
C H A P T E R 11

Comparing Two Samples

11.1 Introduction
This chapter is concerned with methods for comparing samples from distributions
that may be different and especially with methods for making inferences about how
the distributions differ. In many applications, the samples are drawn under different
conditions, and inferences must be made about possible effects of these conditions.
We will be primarily concerned with effects that tend to increase or decrease the
average level of response.

For example, in the end-of-chapter problems, we will consider some experiments
performed to determine to what degree, if any, cloud seeding increases precipitation.
In cloud-seeding experiments, some storms are selected for seeding, other storms are
left unseeded, and the amount of precipitation from each storm is measured. This
amount varies widely from storm to storm, and in the face of this natural variability,
it is difficult to tell whether seeding has a systematic effect. The average precipitation
from the seeded storms might be slightly higher than that from the unseeded storms,
but a skeptic might not be convinced that the difference was due to anything but
chance. We will develop statistical methods to deal with this type of problem based
on a stochastic model that treats the amounts of precipitation as random variables.
We will also see how a process of randomization allows us to make inferences about
treatment effects even in the case where the observations are not modeled as samples
from populations or probability laws.

This chapter will be concerned with analyzing measurements that are continuous
in nature (such as temperature); Chapter 13 will take up the analysis of qualitative
data. This chapter will conclude with some general discussion of the design and
interpretation of experimental studies.
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11.2 Comparing Two Independent Samples
In many experiments, the two samples may be regarded as being independent of each
other. In a medical study, for example, a sample of subjects may be assigned to a
particular treatment, and another independent sample may be assigned to a control
(or placebo) treatment. This is often accomplished by randomly assigning individuals
to the placebo and treatment groups. In later sections, we will discuss methods that
are appropriate when there is some pairing, or dependence, between the samples, such
as might occur if each person receiving the treatment were paired with an individual
of similar weight in the control group.

Many experiments are such that if they were repeated, the measurements would
not be exactly the same. To deal with this problem, a statistical model is often em-
ployed: The observations from the control group are modeled as independent random
variables with a common distribution, F , and the observations from the treatment
group are modeled as being independent of each other and of the controls and as
having their own common distribution function, G. Analyzing the data thus entails
making inferences about the comparison of F and G. In many experiments, the pri-
mary effect of the treatment is to change the overall level of the responses, so that
analysis focuses on the difference of means or other location parameters of F and G.
When only a small amount of data is available, it may not be practical to do much
more than this.

11.2.1 Methods Based on the Normal Distribution
In this section, we will assume that a sample, X1, . . . , Xn , is drawn from a nor-
mal distribution that has mean µX and variance σ 2, and that an independent sample,
Y1, . . . , Ym , is drawn from another normal distribution that has mean µY and the same
variance, σ 2. If we think of the X ’s as having received a treatment and the Y ’s as
being the control group, the effect of the treatment is characterized by the difference
µX − µY . A natural estimate of µX − µY is X − Y ; in fact, this is the mle. Since
X −Y may be expressed as a linear combination of independent normally distributed
random variables, it is normally distributed:

X − Y ∼ N
[
µX − µY , σ 2

(
1
n

+ 1
m

)]

If σ 2 were known, a confidence interval for µX − µY could be based on

Z = (X − Y ) − (µX − µY )

σ
√

1
n + 1

m

which follows a standard normal distribution. The confidence interval would be of
the form

(X − Y ) ± z(α/2)σ

√
1
n

+ 1
m

This confidence interval is of the same form as those introduced in Chapters 7 and
8—a statistic (X − Y in this case) plus or minus a multiple of its standard deviation.
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Generally, σ 2 will not be known and must be estimated from the data by calcu-
lating the pooled sample variance,

s2
p = (n − 1)s2

X + (m − 1)s2
Y

m + n − 2

where s2
X = (n − 1)

∑n
i=1(Xi − X)2 and similarly for s2

Y . Note that s2
p is a weighted

average of the sample variances of the X ’s and Y ’s, with the weights proportional
to the degrees of freedom. This weighting is appropriate since if one sample is
much larger than the other, the estimate of σ 2 from that sample is more reliable
and should receive greater weight. The following theorem gives the distribution of a
statistic that will be used for forming confidence intervals and performing hypothesis
tests.

T H E O R E M A

Suppose that X1, . . . , Xn are independent and normally distributed random vari-
ables with mean µX and variance σ 2, and that Y1, . . . , Ym are independent and
normally distributed random variables with mean µY and variance σ 2, and that
the Yi are independent of the Xi . The statistic

t = (X − Y ) − (µX − µY )

sp

√
1
n

+ 1
m

follows a t distribution with m + n − 2 degrees of freedom.

