearly-OAs with a small num-
ber of runs.

Example 1. Consider two 4 × 3 designs,

d1 =




+ + +
+ − −
− + −
− − +



 and d2 =




+ + +
− + +
− − +
− − −



 .

The first design, d1, is a 23−1 regular fractional factorial de-
sign, and the second design, d2, is a one-factor-at-a-time design.
Their coincidence matrices (δij) are





3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3



 and





3 2 1 0
2 3 2 1
1 2 3 2
0 1 2 3



 .

The tth power moment, Kt, is the sum of the tth power
of the elements above the diagonal of the coincidence ma-
trix. It is easy to verify that Kt(d1) = 6 for all t ≥ 1 and
K1(d2) = 8, K2(d2) = 14, K3(d2) = 26, and so on. It is evi-
dent that K1(d1) < K2(d2) for all t ≥ 1. Therefore, d1 has less
moment aberration than d2 and is preferred. This agrees with
the well-known fact that fractional factorial designs are supe-
rior to one-factor-at-a-time designs. Note that the lower bounds
in (2) and (3) are achieved for d1, because it is an OA.

It is important to note the connection between designs in sta-
tistics and codes in coding theory. (For an introduction and
applications to OAs, see Hedayat et al. 1999, chap. 4.) The
Hamming distance between a pair of rows is the number of
places where they differ. Let hij(d) be the Hamming distance
between the ith and jth rows. Evidently, hij(d) = m − δij(d).
Let Bk(d) be the number of pairs of rows of d such that
their Hamming distance is equal to k, that is, Bk(d) = |{(i, j) :
hij(d) = k,1 ≤ i < j ≤ N}|. It is evident that

Kt(d) =
m∑

i=0

(m − i)tBi(d). (4)

This equation implies that the first m power moments uniquely
determine the rest and thus at most m comparisons are neces-
sary in the moment aberration criterion.

By applying MacWilliams identities and Pless power mo-
ment identities (see, e.g., MacWilliams and Sloane 1977,
chap. 5), two fundamental results in coding theory, Xu (2003)
showed that minimum moment aberration is equivalent to min-
imum aberration (Fries and Hunter 1980) for regular designs
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and to generalized minimum aberration (GMA) (Xu and Wu
2001; Ma and Fang 2001) for nonregular designs.

The moment aberration criterion can also be applied to super-
saturated designs. A design is supersaturated if it does not have
sufficient degrees of freedom to estimate all main effects simul-
taneously. A number of criteria have been proposed. Xu (2003)
showed that the minimization of K2 is equivalent to the mini-
mization of E(s2) (Booth and Cox 1962) for two-level designs
and the minimization of average chi-squared (Yamada and Lin
1999) for three-level designs.

2.2 Moment Aberration Projection

Consider the projection designs of an N × m design d. For
each projection design, we can compute the power moments
as in (1) for any t. Instead of using all the power moments,
we propose simply using one moment for each projection, be-
cause it is cheaper to compute and compare a number than a
vector. Specifically, we use the pth moment Kp for a p-factor
projection, that is, let t = p in (1). For given p (1 ≤ p ≤ m),
there are

(m
p

)
p-factor projections. The frequency distribution

of Kp-values of these projections is called the p-dimensional
K-value distribution and is denoted by Fp(d).

Let F = ( f (x1), . . . , f (xc)) and G = (g(x1), . . . ,g(xc)) be
two frequency distributions taking c possible values (in decreas-
ing order) on x1 > · · · > xc. We would sequentially compare
the frequency of the components and prefer the one that mini-
mizes the frequency of the largest value. For convenience, we
write F < G if there exists an index i (1 ≤ i ≤ c) such that
f (xi) < g(xi) and f (xj) = g(xj) for all j < i.

For two N ×m designs d1 and d2, suppose that p is the small-
est integer such that the p-dimensional K-value distributions are
different, that is, Fp(d1) �= Fp(d2). We say that d1 has less MAP
than d2 if Fp(d1) < Fp(d2).

Example 2 (Continued from Example 1). For d1, each col-
umn forms a one-factor projection with K1 = 2, each pair
of columns forms a two-factor projection with K2 = 4, and
all three columns together form a three-factor projection (i.e.,
d1 itself ) with K3 = 6. For d2, the second column forms a
one-factor projection with K1 = 2 and the other two one-factor
projections with K1 = 3, the first and third columns form a
two-factor projection with K2 = 6 and the other two two-factor
projections with K2 = 5, and all three columns together form
a three-factor projection (i.e., d2 itself ) with K3 = 26. In sum-
mary, the K-value distributions are as follows:

Design F1 : (3, 2) F2 : (6, 5, 4) F3 : (26, 6)

d1 (0, 3) (0, 0, 3) (0, 1)
d2 (2, 1) (1, 2, 0) (1, 0)

It is evident that Fp(d1) < Fp(d2) for p = 1,2,3. Therefore,
according to MAP, d1 is better than d2.

Example 3. Consider the 12-run Plackett–Burman design
given in Table 1. This design is constructed by cyclically shift-
ing the first row (+, +, −, +, +, +, −, −, −, +, −)

to the right 10 times and adding a row of −’s (Plackett and
Burman 1946). According to Lin and Draper (1992), there are

Table 1. The 12-Run Plackett–Burman Design

Run 1 2 3 4 5 6 7 8 9 10 11

1 + + − + + + − − − + −
2 − + + − + + + − − − +
3 + − + + − + + + − − −
4 − + − + + − + + + − −
5 − − + − + + − + + + −
6 − − − + − + + − + + +
7 + − − − + − + + − + +
8 + + − − − + − + + − +
9 + + + − − − + − + + −

10 − + + + − − − + − + +
11 + − + + + − − − + − +
12 − − − − − − − − − − −

two nonisomorphic 12 × 5 projection designs: design 5.1 and
design 5.2. For example, columns 1–4 and 10 form design 5.1
and columns 1–5 form design 5.2. The former has two re-
peated runs, whereas the latter has two mirror image runs. From
(2) and (3), any one-factor projection must have K1 = 30 and
any two-factor projection must have K2 = 84, because both de-
signs are OAs. The three-, four-, and five-dimensional K-value
distributions are as follows:

Design F3 :330 F4 :1,728 F5 : (11,070, 10,950)

5.1 10 5 (0, 1)
5.2 10 5 (1, 0)

We see that for both designs, all 10 three-factor projections have
K3 = 330, and all five four-factor projections have K4 = 1,728.
This is because all three-factor projections are equivalent and
so are all four-factor projections (Lin and Draper 1992). There-
fore, they are not distinguishable when projected onto three and
four factors. Nevertheless, they are distinguishable when pro-
jected onto five factors because K5 = 10,950 for design 5.1
and K5 = 11,070 for design 5.2. Therefore, according to
MAP, design 5.1 is better than design 5.2, which is consistent
with the conclusions of Wang and Wu (1995) and Deng and
Tang (1999).

The MAP is closely related to the GMA criterion proposed
by Deng and Tang (1999, 2002). For an N × m design d = (xij)

with entries −1 or +1, define

Jm(d) =
∣∣∣∣∣

N∑

i=1

xi1xi2 · · · xim

∣∣∣∣∣. (5)

The quantity Jm(d) measures the correlations among the
columns for two-level designs. The p-dimensional J-value dis-
tribution, called the confounding frequency vector by Deng and
Tang, is the frequency distribution of Jp-values of the p-factor
projections. The GMA criterion sequentially minimizes the
confounding frequency vectors as MAP does. Because both
GMA and MAP first consider lower-dimensional projections
and then proceed to higher-dimensional projections, we would
expect them to produce consistent results, as was demonstrated
in our study for designs of 12, 16, and 20 runs.