Proof
According to the definition of the t distribution in Section 6.2, we have to
show that the statistic is the quotient of a standard normal random variable and
the square root of an independent chi-square random variable divided by its
n + m − 2 degrees of freedom. First, we note from Theorem B in Section 6.3 that
(n − 1)s2

X/σ 2 and (m − 1)s2
Y /σ 2 are distributed as chi-square random variables

with n −1 and m −1 degrees of freedom, respectively, and are independent since
the Xi and Yi are. Their sum is thus chi-square with m + n − 2 df. Now, we
express the statistic as the ratio U/V , where

U = (X − Y ) − (µX − µY )

σ

√
1
n

+ 1
m

V =

√[
(n − 1)s2

X

σ 2
+ (m − 1)s2

Y

σ 2

]
1

m + n − 2

U follows a standard normal distribution and from the preceding argument V has
the distribution of the square root of a chi-square random variable divided by its
degrees of freedom. The independence of U and V follows from Corollary A in
Section 6.3. ■
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It is convenient and suggestive to use the following notation for the estimated
standard deviation (or standard error) of X − Y :

sX−Y = sp

√
1
n

+ 1
m

A confidence interval for µX − µY follows as a corollary to Theorem A.

C O R O L L A R Y A

Under the assumptions of Theorem A, a 100(1 − α)% confidence interval for
µX − µY is

(X − Y ) ± tm+n−2(α/2)sX−Y ■

E X A M P L E A Two methods, A and B, were used in a determination of the latent heat of fusion of
ice (Natrella 1963). The investigators wanted to find out by how much the methods
differed. The following table gives the change in total heat from ice at −.72◦C to
water 0◦C in calories per gram of mass:

Method A Method B

79.98 80.02
80.04 79.94
80.02 79.98
80.04 79.97
80.03 79.97
80.03 80.03
80.04 79.95
79.97 79.97
80.05
80.03
80.02
80.00
80.02

It is fairly obvious from the table and from boxplots (Figure 11.1) that there is a
difference between the two methods (we will test this more formally later). If we
assume the conditions of Theorem A, we can form a 95% confidence interval to
estimate the magnitude of the average difference between the two methods. From the
table, we calculate

X A = 80.02 Sa = .024

X B = 79.98 Sb = .031

s2
p = 12 × S2

a + 7 × S2
b

19
= .0007178

sp = .027
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F I G U R E 11.1 Boxplots of measurements of heat of fusion obtained by methods A
and B.

Our estimate of the average difference of the two methods is X A − X B = .04 and its
estimated standard error is

sX A−X B
= sp

√
1
13

+ 1
8

= .012

From Table 4 of Appendix B, the .975 quantile of the t distribution with 19 df
is 2.093, so t19(.025) = 2.093 and the 95% confidence interval is (X A − X B) ±
t19(.025)sX A−X B

, or (.015, .065). The estimated standard error and the confidence
interval quantify the uncertainty in the point estimate X A − X B = .04. ■

We will now discuss hypothesis testing for the two-sample problem. Although
the hypotheses under consideration are different from those of Chapter 9, the general
conceptual framework is the same (you should review that framework at this time).
In the current case, the null hypothesis to be tested is

H0: µX = µY

This asserts that there is no difference between the distributions of the X ’s and Y ’s. If
one group is a treatment group and the other a control, for example, this hypothesis
asserts that there is no treatment effect. In order to conclude that there is a treatment
effect, the null hypothesis must be rejected.

There are three common alternative hypotheses for the two-sample case:

H1: µX ≠ µY

H2: µX > µY

H3: µX < µY
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The first of these is a two-sided alternative, and the other two are one-sided
alternatives. The first hypothesis is appropriate if deviations could in principle go
in either direction, and one of the latter two is appropriate if it is believed that any
deviation must be in one direction or the other. In practice, such a priori informa-
tion is not usually available, and it is more prudent to conduct two-sided tests, as in
Example A.

The test statistic that will be used to make a decision whether or not to reject the
null hypothesis is

t = X − Y
sX−Y

The t-statistic equals the multiple of its estimated standard deviation that X − Y
differs from zero. It plays the same role in the comparison of two samples as is
played by the chi-square statistic in testing goodness of fit. Just as we rejected for
large values of the chi-square statistic, we will reject in this case for extreme values
of t . The distribution of t under H0, its null distribution, is, from Theorem A, the t
distribution with m +n −2 degrees of freedom. Knowing this null distribution allows
us to determine a rejection region for a test at level α, just as knowing that the null
distribution of the chi-square statistic was chi-square with the appropriate degrees of
freedom allowed the determination of a rejection region for testing goodness of fit.
The rejection regions for the three alternatives just listed are

For H1, |t | > tn+m−2(α/2)

For H2, t > tn+m−2(α)

For H3, t < −tn+m−2(α)

Note how the rejection regions are tailored to the particular alternatives and how
knowing the null distribution of t allows us to determine the rejection region for any
value of α.

E X A M P L E B Let us continue Example A. To test H0: µA = µB versus a two-sided alternative, we
form and calculate the following test statistic:

t = X A − X B

sp

√
1
n

+ 1
m

= 3.33

From Table 4 in Appendix B, t19(.005) = 2.861 < 3.33. The two-sided test would
thus reject at the level α = .01. If there were no difference in the two conditions,
differences as large or larger than that observed would occur only with probability
less than .01—that is, the p-value is less than .01. There is little doubt that there is a
difference between the two methods. ■

In Chapter 9, we developed a general duality between hypothesis tests and confi-
dence intervals. In the case of the testing and confidence interval methods considered
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in this section, the t test rejects if and only if the confidence interval does not include
zero (see Problem 10 at the end of this chapter).

We will now demonstrate that the test of H0 versus H1 is equivalent to a likelihood
ratio test. (The rather long argument is sketched here and should be read with paper
and pencil in hand.) # is the set of all possible parameter values:

# = {−∞ < µX < ∞, −∞ < µY < ∞, 0 < σ < ∞}

The unknown parameters are θ = (µX , µY , σ ). Under H0, θ ∈ ω0, where ω0 =
{µX = µY , 0 < σ < ∞}. The likelihood of the two samples X1, . . . , Xn and
Y1, . . . , Ym is

lik
(
µX , µY , σ 2

)
=

n∏

i=1

1√
2πσ 2

e−(1/2)[(Xi −µX )2/σ 2]
m∏

j=1

1√
2πσ 2

e−(1/2)[(Y j −µY )2/σ 2]

and the log likelihood is

l
(
µX , µY , σ 2

)
= − (m + n)

2
log 2π − (m + n)

2
log σ 2

− 1
2σ 2

[
n∑

i=1

(Xi − µX )2 +
m∑

j=1

(Y j − µY )2

]

We must maximize the likelihood under ω0 and under # and then calculate the ratio
of the two maximized likelihoods, or the difference of their logarithms.

Under ω0, we have a sample of size m + n from a normal distribution with
unknown mean µ0 and unknown variance σ 2

0 . The mle’s of µ0 and σ 2
0 are thus

µ̂0 = 1
m + n

(
n∑

i=1

Xi +
m∑

j=1

Y j

)

σ̂ 2
0 = 1

m + n

[
n∑

i=1

(Xi − µ̂0)
2 +

m∑

j=1

(Y j − µ̂0)
2

]

The corresponding value of the maximized log likelihood is, after some cancel-
lation,

l
(
µ̂0, σ̂

2
0

)
= −m + n

2
log 2π − m + n

2
log σ̂ 2

0 − m + n
2

To find the mle’s µ̂X , µ̂Y , and σ̂ 2
1 under #, we first differentiate the log likelihood and

obtain the equations
n∑

i=1

(Xi − µ̂X ) = 0

m∑

j=1

(Y j − µ̂Y ) = 0

−m + n
2σ̂ 2

1
+ 1

2σ̂ 4
1

[
n∑

i=1

(Xi − µ̂X )2 +
m∑

j=1

(Y j − µ̂Y )2

]
= 0
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The mle’s are, therefore,

µ̂X = X

µ̂Y = Y

σ̂ 2
1 = 1

m + n

[
n∑

i=1

(Xi − µ̂X )2 +
m∑

j=1

(Y j − µ̂Y )2

]

When these are substituted into the log likelihood, we obtain

l
(
µ̂X , µ̂Y , σ̂ 2

1

)
= −m + n

2
log 2π − m + n

2
log σ̂ 2

1 − m + n
2

The log of the likelihood ratio is thus

m + n
2

log
(

σ̂ 2
1

σ̂ 2
0

)

and the likelihood ratio test rejects for large values of

σ̂ 2
0

σ̂ 2
1

=

n∑
i=1

(Xi − µ̂0)
2 +

m∑
j=1

(Y j − µ̂0)
2

n∑
i=1

(Xi − X)2 +
m∑

j=1
(Y j − Y )2

We now find an alternative expression for the numerator of this ratio, by using
the identities

n∑

i=1

(Xi − µ̂0)
2 =

n∑

i=1

(Xi − X)2 + n(X − µ̂0)
2

m∑

j=1

(Y j − µ̂0)
2 =

m∑

j=1

(Y j − Y )2 + m(Y − µ̂0)
2

We obtain

µ̂0 = 1
m + n

(nX + mY )

= n
m + n

X + m
m + n

Y

Therefore,

X − µ̂0 = m(X − Y )

m + n

Y − µ̂0 = n(Y − X)

m + n

The alternative expression for the numerator of the ratio is thus

n∑

i=1

(Xi − X)2 +
m∑

j=1

(Y j − Y )2 + mn
m + n

(X − Y )2
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and the test rejects for large values of

1 + mn
m + n

⎛

⎜⎜⎝
(X − Y )2

n∑
i=1

(Xi − X)2 +
m∑

j=1
(Y j − Y )2

⎞

⎟⎟⎠

or, equivalently, for large values of

|X − Y |√
n∑

i=1
(Xi − X)2 +

m∑
j=1

(Y j − Y )2

which is the t statistic apart from constants that do not depend on the data. Thus, the
likelihood ratio test is equivalent to the t test, as claimed.