One important advantage of MAP over GMA is that the for-
mer works for both two-level and multilevel designs, whereas
the latter works only for two-level designs. Here is an example
for three-level designs.
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Example 4. Consider the commonly used OA(18,37) given
in Table 2. Wang and Wu (1995) showed that there are four
nonisomorphic four-factor projections. Let design 4.1 consist
of columns 2–5, let design 4.2 consist of columns 1–3 and 6,
let design 4.3 consist of columns 1–4, and let design 4.4 con-
sist of columns 1, 2, 5, and 7. From (2) and (3), any one-factor
projection must have K1 = 45, and any two-factor projection
must have K2 = 108, because all designs are OAs. The three-
and four-dimensional K-value distributions are as follows:

Design F3 : (351, 315, 297) F4 : (1,260, 1,044, 936)

4.1 (0, 0, 4) (0, 0, 1)
4.2 (0, 1, 3) (0, 1, 0)
4.3 (1, 0, 3) (1, 0, 0)
4.4 (1, 3, 0) (1, 0, 0)

When projected onto three factors, all four projections of de-
sign 4.1 have K3 = 297, three projections of design 4.2 have
K3 = 297 and one projection has K3 = 315, three projections
of design 4.3 have K3 = 297 and one projection has K3 = 351,
and three projections of design 4.4 have K3 = 315 and one pro-
jection has K3 = 351. Therefore, according to MAP, design 4.1
is better than design 4.2, which in turn is better than designs
4.3 and 4.4. This ranking is consistent with that of Wang and
Wu (1995). It is important to note that the moment aberration
criterion is not able to distinguish between design 4.3 and de-
sign 4.4. In contrast, according to MAP, design 4.3 is better than
design 4.4, a result supported by Wang and Wu (1995) in terms
of their hidden projection properties.

As the previous example demonstrates, the frequency distrib-
ution Fp(d) provides a quick method for checking whether two
designs are nonisomorphic. A necessary condition for isomor-
phism of two designs is that they have the same p-dimensional
K-value distribution, Fp(d), for all dimension p (1 ≤ p ≤ m).
Whenever two designs have different K-value distributions, we
can declare that they are not isomorphic. The same argument
works for GMA based on the J-values defined in (5). However,
MAP has a much better classification power than GMA (see
the next section for examples). The reason is that Kt defined
in (1) takes on many more values than Jm defined in (5). Deng

Table 2. An 18-Run Orthogonal Array

Run 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0
2 0 1 1 1 1 1 1
3 0 2 2 2 2 2 2
4 1 0 0 1 1 2 2
5 1 1 1 2 2 0 0
6 1 2 2 0 0 1 1
7 2 0 1 0 2 1 2
8 2 1 2 1 0 2 0
9 2 2 0 2 1 0 1

10 0 0 2 2 1 1 0
11 0 1 0 0 2 2 1
12 0 2 1 1 0 0 2
13 1 0 1 2 0 2 1
14 1 1 2 0 1 0 2
15 1 2 0 1 2 1 0
16 2 0 2 1 2 0 1
17 2 1 0 2 0 1 2
18 2 2 1 0 1 2 0

and Tang (2002) showed that Jm(d) takes on only a few values
between 0 and N.

Clark and Dean (2001) proposed two algorithms, Deseq1 and
Deseq2, for checking the equivalence of two-level fractional
factorial designs. Deseq1 does an initial check for nonequiv-
alence, and Deseq2 looks for row and column permutations if
two designs are isomorphic. It is of interest to compare MAP
with Deseq1 because both provide sufficient (but not necessary)
conditions for nonisomorphism and can be used as a prelimi-
nary step to identify nonisomorphic designs. One difference is
that for each projection design, Deseq1 uses the frequency dis-
tribution of Hamming distances between all possible pairs of
rows, whereas MAP combines the numbers in the calculation
of K and uses only one K value. It is certainly neater to com-
pare and rank two designs using two numbers than to use two
frequency distributions of Hamming distances. Our empirical
study suggested that using one K value usually does not lose
much, if any, information.

When restricted to two-level or multilevel regular designs,
GMA and MAP are equivalent to minimum aberration. It is in-
teresting to note that MAP is not equivalent to minimum aber-
ration. For example, consider two regular 212−3 designs given
by Draper and Mitchell (1968), labeled designs 3.4 and 3.5
in their table 1. These two designs are not isomorphic but
share the same word-length pattern; therefore, they are equiv-
alent under the minimum aberration criterion. On the other
hand, it is straightforward to verify that their 9-, 10-, and
11-dimensional K-value distributions are different; therefore,
they are not equivalent under MAP.

3. RANKING AND CLASSIFICATION WITH MOMENT
ABERRATION PROJECTION

3.1 Designs of 16 Runs

According to Hall (1961), there are precisely five noniso-
morphic Hadamard matrices, labeled I, II, III, IV, and V. In
particular, type I is a regular design and is equivalent to the
16-run Plackett–Burman design, whose cyclic generator is
(+, +, +, +, −, +, −, +, +, −, −, +, −, −, −). For
convenience, we use the Plackett–Burman design for type I.
Deng and Tang (2002) used GMA to rank and classify designs
from the five Hadamard designs; here we use MAP to reexam-
ine these designs.

For each m, 3 ≤ m ≤ 15, we use MAP to rank and clas-
sify all nonequivalent designs from the five Hadamard matrices
by searching over all m-factor projections. Table 3 lists a few
top designs ranked by MAP, their three- and four-dimensional
K-value distributions, GMA rankings from Deng and Tang
(2002), types, and the corresponding columns. A design of
m factors is denoted by 16.m.i, where i denotes the rank under
MAP. As we can see from Table 3, the rankings by MAP and
GMA are quite consistent. Both criteria identify the same top
designs, except for two cases where MAP further distinguishes
between the top designs ranked by GMA (designs 16.12.1 and
16.12.2 and designs 16.15.1 and 16.15.2).

As a byproduct, we investigate the equivalence of projec-
tion designs from the five Hadamard matrices. Table 4 shows
the number of nonisomorphic projection designs identified by
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Table 3. Some 16-Run Designs Ranked by MAP

Design F3 F 4 GMA Type Columns

16.3.1 (0, 0, 1) 1 I 1 2 3
16.3.2 (0, 1, 0) 2 II 4 8 12
16.3.3 (1, 0, 0) 3 I 1 2 13

16.4.1 (0, 0, 4) (0, 0, 0, 0, 1) 1 I 1 2 3 4
16.4.2 (0, 0, 4) (0, 0, 0, 1, 0) 2 I 1 2 3 8
16.4.3 (0, 1, 3) (0, 0, 1, 0, 0) 3 II 1 4 8 12

16.5.1 (0, 0, 10) (0, 0, 0, 0, 5) 1 I 1 2 3 4 7
16.5.2 (0, 0, 10) (0, 0, 0, 1, 4) 2 I 1 2 3 4 6
16.5.3 (0, 1, 9) (0, 0, 2, 0, 3) 3 II 1 2 4 8 12