We have used the assumption that the two populations have the same variance.
If the two variances are not assumed to be equal, a natural estimate of Var(X − Y ) is

s2
X

n
+ s2

Y

m
If this estimate is used in the denominator of the t statistic, the distribution of that
statistic is no longer the t distribution. But it has been shown that its distribution can
be closely approximated by the t distribution with degrees of freedom calculated in
the following way and then rounded to the nearest integer:

df = [(s2
X/n) + (s2

Y /m)]2

(s2
X/n)2

n − 1
+ (s2

Y /m)2

m − 1

E X A M P L E C Let us rework Example B, but without the assumption that the variances are equal.
Using the preceding formula, we find the degrees of freedom to be 12 rather than 19.
The t statistic is 3.12. Since the .995 quantile of the t distribution with 12 df is 3.055
(Table 4 of Appendix B), the test still rejects at level α = .01. ■

If the underlying distributions are not normal and the sample sizes are large, the
use of the t distribution or the normal distribution is justified by the central limit
theorem, and the probability levels of confidence intervals and hypothesis tests are
approximately valid. In such a case, however, there is little difference between the t
and normal distributions. If the sample sizes are small, however, and the distributions
are not normal, conclusions based on the assumption of normality may not be valid.
Unfortunately, if the sample sizes are small, the assumption of normality cannot be
tested effectively unless the deviation is quite gross, as we saw in Chapter 9.

11.2.1.1 An Example—A Study of Iron Retention An experiment was per-
formed to determine whether two forms of iron (Fe2+ and Fe3+) are retained dif-
ferently. (If one form of iron were retained especially well, it would be the better
dietary supplement.) The investigators divided 108 mice randomly into 6 groups of
18 each; 3 groups were given Fe2+ in three different concentrations, 10.2, 1.2, and
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.3 millimolar, and 3 groups were given Fe3+ at the same three concentrations. The
mice were given the iron orally; the iron was radioactively labeled so that a counter
could be used to measure the initial amount given. At a later time, another count was
taken for each mouse, and the percentage of iron retained was calculated. The data for
the two forms of iron are listed in the following table. We will look at the data for the
concentration 1.2 millimolar. (In Chapter 12, we will discuss methods for analyzing
all the groups simultaneously.)

Fe3+ Fe2+

10.2 1.2 .3 10.2 1.2 .3

.71 2.20 2.25 2.20 4.04 2.71
1.66 2.93 3.93 2.69 4.16 5.43
2.01 3.08 5.08 3.54 4.42 6.38
2.16 3.49 5.82 3.75 4.93 6.38
2.42 4.11 5.84 3.83 5.49 8.32
2.42 4.95 6.89 4.08 5.77 9.04
2.56 5.16 8.50 4.27 5.86 9.56
2.60 5.54 8.56 4.53 6.28 10.01
3.31 5.68 9.44 5.32 6.97 10.08
3.64 6.25 10.52 6.18 7.06 10.62
3.74 7.25 13.46 6.22 7.78 13.80
3.74 7.90 13.57 6.33 9.23 15.99
4.39 8.85 14.76 6.97 9.34 17.90
4.50 11.96 16.41 6.97 9.91 18.25
5.07 15.54 16.96 7.52 13.46 19.32
5.26 15.89 17.56 8.36 18.4 19.87
8.15 18.3 22.82 11.65 23.89 21.60
8.24 18.59 29.13 12.45 26.39 22.25

As a summary of the data, boxplots (Figure 11.2) show that the data are quite skewed to
the right. This is not uncommon with percentages or other variables that are bounded
below by zero. Three observations from the Fe2+ group are flagged as possible outliers.
The median of the Fe2+ group is slightly larger than the median of the Fe3+ groups,
but the two distributions overlap substantially.

Another view of these data is provided by normal probability plots (Figure 11.3).
These plots also indicate the skewness of the distributions. We should obviously
doubt the validity of using normal distribution theory (for example, the t test) for this
problem even though the combined sample size is fairly large (36).

The mean and standard deviation of the Fe2+ group are 9.63 and 6.69; for the
Fe3+ group, the mean is 8.20 and the standard deviation is 5.45. To test the hypothesis
that the two means are equal, we can use a t test without assuming that the population
standard deviations are equal. The approximate degrees of freedom, calculated as
described at the end of Section 11.2.1, are 32. The t statistic is .702, which corresponds
to a p-value of .49 for a two-sided test; if the two populations had the same mean,
values of the t statistic this large or larger would occur 49% of the time. There is thus
insufficient evidence to reject the null hypothesis. A 95% confidence interval for the
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F I G U R E 11.2 Boxplots of the percentages of iron retained for the two forms.
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difference of the two population means is (−2.7, 5.6). But the t test assumes that the
underlying populations are normally distributed, and we have seen there is reason to
doubt this assumption.

It is sometimes advocated that skewed data be transformed to a more symmetric
shape before normal theory is applied. Transformations such as taking the log or
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the square root can be effective in symmetrizing skewed distributions because they
spread out small values and compress large ones. Figures 11.4 and 11.5 show boxplots
and normal probability plots for the natural logs of the iron retention data we have
been considering. The transformation was fairly successful in symmetrizing these
distributions, and the probability plots are more linear than those in Figure 11.3,
although some curvature is still evident.
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F I G U R E 11.4 Boxplots of natural logs of percentages of iron retained.
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The following model is natural for the log transformation:

Xi = µX (1 + εi ), i = 1, . . . , n

Y j = µY (1 + δ j ), j = 1, . . . , m

log Xi = log µX + log(1 + εi )

log Y j = log µY + log(1 + δ j )

Here the εi and δ j are independent random variables with mean zero. This model
implies that if the variances of the errors are σ 2, then

E(Xi ) = µX

E(Y j ) = µY

σX = µXσ

σY = µY σ

or that
σX

µX
= σY

µY

If the εi and δ j have the same distribution, Var(log X) = Var(log Y ). The ratio of the
standard deviation of a distribution to the mean is called the coefficient of variation
(CV); it expresses the standard deviation as a fraction of the mean. Coefficients of
variation are sometimes expressed as percentages. For the iron retention data we have
been considering, the CV’s are .69 and .67 for the Fe2+ and Fe3+ groups; these values
are quite close. These data are quite “noisy”—the standard deviation is nearly 70%
of the mean for both groups.