16.6.1 (0, 0, 20) (0, 0, 0, 3, 12) 1 I 1 2 3 4 6 8
16.6.2 (0, 2, 18) (0, 1, 4, 1, 9) 2 II 1 2 4 7 8 12
16.6.3 (0, 4, 16) (0, 3, 6, 0, 6) 4 III 1 2 4 8 10 12
16.6.4 (0, 4, 16) (0, 4, 4, 0, 7) 3 II 1 4 6 8 11 12

16.7.1 (0, 0, 35) (0, 0, 0, 7, 28) 1 I 1 2 3 4 6 8 9
16.7.2 (0, 4, 31) (0, 4, 8, 3, 20) 2 II 1 2 4 7 8 11 12
16.7.3 (0, 6, 29) (0, 6, 12, 1, 16) 3 III 1 2 4 7 8 10 12

16.8.1 (0, 0, 56) (0, 0, 0, 14, 56) 1 I 1 2 3 4 6 8 9 12
16.8.2 (0, 8, 48) (0, 12, 16, 6, 36) 2 II 1 2 4 7 8 11 12 15
16.8.3 (0, 12, 44) (0, 18, 24, 1, 27) 3 V 1 2 4 7 8 10 12 15
16.8.4 (0, 12, 44) (0, 18, 24, 1, 27) 3 III 1 2 4 7 8 10 12 15

16.9.1 (0, 16, 68) (0, 48, 0, 14, 64) 1 II 4 5 6 7 8 9 10 11 12
16.9.2 (0, 20, 64) (0, 48, 24, 6, 48) 2 III 2 3 4 5 8 9 10 11 12
16.9.3 (0, 22, 62) (0, 48, 36, 2, 40) 3 V 1 2 4 7 8 9 10 12 14

16.10.1 (0, 32, 88) (0, 96, 32, 10, 72) 1 III 2 3 4 5 8 9 10 11 12 13
16.10.2 (0, 32, 88) (0, 104, 16, 14, 76) 2 III 2 4 8 9 10 11 12 13 14 15
16.10.3 (0, 32, 88) (0, 112, 0, 18, 80) 3 II 4 5 6 7 8 9 10 11 12 13

16.11.1 (0, 48, 117) (0, 156, 72, 8, 94) 1 V 1 2 4 7 8 9 10 11 12 13 14
16.11.2 (0, 48, 117) (0, 160, 64, 10, 96) 2 IV 2 3 4 5 6 7 8 9 10 11 12
16.11.3 (0, 48, 117) (0, 168, 48, 14, 100) 3 III 2 4 7 8 9 10 11 12 13 14 15
16.11.4 (0, 48, 117) (0, 168, 48, 14, 100) 3 V 1 2 4 8 9 10 11 12 13 14 15
16.11.5 (0, 48, 117) (0, 168, 48, 14, 100) 3 III 2 3 4 5 8 9 10 11 12 13 14

16.12.1 (0, 64, 156) (0, 240, 96, 15, 144) 1 V 1 2 4 7 8 9 10 11 12 13 14 15
16.12.2 (0, 64, 156) (0, 240, 96, 15, 144) 1 IV 2 3 4 5 6 7 8 9 10 11 12 13
16.12.3 (0, 64, 156) (0, 256, 64, 23, 152) 2 III 2 3 4 5 8 9 10 11 12 13 14 15

16.13.1 (0, 88, 198) (0, 360, 160, 15, 180) 1 IV 2 3 4 5 6 7 8 9 10 11 12 13 14
16.13.2 (2, 80, 204) (20, 320, 160, 15, 200) 2 V 1 2 3 4 5 8 9 10 11 12 13 14 15
16.13.3 (2, 80, 204) (20, 336, 128, 23, 208) 3 III 2 3 4 5 6 8 9 10 11 12 13 14 15

16.14.1 (0, 112, 252) (0, 504, 224, 21, 252) 1 IV 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16.14.2 (4, 96, 264) (44, 408, 240, 17, 292) 2 V 1 2 3 4 5 6 8 9 10 11 12 13 14 15
16.14.3 (4, 96, 264) (44, 432, 192, 29, 304) 3 III 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16.15.1 (7, 112, 336) (84, 504, 336, 21, 420) 1 IV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16.15.2 (7, 112, 336) (84, 504, 336, 21, 420) 1 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16.15.3 (11, 96, 348) (132, 432, 288, 33, 480) 2 III 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16.15.4 (19, 64, 372) (228, 288, 192, 57, 600) 3 II 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16.15.5 (35, 0, 420) (420, 0, 0, 105, 840) 4 I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NOTE: Type I is a Plackett–Burman design, and types II–V are as described by Deng and Tang (2002).
The indices of F3 (possible K values) are (744, 672, 648), and the indices of F4 are (4,160, 3,776, 3,632, 3,584, 3,392).

MAP, GMA (Deng and Tang 2002), and a complete search of all
possible permutations of rows, columns, and levels of each col-
umn (Sun 1993). The number of nonisomorphic designs found
by MAP matches exactly with the complete search, whereas
GMA found fewer designs for 6–12 and 15 columns. The con-
clusion is that MAP gives a complete classification for 16-run
designs without a complete search of all possible permutations.

Table 4. The Number of 16-Run Nonisomorphic Designs

Method 3 4 5 6 7 8 9 10 11 12 13 14 15

MAP 3 5 11 27 55 80 87 78 58 36 18 10 5
GMA 3 5 11 26 53 74 78 75 56 32 18 10 4
Complete search 3 5 11 27 55 80 87 78 58 36 18 10 5

In fact, only projection dimension up to 7 is needed to classify
all 16-run designs.

3.2 Designs of 20 Runs

Hall (1965) showed that there are three nonisomorphic
Hadamard matrices, labeled Q, P, and N. Listings of these de-
signs were given by Hall (1965) and by Deng and Tang (2002).
As noted by Wang and Wu (1995), type Q is equivalent to
the 20-run Plackett–Burman design, whose cyclic generator is
(+, +, −, −, +, +, +, +, −, +, −, +, −, −, −, −, +,

+, −). For convenience, we use the Plackett–Burman design
for type Q.

As before, for each m, 3 ≤ m ≤ 19, we use MAP to rank
and classify all projection designs from the three Hadamard ma-
trices by searching over all m-factor projections. It is possible
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that two nonisomorphic designs have the same K-value distri-
butions. Table 5 lists a few top and bottom designs ranked by
MAP; their three-, four-, and five-dimensional K-value distrib-
utions; GMA rankings from Deng and Tang (2002); types; and
the corresponding columns. As we can see from Table 5, the
rankings by MAP and GMA are still consistent, but the degree
of consistency is less than for the 16-run case. For each m, the
best design ranked by MAP, 20.m.1, is also ranked as the best

by GMA. However, there are several cases where GMA fails
to separate one or more of its top designs with 6–8 and 12–19
columns. In particular, MAP ranks three top GMA designs as
20.7.1, 20.7.2, and 20.7.8. In the next section we show that the
MAP rankings are supported by other criteria.