For the transformed iron retention data, the means and standard deviations are
given in the following table:

Fe2+ Fe3+

Mean 2.09 1.90
Standard Deviation .659 .574

For the transformed data, the t statistic is .917, which gives a p-value of .37.
Again, there is no reason to reject the null hypothesis. A 95% confidence interval is
(−.61, .23). Using the preceding model, this is a confidence interval for

log µX − log µY = log
(

µX

µY

)

The interval is

−.61 ≤ log
(

µX

µY

)
≤ .23

or

.54 ≤ µX

µY
≤ 1.26

Other transformations, such as raising all values to some power, are sometimes
used. Attitudes toward the use of transformations vary: Some view them as a very
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useful tool in statistics and data analysis, and others regard them as questionable
manipulation of the data.

11.2.2 Power
Calculations of power are an important part of planning experiments in order to
determine how large sample sizes should be. The power of a test is the probability
of rejecting the null hypothesis when it is false. The power of the two-sample t test
depends on four factors:

1. The real difference, ) = |µX − µY |. The larger this difference, the greater the
power.

2. The significance level α at which the test is done. The larger the significance level,
the more powerful the test.

3. The population standard deviation σ , which is the amplitude of the “noise” that
hides the “signal.” The smaller the standard deviation, the larger the power.

4. The sample sizes n and m. The larger the sample sizes, the greater the power.

Before continuing, you should try to understand intuitively why these statements are
true. We will express them quantitatively below.

The necessary sample sizes can be determined from the significance level of the
test, the standard deviation, and the desired power against an alternative hypothesis,

H1: µX − µY = )

To calculate the power of a t test exactly, special tables of the noncentral t
distribution are required. But if the sample sizes are reasonably large, one can perform
approximate power calculations based on the normal distribution, as we will now
demonstrate.

Suppose that σ , α, and ) are given and that the samples are both of size n. Then

Var(X − Y ) = σ 2

(
1
n

+ 1
n

)

= 2σ 2

n

The test at level α of H0: µX = µY against the alternative H1: µX ≠ µY is based on
the test statistic

Z = X − Y
σ
√

2/n

The rejection region for this test is |Z | > z(α/2), or

|X − Y | > z(α/2)σ

√
2
n
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The power of the test if µX − µY = ) is the probability that the test statistic falls in
the rejection region, or

P

[
|X − Y | > z(α/2)σ

√
2
n

]

= P

[
X − Y > z(α/2)σ

√
2
n

]
+ P

[
X − Y < −z(α/2)σ

√
2
n

]

since the two events are mutually exclusive. Both probabilities on the right-hand side
are calculated by standardizing. For the first one, we have

P

[
X − Y > z(α/2)σ

√
2
n

]
= P

[
(X − Y ) − )

σ
√

2/n
>

z(α/2)σ
√

2/n − )

σ
√

2/n

]

= 1 − *

[
z(α/2) − )

σ

√
n
2

]

where * is the standard normal cdf. Similarly, the second probability is

*

[
− z(α/2) − )

σ

√
n
2

]

Thus, the probability that the test statistic falls in the rejection region is equal to

1 − *

[
z(α/2) − )

σ

√
n
2

]
+ *

[
− z(α/2) − )

σ

√
n
2

]

Typically, as ) moves away from zero, one of these terms will be negligible with
respect to the other. For example, if ) is greater than zero, the first term will be
dominant. For fixed n, this expression can be evaluated as a function of ); or for
fixed ), it can be evaluated as a function of n.

E X A M P L E A As an example, let us consider a situation similar to an idealized form of the iron
retention experiment. Assume that we have samples of size 18 from two normal
distributions whose standard deviations are both 5, and we calculate the power for
various values of ) when the null hypothesis is tested at a significance level of .05.
The results of the calculations are displayed in Figure 11.6. We see from the plot that
if the mean difference in retention is only 1%, the probability of rejecting the null
hypothesis is quite small, only 9%. A mean difference of 5% in retention rate gives
a more satisfactory power of 85%.

Suppose that we wanted to be able to detect a difference of ) = 1 with probability
.9. What sample size would be necessary? Using only the dominant term in the
expression for the power, the sample size should be such that

*

(
1.96 − )

σ

√
n
2

)
= .1
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F I G U R E 11.6 Plot of power versus ).

From the tables for the normal distribution, .1 = *(−1.28), so

1.96 − )

σ

√
n
2

= −1.28

Solving for n, we find that the necessary sample size would be 525! This is clearly
unfeasible; if in fact the experimenters wanted to detect such a difference, some
modification of the experimental technique to reduce σ would be necessary. ■

11.2.3 A Nonparametric Method—The Mann-Whitney Test
Nonparametric methods do not assume that the data follow any particular distribu-
tional form. Many of them are based on replacement of the data by ranks. With this
replacement, the results are invariant under any monotonic transformation; in com-
parison, we saw that the p-value of a t test may change if the log of the measurements
is analyzed rather than the measurements on the original scale. Replacing the data by
ranks also has the effect of moderating the influence of outliers.