Observe that the bottom design in Table 5 is from type P
for 5–19 columns. Because our search goes through Q first,
P next, and N last, this means that type Q does not contain the

Table 5. Some 20-Run Designs Ranked by MAP

Design F3 F 4 F 5 GMA Type Columns

20.3.1 (0, 1) 1 Q 1 2 3
20.3.2 (1, 0) 2 Q 1 2 9

20.4.1 (0, 4) (0, 0, 1) 1 Q 1 2 3 4
20.4.2 (0, 4) (0, 1, 0) 2 Q 1 2 3 16
20.4.3 (1, 3) (1, 0, 0) 3 Q 1 2 3 6

20.5.1 (0, 10) (0, 0, 5) (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) 1 Q 1 2 3 4 5
20.5.2 (0, 10) (0, 0, 5) (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) 2 Q 1 2 3 4 14
20.5.3 (0, 10) (0, 1, 4) (0, 0, 0, 0, 0, 0, 0, 1, 0, 0) 3 Q 1 2 3 4 16
20.5.10 (2, 8) (4, 1, 0) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 10 P 1 2 3 4 5

20.6.1 (0, 20) (0, 1, 14) (0, 0, 0, 0, 0, 0, 0, 2, 2, 2) 1 Q 1 2 3 4 13 16
20.6.2 (0, 20) (0, 1, 14) (0, 0, 0, 0, 0, 0, 0, 2, 3, 1) 2 Q 1 2 3 4 8 16
20.6.3 (0, 20) (0, 1, 14) (0, 0, 0, 0, 0, 0, 1, 1, 2, 2) 2 Q 1 2 3 4 5 15
20.6.4 (0, 20) (0, 1, 14) (0, 0, 0, 0, 0, 0, 2, 0, 0, 4) 1 Q 1 2 3 4 5 13
20.6.59 (4, 16) (12, 3, 0) (3, 3, 0, 0, 0, 0, 0, 0, 0, 0) 34 P 1 2 3 5 10 15

20.7.1 (0, 35) (0, 3, 32) (0, 0, 0, 0, 0, 0, 0, 9, 7, 5) 1 P 1 2 4 6 7 11 17
20.7.2 (0, 35) (0, 3, 32) (0, 0, 0, 0, 0, 0, 1, 8, 6, 6) 1 Q 1 2 3 4 8 13 16
20.7.3 (0, 35) (0, 3, 32) (0, 0, 0, 0, 0, 0, 1, 8, 8, 4) 2 P 1 2 3 6 8 11 13
20.7.4 (0, 35) (0, 3, 32) (0, 0, 0, 0, 0, 0, 1, 8, 8, 4) 2 Q 1 2 3 4 8 14 16
20.7.5 (0, 35) (0, 3, 32) (0, 0, 0, 0, 0, 0, 2, 7, 7, 5) 2 Q 1 2 3 4 12 14 16
20.7.6 (0, 35) (0, 3, 32) (0, 0, 0, 0, 0, 0, 2, 7, 7, 5) 2 P 1 2 6 7 8 10 11
20.7.7 (0, 35) (0, 3, 32) (0, 0, 0, 0, 0, 0, 3, 6, 6, 6) 2 Q 1 2 3 4 5 13 15
20.7.8 (0, 35) (0, 3, 32) (0, 0, 0, 0, 0, 0, 4, 5, 3, 9) 1 Q 1 2 3 4 5 13 16
20.7.9 (0, 35) (0, 4, 31) (0, 0, 0, 0, 0, 0, 2, 10, 3, 6) 3 Q 1 2 3 4 13 16 17
20.7.10 (0, 35) (0, 4, 31) (0, 0, 0, 0, 0, 0, 2, 10, 5, 4) 4 P 1 2 4 6 11 12 17
20.7.384 (4, 31) (16, 4, 15) (1, 1, 4, 7, 3, 2, 1, 2, 0, 0) 47 P 1 2 5 6 11 14 18
20.7.385 (4, 31) (16, 4, 15) (1, 1, 4, 7, 3, 2, 3, 0, 0, 0) 48 P 1 2 3 6 9 11 16
20.7.386 (5, 30) (20, 3, 12) (1, 2, 6, 6, 4, 2, 0, 0, 0, 0) 49 P 1 2 5 6 7 13 18
20.7.387 (5, 30) (20, 5, 10) (3, 0, 6, 12, 0, 0, 0, 0, 0, 0) 50 P 1 2 5 6 7 13 19
20.7.388 (7, 28) (28, 7, 0) (9, 12, 0, 0, 0, 0, 0, 0, 0, 0) 51 P 1 2 3 4 5 10 15

20.8.1 (0, 56) (0, 6, 64) (0, 0, 0, 0, 0, 0, 4, 20, 20, 12) 1 N 1 2 3 4 6 8 16 18
20.8.2 (0, 56) (0, 6, 64) (0, 0, 0, 0, 0, 0, 4, 20, 20, 12) 1 P 1 2 6 8 10 11 13 15
20.8.3 (0, 56) (0, 8, 62) (0, 0, 0, 0, 0, 0, 6, 26, 10, 14) 2 P 1 2 3 4 6 7 11 17
20.8.1265 (8, 48) (40, 10, 20) (8, 0, 16, 32, 0, 0, 0, 0, 0, 0) 80 P 5 6 7 10 11 12 15 16

20.9.1 (0, 84) (0, 18, 108) (0, 0, 0, 0, 0, 0, 18, 72, 16, 20) 1 P 1 2 3 4 8 9 13 14 18
20.9.2 (0, 84) (0, 18, 108) (0, 0, 0, 0, 0, 0, 18, 72, 36, 0) 2 P 1 2 3 8 9 13 14 18 19
20.9.3 (1, 83) (6, 14, 106) (0, 0, 0, 4, 2, 9, 13, 53, 19, 26) 3 P 1 2 3 4 6 7 11 12 16
20.9.2089 (12, 72) (72, 18, 36) (18, 0, 36, 72, 0, 0, 0, 0, 0, 0) 125 P 5 6 7 10 11 12 15 16 17

20.10.1 (0, 120) (0, 30, 180) (0, 0, 0, 0, 0, 0, 36, 144, 36, 36) 1 P 1 2 3 4 8 9 13 14 18 19
20.10.2 (2, 118) (14, 22, 174) (0, 0, 0, 12, 6, 24, 24, 96, 42, 48) 2 P 1 2 3 4 6 7 11 12 16 17
20.10.3 (3, 117) (21, 18, 171) (0, 0, 0, 18, 9, 36, 18, 72, 45, 54) 3 Q 1 2 3 4 6 8 13 14 16 17
20.10.2282 (12, 108) (84, 18, 108) (18, 0, 36, 72, 16, 56, 2, 16, 20, 16) 125 P 1 5 6 7 10 11 12 15 16 17

20.11.1 (5, 160) (40, 30, 260) (6, 0, 4, 8, 16, 96, 36, 160, 84, 52) 1 P 1–5 8 9 13 14 18 19
20.11.2 (6, 159) (48, 26, 256) (0, 7, 0, 28, 28, 98, 28, 119, 84, 70) 2 N 1–4 6–9 11–13
20.11.3 (6, 159) (48, 26, 256) (2, 4, 4, 22, 29, 97, 33, 121, 76, 74) 2 P 1–4 6–8 11 12 16 17
20.11.1899 (13, 152) (104, 26, 200) (22, 32, 0, 0, 48, 208, 24, 104, 24, 0) 80 P 1–10 15

20.12.1 (8, 212) (72, 39, 384) (0, 12, 0, 48, 48, 168, 48, 204, 144, 120) 1 N 1–4 6–9 11–14
20.12.2 (8, 212) (72, 39, 384) (6, 6, 0, 48, 36, 180, 42, 210, 156, 108) 1 P 1–3 5 6 8 10 11 13 15 16 19
20.12.3 (10, 210) (90, 33, 372) (2, 8, 14, 52, 72, 188, 52, 150, 118, 136) 2 N 1–6 8 11 12 15 16 18
20.12.1300 (15, 205) (135, 32, 328) (25, 34, 8, 12, 70, 324, 33, 152, 90, 44) 51 P 1–11 15

20.13.1 (14, 272) (140, 47, 528) (0, 15, 36, 96, 114, 318, 72, 240, 204, 192) 1 N 1–4 6–9 11–14 16
20.13.2 (14, 272) (140, 47, 528) (7, 20, 24, 80, 112, 336, 72, 244, 200, 192) 2 N 1–9 11–14
20.13.3 (14, 272) (140, 47, 528) (10, 17, 24, 72, 94, 362, 62, 262, 224, 160) 1 P 1–3 5–14
20.13.730 (18, 268) (180, 43, 492) (39, 12, 42, 84, 90, 450, 48, 204, 192, 126) 34 P 1–7 10–12 15–17

20.14.1 (20, 344) (220, 60, 721) (0, 24, 76, 170, 227, 503, 125, 281, 249, 347) 1 Q 1–9 13 14 16–18
20.14.2 (20, 344) (220, 60, 721) (0, 26, 74, 166, 224, 510, 125, 283, 252, 342) 1 Q 1–11 13 15 18
20.14.3 (20, 344) (220, 60, 721) (0, 26, 74, 166, 225, 509, 126, 282, 250, 344) 1 Q 1–10 13 15 16 18
20.14.328 (22, 342) (242, 59, 700) (49, 24, 54, 108, 148, 700, 74, 335, 312, 198) 10 P 1–8 10–12 15–17
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Table 5 (continued)

Design F3 F4 F 5 GMA Type Columns

20.15.1 (26, 429) (312, 81, 972) (0, 33, 132, 264, 330, 792, 165, 429, 396, 462) 1 N 1–4 6–9 11–14 16–18
20.15.2 (26, 429) (312, 81, 972) (0, 40, 125, 262, 346, 778, 181, 408, 364, 499) 1 Q 1–13 17 18
20.15.3 (26, 429) (312, 81, 972) (0, 41, 124, 260, 345, 781, 180, 410, 366, 496) 1 Q 1–13 15 17
20.15.124 (27, 428) (324, 81, 960) (65, 44, 72, 148, 232, 1,040, 118, 516, 464, 304) 3 P 1–12 15–17

20.16.1 (32, 528) (416, 108, 1,296) (0, 48, 192, 384, 480, 1,152, 240, 624, 576, 672) 1 N 1–4 6–9 11–14 16–19
20.16.2 (32, 528) (416, 108, 1,296) (0, 60, 180, 378, 504, 1,134, 264, 594, 528, 726) 1 Q 1–13 15 17 18
20.16.3 (32, 528) (416, 108, 1,296) (14, 66, 160, 332, 472, 1,212, 246, 638, 564, 664) 1 N 1–14 16 17
20.16.40 (33, 527) (429, 107, 1,284) (83, 71, 104, 208, 350, 1,500, 175, 747, 676, 454) 2 P 1–13 15–17

20.17.1 (40, 640) (560, 140, 1,680) (0, 91, 273, 546, 728, 1,638, 364, 819, 728, 1,001) 1 Q 1–17
20.17.2 (40, 640) (560, 140, 1,680) (12, 80, 272, 544, 704, 1,664, 352, 832, 752, 976) 1 N 1–9 11–14 16 –19
20.17.3 (40, 640) (560, 140, 1,680) (18, 94, 252, 504, 692, 1,716, 346, 858, 764, 944) 1 N 1–14 16–18
20.17.11 (40, 640) (560, 140, 1,680) (108, 108, 148, 296, 512, 2,104, 256, 1,052, 944, 660) 1 P 1–17

20.18.1 (48, 768) (720, 180, 2,160) (0, 126, 378, 756, 1,008, 2,268, 504, 1,134, 1,008, 1,386) 1 Q 1–18
20.18.2 (48, 768) (720, 180, 2,160) (24, 128, 352, 704, 960, 2,368, 480, 1,184, 1,056, 1,312) 1 N 1–14 16–19
20.18.3 (48, 768) (720, 180, 2,160) (48, 144, 312, 624, 912, 2,496, 456, 1,248, 1,104, 1,224) 1 N 1–18
20.18.6 (48, 768) (720, 180, 2,160) (140, 156, 208, 416, 728, 2,888, 364, 1,444, 1,288, 936) 1 P 1–18

20.19.1 (57, 912) (912, 228, 2,736) (0, 171, 513, 1,026, 1,368, 3,078, 684, 1,539, 1,368, 1,881) 1 Q 1–19
20.19.2 (57, 912) (912, 228, 2,736) (60, 192, 432, 864, 1,248, 3,360, 624, 1,680, 1,488, 1,680) 1 N 1–19
20.19.3 (57, 912) (912, 228, 2,736) (180, 216, 288, 576, 1,008, 3,888, 504, 1,944, 1,728, 1,296) 1 P 1–19

NOTE: Type Q is a Plackett–Burman design, and types P and N are as described by Deng and Tang (2002).
The indices of F3 (possible K values) are (1,134, 1,086), the indices of F4 are (6,528, 6,240, 6,144), and the indices of F5 are (50,490, 50,370, 49,170, 47,010, 45,930, 45,810, 43,770, 43,650,
42,570, 42,450).

worst projection. This finding partially explains the superiority
of type Q, a result also supported by Wang and Wu (1995).

We also study the isomorphism of projection designs from
the three Hadamard matrices. Previously, Lin and Draper
(1992) studied the isomorphism of projection up to five dimen-
sions, and Wang and Wu (1995) extended it to six dimensions.
Deng and Tang (2002) used GMA to rank and classify all pro-
jection designs. Table 6 gives the numbers of nonisomorphic
designs identified by MAP and GMA. It is evident that MAP
identifies many more designs than GMA, as reported by Deng
and Tang (2002), especially when the number of columns is
large. For example, for 6 columns, GMA identifies only 34 de-
signs whereas MAP identifies 59 designs, which is exactly the
number of nonisomorphic designs reported by Wang and Wu
(1995). We point out that Deng and Tang (2002) considered
only projection dimensions up to five (or MA-5 in their no-
tation). Nevertheless, the number of nonisomorphic designs
found by GMA would be still much less than MAP even if
all dimensions are used.

3.3 Designs of 27 Runs

Commonly used 27-run designs are regular designs, and min-
imum aberration is often used to select the best design for a
given number of columns (see Wu and Hamada 2000 for de-
tails). The 27-run Plackett–Burman design, generated by cycli-
cally permuting the column vector (0,0,1,0,1,2,1,1,2,0,1,

1,1,0,0,2,0,2,1,2,2,1,0,2,2,2) 12 times and adding a row
of 0’s, is equivalent to a saturated regular 313−10 design. Lam

and Tonchev (1996) showed that there are 68 nonisomorphic
saturated 27-run OAs with 3 levels and 13 columns, denoted
by OA(27,313). Among these, only 1 design is regular, and the
other 67 designs are nonregular.