For purposes of discussion, we will develop the Mann-Whitney test (also some-
times called the Wilcoxon rank sum test) in a specific context. Suppose that we have
m + n experimental units to assign to a treatment group and a control group. The
assignment is made at random: n units are randomly chosen and assigned to
the control, and the remaining m units are assigned to the treatment. We are in-
terested in testing the null hypothesis that the treatment has no effect. If the null
hypothesis is true, then any difference in the outcomes under the two conditions is
due to the randomization.
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A test statistic is calculated in the following way. First, we group all m + n
observations together and rank them in order of increasing size (we will assume for
simplicity that there are no ties, although the argument holds even in the presence
of ties). We next calculate the sum of the ranks of those observations that came
from the control group. If this sum is too small or too large, we will reject the null
hypothesis.

It is easiest to see how the procedure works by considering a very small example.
Suppose that a treatment and a control are to be compared: Of four subjects, two are
randomly assigned to the treatment and the other two to the control, and the following
responses are observed (the ranks of the observations are shown in parentheses):

Treatment Control

1 (1) 6 (4)
3 (2) 4 (3)

The sum of the ranks of the control group is R = 7, and the sum of the ranks
of the treatment group is 3. Does this discrepancy provide convincing evidence of a
systematic difference between treatment and control, or could it be just due to chance?
To answer this question, we calculate the probability of such a discrepancy if the
treatment had no effect at all, so that the difference was entirely due to the particular
randomization—this is the null hypothesis. The key idea of the Mann-Whitney test is
that we can explicitly calculate the distribution of R under the null hypothesis, since
under this hypothesis every assignment of ranks to observations is equally likely and
we can enumerate all 4! = 24 such assignments. In particular, each of the

(7
2

)
= 6

assignments of ranks to the control group shown in the following table is equally
likely:

Ranks R

{1, 2} 3
{1, 3} 4
{1, 4} 5
{2, 3} 5
{2, 4} 6
{3, 4} 7

From this table, we see that under the null hypothesis, the distribution of R (its null
distribution) is:

r 3 4 5 6 7

P(R = r) 1
6

1
6

1
3

1
6

1
6

In particular, P(R = 7) = 1
6 , so this discrepancy would occur one time out of six

purely on the basis of chance.
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The small example of the previous paragraph has been laid out for pedagogi-
cal reasons, the point being that we could in principle go through similar calcula-
tions for any sample sizes m and n. Suppose that there are n observations in the
treatment group and m in the control group. If the null hypothesis holds, every as-
signment of ranks to the m + n observations is equally likely, and hence each of
the

(m+n
m

)
possible assignments of ranks to the control group is equally likely. For

each of these assignments, we can calculate the sum of the ranks and thus deter-
mine the null distribution of the test statistic—the sum of the ranks of the control
group.

It is important to note that we have not made any assumption that the observations
from the control and treatment groups are samples from a probability distribution.
Probability has entered in only as a result of the random assignment of experimental
units to treatment and control groups (this is similar to the way that probability
enters into survey sampling). We should also note that, although we chose the sum
of control ranks as the test statistic, any other test statistic could have been used and
its null distribution computed in the same fashion. The rank sum is easy to compute
and is sensitive to a treatment effect that tends to make responses larger or smaller.
Also, its null distribution has to be computed only once and tabled; if we worked with
the actual numerical values, the null distribution would depend on those particular
values.

Tables of the null distribution of the rank sum are widely available and vary in
format. Note that because the sum of the two rank sums is the sum of the integers
from 1 to m + n, which is [(m + n)(m + n + 1)/2], knowing one rank sum tells us
the other. Some tables are given in terms of the rank sum of the smaller of the two
groups, and some are in terms of the smaller of the two rank sums (the advantage of
the latter scheme is that only one tail of the distribution has to be tabled). Table 8 of
Appendix B makes use of additional symmetries. Let n1 be the smaller sample size
and let R be the sum of the ranks from that sample. Let R′ = n1(m + n + 1) − R
and R∗ = min(R, R′). The table gives critical values for R∗. (Fortunately, such fussy
tables are largely obsolete with the increasing use of computers.)

When it is more appropriate to model the control values, X1, . . . , Xn , as a sample
from some probability distribution F and the experimental values, Y1, . . . , Ym , as a
sample from some distribution G, the Mann-Whitney test is a test of the null hypothesis
H0: F = G. The reasoning is exactly the same: Under H0, any assignment of ranks
to the pooled m + n observations is equally likely, etc.

We have assumed here that there are no ties among the observations. If there
are only a small number of ties, tied observations are assigned average ranks (the
average of the ranks for which they are tied); the significance levels are not greatly
affected.