Here we use MAP to rank and classify all projection de-
signs from the 68 saturated arrays. For simplicity, we label the
68 OA(27,313) arrays as types 1–68 according to their MAP
rankings. MAP can separate all but 2 of the 68 arrays; 2 non-
isomorphic arrays are ranked as the 24th by MAP. Table 7 lists
the top designs and all regular designs identified by MAP. A de-
sign is regular if it is from type 68. Table 7 clearly shows that all
regular designs (except for 27.3.1 and 27.4.1) are ranked at the
bottom. In other words, according to MAP, nonregular designs
are better than regular designs. This agrees with the observation
of Cheng and Wu (2001), who studied the projection properties
of three-level designs for a second-order model and concluded
that nonregular designs have better projection properties than
regular designs.

In Table 7, most of the top designs can be found from type 1
and type 5 arrays, which are given in Table 8 for easy refer-
ence. We use the Plackett–Burman design for a type 68 array
for convenience.

Table 9 gives the number of nonisomorphic designs identi-
fied by MAP and the number of regular designs. Chen, Sun,
and Wu (1993) presented a complete catalog of 27-run regu-
lar designs with an exhaustive search. It is interesting to note
that their catalog is not complete in the sense that they missed
a regular design, namely 27.4.139.

Table 6. The Number of 20-Run Nonisomorphic Designs

Method 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MAP 2 3 10 59 388 1,265 2,089 2,282 1,899 1,300 730 328 124 40 11 6 3
GMA 2 3 10 34 51 80 125 125 80 51 34 10 3 2 1 1 1
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Table 7. Some 27-Run Designs Ranked by MAP

Design F 3 Type Columns

27.3.1 (0, 0, 0, 0, 0, 0, 0, 1) 68 1 2 3
27.3.2 (0, 0, 0, 0, 0, 0, 1, 0) 5 2 4 11
27.3.3 (0, 0, 0, 0, 0, 1, 0, 0) 1 1 2 5
27.3.8 (1, 0, 0, 0, 0, 0, 0, 0) 68 1 2 6

27.4.1 (0, 0, 0, 0, 0, 0, 0, 4) 68 1 2 3 5
27.4.2 (0, 0, 0, 0, 0, 0, 2, 2) 5 2 4 11 12
27.4.3 (0, 0, 0, 0, 0, 0, 3, 1) 2 1 2 6 13
27.4.135 (1, 0, 0, 0, 0, 0, 0, 3) 68 1 2 3 4
27.4.139 (4, 0, 0, 0, 0, 0, 0, 0) 68 1 2 6 12

27.5.1 (0, 0, 0, 0, 0, 3, 4, 3) 5 4 8 9 12 13
27.5.2 (0, 0, 0, 0, 0, 4, 4, 2) 8 1 2 6 9 13
27.5.3 (0, 0, 0, 0, 0, 5, 2, 3) 6 3 9 10 12 13
27.5.1782 (1, 0, 0, 0, 0, 0, 0, 9) 68 1 2 3 4 10
27.5.1832 (2, 0, 0, 0, 0, 0, 0, 8) 68 1 2 3 4 5
27.5.1833 (4, 0, 0, 0, 0, 0, 0, 6) 68 1 2 3 4 8

27.6.1 (0, 0, 0, 0, 0, 14, 0, 6) 37 2 5 9 10 12 13
27.6.2 (0, 0, 0, 0, 2, 9, 4, 5) 5 2 4 8 9 11 13
27.6.3 (0, 0, 0, 0, 3, 8, 4, 5) 6 5 6 9 10 11 12
27.6.6191 (2, 0, 0, 0, 0, 0, 0, 18) 68 1 2 3 4 10 11
27.6.6220 (3, 0, 0, 0, 0, 0, 0, 17) 68 1 2 3 4 5 7
27.6.6221 (4, 0, 0, 0, 0, 0, 0, 16) 68 1 2 3 4 5 6
27.6.6230 (5, 0, 0, 0, 0, 0, 0, 15) 68 1 2 3 4 5 8

27.7.1 (0, 0, 0, 3, 4, 15, 4, 9) 5 2 4 6 8 9 11 13
27.7.2 (0, 0, 0, 3, 6, 11, 6, 9) 5 2 4 5 8 9 11 13
27.7.3 (0, 0, 0, 4, 2, 14, 6, 9) 4 2 3 5 7 8 9 10
27.7.10284 (5, 0, 0, 0, 0, 0, 0, 30) 68 1 2 3 4 5 7 10
27.7.10298 (6, 0, 0, 0, 0, 0, 0, 29) 68 1 2 3 4 5 6 7
27.7.10299 (7, 0, 0, 0, 0, 0, 0, 28) 68 1 2 3 4 5 6 8
27.7.10300 (8, 0, 0, 0, 0, 0, 0, 27) 68 1 2 3 4 5 8 9

27.8.1 (0, 0, 0, 6, 8, 20, 8, 14) 5 2 4 5 6 8 9 11 13
27.8.2 (0, 0, 0, 8, 0, 31, 0, 17) 1 1 2 3 5 6 9 10 11
27.8.3 (0, 0, 0, 8, 0, 32, 0, 16) 1 1 2 3 5 6 9 10 13
27.8.10269 (8, 0, 0, 0, 0, 0, 0, 48) 68 1 2 3 4 5 7 10 11
27.8.10272 (10, 0, 0, 0, 0, 0, 0, 46) 68 1 2 3 4 5 6 7 8
27.8.10273 (11, 0, 0, 0, 0, 0, 0, 45) 68 1 2 3 4 5 6 8 9

27.9.1 (0, 0, 0, 12, 0, 48, 0, 24) 1 1 2 3 5 6 9 10 11 13
27.9.2 (0, 0, 0, 15, 0, 45, 0, 24) 1 1 2 3 4 5 6 8 10 11
27.9.3 (0, 0, 0, 15, 0, 45, 0, 24) 1 1 2 3 4 5 8 10 11 12
27.9.6975 (12, 0, 0, 0, 0, 0, 0, 72) 68 1 2 3 4 5 7 10 11 12
27.9.6976 (15, 0, 0, 0, 0, 0, 0, 69) 68 1 2 3 4 5 6 7 8 9
27.9.6977 (16, 0, 0, 0, 0, 0, 0, 68) 68 1 2 3 4 5 6 7 8 12

27.10.1 (0, 0, 0, 21, 0, 66, 0, 33) 1 1 2 3 4 5 6 7 11 12 13
27.10.2 (0, 0, 0, 21, 0, 66, 0, 33) 1 1 2 3 4 5 6 7 8 9 10
27.10.3 (0, 0, 0, 22, 0, 65, 0, 33) 1 1 2 3 4 5 6 7 8 10 11
27.10.3304 (21, 0, 0, 0, 0, 0, 0, 99) 68 1 2 3 4 5 6 7 8 9 11
27.10.3305 (22, 0, 0, 0, 0, 0, 0, 98) 68 1 2 3 4 5 6 7 8 9 10

27.11.1 (0, 0, 0, 30, 0, 90, 0, 45) 1 1 2 3 4 5 6 7 8 9 11 13
27.11.2 (0, 0, 0, 30, 0, 90, 0, 45) 1 1 2 3 4 5 6 7 8 9 10 11
27.11.3 (0, 0, 30, 0, 30, 0, 75, 30) 2 1 2 3 4 5 6 7 8 9 10 11
27.11.1176 (30, 0, 0, 0, 0, 0, 0, 135) 68 1 2 3 4 5 6 7 8 9 10 11