E X A M P L E A Let us illustrate the Mann-Whitney test by referring to the data on latent heats of fusion
of ice considered earlier (Example A in Section 11.2.1). The sample sizes are fairly
small (13 and 8), so in the absence of any prior knowledge concerning the adequacy
of the assumption of a normal distribution, it would seem safer to use a nonparametric
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method. The following table exhibits the ranks given to the measurements for each
method (refer to Example A in Section 11.2.1 for the original data):

Method A Method B

7.5 11.5
19.0 1.0
11.5 7.5
19.0 4.5
15.5 4.5
15.5 15.5
19.0 2.0

4.5 4.5
21.0
15.5
11.5

9.0
11.5

Note how the ties were handled. For example, the four observations with the value
79.97 tied for ranks 3, 4, 5, and 6 were each assigned the rank of 4.5 = (3 + 4 +
5 + 6)/4.

Table 8 of Appendix B is used as follows. The sum of the ranks of the smaller
sample is R = 51.

R′ = 8(8 + 13 + 1) − R

= 125

Thus, R∗ = 51. From the table, 53 is the critical value for a two-tailed test with
α = .01, and 60 is the critical value for α = .05. The Mann-Whitney test thus rejects
at the .01 significance level. ■

Let TY denote the sum of the ranks of Y1, Y2, . . . , Ym . Using results from Chap-
ter 7, we can easily find E(TY ) and Var(TY ) under the null hypothesis F = G.

T H E O R E M A

If F = G,

E(TY ) = m(m + n + 1)

2

Var(TY ) = mn(m + n + 1)

12
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Proof
Under the null hypothesis, TY is the sum of a random sample of size m drawn
without replacement from a population consisting of the integers {1, 2, . . . ,

m + n}. TY thus equals m times the average of such a sample. From Theorems A
and B of Section 7.3.1,

E(TY ) = mµ

Var(TY ) = mσ 2

(
N − m
N − 1

)

where N = m + n is the size of the population, and µ and σ 2 are the population
mean and variance. Now, using the identities

N∑

k=1

k = N (N + 1)

2

N∑

k=1

k2 = N (N + 1)(2N + 1)

6

we find that for the population {1, 2, . . . , m + n}

µ = N + 1
2

σ 2 = N 2 − 1
12

The result then follows after algebraic simplification. ■

Unlike the t test, the Mann-Whitney test does not depend on an assumption of
normality. Since the actual numerical values are replaced by their ranks, the test is
insensitive to outliers, whereas the t test is sensitive. It has been shown that even
when the assumption of normality holds, the Mann-Whitney test is nearly as pow-
erful as the t test and it is thus generally preferable, especially for small sample
sizes.

The Mann-Whitney test can also be derived starting from a different point of
view. Suppose that the X ’s are a sample from F and the Y ’s a sample from G, and
consider estimating, as a measure of the effect of the treatment,

π = P(X < Y )

where X and Y are independently distributed with distribution functions F and G,
respectively. The value π is the probability that an observation from the distribution
F is smaller than an independent observation from the distribution G.

If, for example, F and G represent lifetimes of components that have been man-
ufactured according to two different conditions, π is the probability that a component
of one type will last longer than a component of the other type. An estimate of π can
be obtained by comparing all n values of X to all m values of Y and calculating the
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proportion of the comparisons for which X was less than Y :

π̂ = 1
mn

n∑

i=1

m∑

j=1

Zi j

where

Zi j =
{

1, if Xi < Y j

0, otherwise

To see the relationship of π̂ to the rank sum introduced earlier, we will find it conve-
nient to work with

Vi j =
{

1, if X(i) < Y( j)

0, otherwise

Clearly,

n∑

i=1

m∑

j=1

Zi j =
n∑

i=1

m∑

j=1

Vi j

since the Vi j are just a reordering of the Zi j . Also,

n∑

i=1

m∑

j=1

Vi j = (number of X ’s that are less than Y(1))

+ (number of X ’s that are less than Y(2))

+ · · · + (number of X ’s that are less than Y(m))

If the rank of Y(k) in the combined sample is denoted by Ryk , then the number of X ’s
less than Y(1) is Ry1 − 1, the number of X ’s less than Y(2) is Ry2 − 2, etc. Therefore,

n∑

i=1

m∑

j=1

Vi j = (Ry1 − 1) + (Ry2 − 2) + · · · + (Rym − m)

=
m∑

i=1

Ryi −
m∑

i=1

i

=
m∑

i=1

Ryi − m(m + 1)

2

= Ty − m(m + 1)

2

Thus, π̂ may be expressed in terms of the rank sum of the Y ’s (or in terms of the rank
sum of the X ’s, since the two rank sums add up to a constant).



11.2 Comparing Two Independent Samples 441

From Theorem A, we have

C O R O L L A R Y A

Under the null hypothesis H0: F = G,

E(UY ) = mn
2

Var(UY ) = mn(m + n + 1)

12
■

For m and n both greater than 10, the null distribution of UY is quite well ap-
proximated by a normal distribution,

UY − E(UY )√
Var(UY )

∼ N (0, 1)

(Note that this does not follow immediately from the ordinary central limit theorem;
although UY is a sum of random variables, they are not independent.) Similarly, the
distribution of the rank sum of the X ’s or Y ’s may be approximated by a normal
distribution, since these rank sums differ from UY only by constants.