27.12.1 (0, 0, 0, 40, 0, 120, 0, 60) 1 1 2 3 4 5 6 7 8 9 10 11 12
27.12.2 (0, 0, 40, 0, 40, 0, 100, 40) 2 1 2 3 4 5 6 7 8 9 10 11 12
27.12.3 (2, 0, 0, 50, 0, 84, 18, 66) 3 1 2 3 4 5 6 7 8 9 10 11 12
27.12.331 (40, 0, 0, 0, 0, 0, 0, 180) 68 1 2 3 4 5 6 7 8 9 10 11 12

27.13.1 (0, 0, 0, 52, 0, 156, 0, 78) 1 1 2 3 4 5 6 7 8 9 10 11 12 13
27.13.2 (0, 0, 52, 0, 52, 0, 130, 52) 2 1 2 3 4 5 6 7 8 9 10 11 12 13
27.13.3 (3, 0, 0, 63, 0, 108, 27, 85) 3 1 2 3 4 5 6 7 8 9 10 11 12 13
27.13.67 (52, 0, 0, 0, 0, 0, 0, 234) 68 1 2 3 4 5 6 7 8 9 10 11 12 13

NOTE: Type 68 is a Plackett–Burman design, and types 1 and 5 are as given in Table 8.
The indices of F3 (possible K values) are (972, 900, 870, 864, 852, 846, 834, 810).

4. CONNECTION WITH OTHER DESIGN CRITERIA

4.1 Estimation Capacity and Hidden
Projection Properties

Cheng, Steinberg, and Sun (1999) first studied the model ro-
bustness of regular minimum aberration designs in terms of

estimation capacity. Following their approach, consider mod-
els containing all main effects and f two-factor interactions
(2fi’s for short). Because we do not know in advance which
f 2fi’s are significant, we consider all possible combinations.
Let Ef be the number of estimable models and let Df be the
average D-efficiency of all models, where the D-efficiency is
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Table 8. Two 27-Run Saturated Orthogonal Arrays

Type 1 Type 5

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 Run 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1
2 0 0 0 0 2 2 2 2 2 2 2 2 2 2 0 0 0 0 2 2 2 2 2 2 2 2 2
3 0 2 2 1 0 0 0 1 2 2 2 1 1 3 0 1 1 1 0 0 0 2 2 2 1 1 1
4 0 2 2 2 2 1 2 0 0 0 1 2 1 4 0 2 2 2 2 2 2 0 0 0 1 1 1
5 0 1 1 2 0 0 0 2 1 1 1 2 2 5 0 2 2 2 0 0 0 1 1 1 2 2 2
6 0 1 2 1 1 1 2 2 2 1 0 0 0 6 0 2 2 1 2 1 1 2 2 1 0 0 0
7 0 2 1 2 2 2 1 1 1 2 0 0 0 7 0 1 1 2 1 2 2 1 1 2 0 0 0
8 0 1 1 1 1 2 1 0 0 0 2 1 2 8 0 1 1 1 1 1 1 0 0 0 2 2 2
9 1 0 1 2 0 2 2 0 2 1 0 1 1 9 1 0 1 2 0 1 2 0 2 1 0 2 1

10 2 0 2 1 0 1 1 0 1 2 0 2 2 10 2 0 2 1 0 2 1 0 1 2 2 0 1
11 2 0 1 1 2 0 1 2 2 0 1 0 1 11 1 0 2 1 1 0 2 2 1 0 0 1 2
12 1 0 2 2 1 0 2 1 1 0 2 0 2 12 2 0 1 2 2 0 1 1 2 0 2 1 0
13 2 0 2 2 1 2 0 2 0 2 1 1 0 13 1 0 1 1 2 2 0 1 0 1 1 0 2
14 1 0 1 1 2 1 0 1 0 1 2 2 0 14 2 0 2 2 1 1 0 2 0 2 1 2 0
15 1 1 0 2 0 1 1 2 0 2 2 0 1 15 2 1 0 2 0 2 1 2 0 1 0 1 2
16 2 2 0 1 0 2 2 1 0 1 1 0 2 16 1 2 0 1 0 1 2 1 0 2 2 1 0
17 1 1 0 1 2 0 2 0 1 2 1 1 0 17 1 2 0 2 1 0 1 0 2 2 1 0 2
18 2 2 0 2 1 0 1 0 2 1 2 2 0 18 2 1 0 1 2 0 2 0 1 1 1 2 0
19 1 2 0 1 1 2 0 2 1 0 0 2 1 19 2 2 0 1 1 2 0 1 2 0 0 2 1
20 2 1 0 2 2 1 0 1 2 0 0 1 2 20 1 1 0 2 2 1 0 2 1 0 2 0 1
21 2 2 1 0 0 1 2 2 1 0 2 1 0 21 2 1 2 0 0 1 2 1 2 0 1 0 2
22 1 1 2 0 0 2 1 1 2 0 1 2 0 22 1 2 1 0 0 2 1 2 1 0 1 2 0
23 2 1 1 0 1 0 2 1 0 2 0 2 1 23 1 1 2 0 2 0 1 1 0 2 0 2 1
24 1 2 2 0 2 0 1 2 0 1 0 1 2 24 2 2 1 0 1 0 2 2 0 1 2 0 1
25 2 1 2 0 2 2 0 0 1 1 2 0 1 25 2 2 1 0 2 1 0 0 1 2 0 1 2
26 1 2 1 0 1 1 0 0 2 2 1 0 2 26 1 1 2 0 1 2 0 0 2 1 2 1 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0

calculated as was done by Wang and Wu (1995). One would
prefer designs with high estimation capacity Ef and large aver-
age D-efficiency Df .

It is known that nonregular designs have some hidden projec-
tion properties. Box and Tyssedal (1996) showed that if N is not
a multiple of 8, then any saturated OA with N runs and 2 levels
has projectivity 3; that is, any three-factor projection contains a
complete 23 factorial design, possibly with some points repli-
cated. Therefore, any three-factor projection can entertain all
three main effects and all 2fi’s among them. Cheng (1995) in-
deed showed that if N is not a multiple of 8, then any OA with
N runs and 2 levels has the following hidden projection prop-
erty: Any four-factor projection can entertain all 4 main effects
and all 2fi’s among them. Let Pf be the number of f -factor
projections that can entertain all f main effects and all 2fi’s
among them. One would prefer designs with large Pf values.
Section 4.2 illustrates these concepts in an example.

4.2 Door Panel Stamping Experiment

Return to the door panel stamping experiment mentioned in
Section 1. The goal is to choose a 20 × 7 design with good
design properties. Here we evaluate the top 10 and bottom 5
designs given in Table 5 in terms of estimation capacity and
hidden projection properties.

First, consider estimation capacity and design efficiency.
There are 21 2fi’s and

(21
f

)
different models with all 7 main ef-

fects and f 2fi’s. Table 10 gives the results in terms of Df and Nf

for f = 1, . . . ,7, where Nf = (21
f

) − Ef is the number of nones-
timable models. All top 10 designs can entertain up to all sets
of four 2fi’s, whereas all five bottom designs cannot entertain at
least nine sets of four 2fi’s. All top 10 designs have larger av-
erage D-efficiency than the bottom 5 designs. It is evident that
the top 10 designs are better than the bottom 5 designs in terms
of both design efficiency and estimation capacity. Among the
top 10 designs, 8 (all except 20.7.4 and 20.7.10) can entertain
all sets of 5 2fi’s. Their average D-efficiencies are pretty close
to each other. Note that design 20.7.1, ranked as the first by
MAP, is indeed the best in terms of estimation capacity. It has
only two nonestimable models with six 2fi’s, whereas all other
designs have at least five nonestimable models with six 2fi’s.

Next, consider the hidden projection properties of these
20 × 7 designs. As discussed earlier, for any OA with 20 runs
and 7 columns, any four-factor projection can entertain all
4 main effects and all 2fi’s among them. It is interesting to
consider five-factor projections here. In Table 10, the last col-
umn, P5, shows the number of five-factor projections that can
entertain all 5 main effects and 10 2fi’s among them. Note that
the number of estimable models is fairly consistent with the
MAP ranking. The top 10 designs can estimate more models

Table 9. The Number of 27-Run Nonisomorphic Designs Identified by MAP

Type 3 4 5 6 7 8 9 10 11 12 13

Total 8 139 1,833 6,230 10,300 10,273 6,977 3,305 1,176 331 67
Regular 2 3 3 4 4 3 3 2 1 1 1
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Table 10. Design Efficiency and Estimation Capacity

Design D1 D2 D3 D4 D5 D6 D7 N1 N2 N3 N4 N5 N6 N7 P5

20.7.1 .97 .94 .92 .89 .86 .82 .79 0 0 0 0 0 2 34 21
20.7.2 .97 .94 .92 .89 .86 .82 .79 0 0 0 0 0 6 96 20
20.7.3 .97 .94 .92 .89 .86 .82 .79 0 0 0 0 0 13 197 20
20.7.4 .97 .95 .92 .89 .86 .83 .79 0 0 0 0 1 22 215 20
20.7.5 .97 .95 .92 .89 .86 .83 .79 0 0 0 0 0 6 91 19
20.7.6 .97 .95 .92 .89 .86 .83 .79 0 0 0 0 0 9 138 19
20.7.7 .97 .95 .92 .89 .86 .83 .79 0 0 0 0 0 5 76 18
20.7.8 .97 .95 .92 .89 .86 .83 .79 0 0 0 0 0 5 75 17
20.7.9 .97 .94 .91 .88 .85 .82 .78 0 0 0 0 0 6 93 19
20.7.10 .97 .94 .92 .89 .85 .82 .78 0 0 0 0 1 22 213 19
20.7.384 .94 .88 .83 .79 .74 .68 .61 0 0 0 9 156 1,317 7,252 4
20.7.385 .94 .88 .84 .79 .74 .68 .62 0 0 0 9 153 1,264 6,798 2
20.7.386 .93 .87 .82 .77 .71 .65 .58 0 0 0 13 231 1,986 10,825 2
20.7.387 .93 .87 .81 .76 .71 .65 .57 0 0 0 15 255 2,095 10,995 0
20.7.388 .91 .84 .76 .68 .57 .37 0 0 0 0 105 1,890 18,335 116,280 0

than the bottom 5 designs. Recall that designs 20.7.1, 20.7.2,
and 20.7.8 are ranked as the first by GMA. They can estimate
21, 20, and 17 models, which are consistent with their MAP
rankings. The top design, 20.7.1, is the only design that can es-
timate all 21 models; therefore, it is also the best in terms of
hidden projection properties.

In conclusion, MAP ranking is supported by estimation ca-
pacity and hidden projection properties. For an experiment with
20 runs and 7 factors, such as the door panel stamping experi-
ment, the top design, 20.7.1, is recommended.

5. CONCLUDING REMARKS

By an exhaustive computer search, Beder (1998) observed
that all 16-run OAs can be embedded in some Hadamard ma-
trices. Therefore, all the 16-run OAs can be found from 5
Hadamard matrices of order 16. However, it is well known that
not every OA can be embedded in Hadamard matrices. One can
easily find many such examples from 20-run designs. Our goal
is to look for new nonisomorphic designs that have good MAP
rankings.

For each given number of columns, we used an efficient al-
gorithm due to Xu (2002) to construct as many as 5,000 OAs.
For each OA, we computed its K-value distributions and com-
pared them with all K-value distributions of projection designs
from Hadamard matrices. We found 10, 79, 338, 386, 107, and
15 new OAs for 6, 7, 8, 9, 10, and 11 columns. In particular, we
found two new top designs with six columns and two new top
designs with seven columns that are not found from the three
Hadamard matrices. The 4 new 20-run designs are given in Ta-
ble 11. We should mention that a similar effort was done pre-
viously by Li (2000), who searched for new designs by using
both GMA and estimation capacity. However, our approach is
more straightforward and much easier than his in terms of com-
putation.

Similar to 20-run designs, there are many 27-run OAs that are
not part of any saturated OA(27,313). In particular, the 27-run
OAs with 5–10 columns given by Xu (2002) have less MAP
than the top designs given in Table 7.

In conclusion, MAP is a simple, yet powerful tool for rank-
ing and classifying designs. It also provides a nice blueprint to
follow when searching for good designs.

Table 11. Top 20-Run Orthogonal Arrays Not From Hadamard Matrices

New 20.6.1 New 20.6.2 New 20.7.1 New 20.7.2

Run 1 2 3 4 5 6 Run 1 2 3 4 5 6 Run 1 2 3 4 5 6 7 Run 1 2 3 4 5 6 7

1 + + + + − − 1 + + + − + + 1 + + + + + + + 1 + + − + − − −
2 + − + − − + 2 + − + + + − 2 + − + − − + − 2 + − − + + + −
3 + + − − + + 3 + + − + + − 3 + + + − + − − 3 + + + + − + −
4 + − − − − − 4 + − − − − − 4 + − − + − − + 4 + − + + − − +
5 + + + + + + 5 + + + + − + 5 + + + + − − + 5 + + − + + + +
6 + − + − + − 6 + − − − + + 6 + − + + + − − 6 + − + − + + +
7 + + − − + − 7 + + + − − − 7 + + − − + + − 7 + + − − − + +
8 + − − + + + 8 + − − + + + 8 + − − − + + + 8 + − + − − − −
9 + + − + − + 9 + + − − − + 9 + + − − − − + 9 + + + − + − +

10 + − + + − − 10 + − + + − − 10 + − − + − + − 10 + − − − + − −
11 − + − + + − 11 − + − − + − 11 − + − − − − − 11 − + + − + + +
12 − − − + − − 12 − − + − + − 12 − − − + + + − 12 − − + + + + −
13 − + + + − + 13 − + − + − − 13 − + − + − + + 13 − + − − − + −
14 − − − + + + 14 − − + + − + 14 − − + + + − + 14 − − − + − + +
15 − + + − − + 15 − + + + + − 15 − + + + − + − 15 − + + + + − −
16 − − − − − + 16 − − − − − − 16 − − − − + − + 16 − − − + + − +
17 − + − − − − 17 − + − + + + 17 − + + − + + + 17 − + − − + − −
18 − − + + + − 18 − − + − + + 18 − − + − − + + 18 − − − − − − +
19 − + + − + − 19 − + + − − + 19 − + − + + − − 19 − + + + − − +
20 − − + − + + 20 − − − + − + 20 − − + − − − − 20 − − + − − + −
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