E X A M P L E B Referring to Example A, let us use a normal approximation to the distribution of the
rank sum from method B. For n = 13 and m = 8, we have from Corollary A that
under the null hypothesis,

E(T ) = 8(8 + 13 + 1)

2
= 88

σT =
√

8 × 13(8 + 13 + 1)

12
= 13.8

T is the sum of the ranks from method B, or 51, and the normalized test statistic is

T − E(T )

σT
= −2.68

From the tables of the normal distribution, this corresponds to a p-value of .007 for
a two-sided test, so the null hypothesis is rejected at level α = .01, just as it was
when we used the exact distribution. For this set of data, we have seen that the t
test with the assumption of equal variances, the t test without that assumption, the
exact Mann-Whitney test, and the approximate Mann-Whitney test all reject at level
α = .01. ■
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The Mann-Whitney test can be inverted to form confidence intervals. Let us
consider a “shift” model: G(x) = F(x − )). This model says that the effect of the
treatment (the Y ’s) is to add a constant ) to what the response would have been with
no treatment (the X ’s). (This is a very simple model, and we have already seen cases
for which it is not appropriate.) We now derive a confidence interval for ). To test
H0: F = G, we used the statistic UY equal to the number of the Xi − Y j that are
less than zero. To test the hypothesis that the shift parameter is ), we can similarly
use

UY ()) = #[Xi − (Y j − )) < 0] = #(Y j − Xi > ))

It can be shown that the null distribution of UY ()) is symmetric about mn/2:

P
(

UY ()) = mn
2

+ k
)

= P
(

UY ()) = mn
2

− k
)

for all integers k. Suppose that k = k(α) is such that P(k ≤ UY ()) ≤ mn − k) =
1 − α; the level α test then accepts for such UY ()). By the duality of confidence
intervals and hypothesis tests, a 100(1 − α)% confidence interval for ) is thus

C = {) | k ≤ UY ()) ≤ mn − k}

C consists of the set of values ) for which the null hypothesis would not be rejected.
We can find an explicit form for this confidence interval. Let D(1), D(2), . . . , D(mn)

denote the ordered mn differences Y j − Xi . We will show that

C = [D(k), D(mn−k+1))

To see this, first suppose that ) = D(k). Then

UY ()) = #(Xi − Y j + ) < 0)

= #(Y j − Xi > ))

= mn − k

Similarly, if ) = D(mn−k+1),

UY ()) = #(Y j − Xi > ))

= k

(You might find it helpful to consider the case m = 3, n = 2, k = 2.)

E X A M P L E C We return to the data on iron retention (Section 11.2.1.1). The earlier analysis using
the t test rested on the assumption that the populations were normally distributed,
which, in fact, seemed rather dubious. The Mann-Whitney test does not make this
assumption. The sum of the ranks of the Fe2+ group is used as a test statistic (we
could have as easily used the U statistic). The rank sum is 362. Using the normal
approximation to the null distribution of the rank sum, we get a p-value of .36. Again,
there is insufficient evidence to reject the null hypothesis that there is no differential
retention. The 95% confidence interval for the shift between the two distributions is
(−1.6, 3.7), which overlaps zero substantially. Note that this interval is shorter than
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the interval based on the t distribution; the latter was inflated by the contributions of
the large observations to the sample variance. ■

We close this section with an illustration of the use of the bootstrap in a two-
sample problem. As before, suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are
two independent samples from distributions F and G, respectively, and that π =
P(X < Y ) is estimated by π̂ . How can the standard error of π̂ be estimated and how
can an approximate confidence interval for π be constructed? (Note that the calcula-
tions of Theorem A are not directly relevant, since they are done under the assump-
tion that F = G.)

The problem can be approached in the following way: First suppose for the
moment that F and G were known. Then the sampling distribution of π̂ and its
standard error could be estimated by simulation. A sample of size n would be generated
from F , an independent sample of size m would be generated from G, and the resulting
value of π̂ would be computed. This procedure would be repeated many times, say B
times, producing π̂1, π̂2, . . . , π̂B . A histogram of these values would be an indication
of the sampling distribution of π̂ and their standard deviation would be an estimate
of the standard error of π̂ .

Of course, this procedure cannot be implemented, because F and G are not
known. But as in the previous chapter, an approximation can be obtained by using the
empirical distributions Fn and Gn in their places. This means that a bootstrap value of
π̂ is generated by randomly selecting n values from X1, X2, . . . , Xn with replacement,
m values from Y1, Y2, . . . , Ym with replacement and calculating the resulting value
of π̂ . In this way, a bootstrap sample π̂1, π̂2, . . . , π̂B is generated.

11.2.4 Bayesian Approach
We consider a Bayesian approach to the model, which stipulates that the Xi are i.i.d.
normal with mean µX and precision ξ ; and the Y j are i.i.d. normal with mean µY ,
precision ξ , and independent of the Xi . In general, a prior joint distribution assigned
to (µX , µY , ξ) would be multiplied by the likelihood and normalized to integrate
to 1 to produce a three-dimensional joint posterior distribution for (µX , µY , ξ). The
marginal joint distribution of (µX , µY ) could be obtained by integrating out ξ . The
marginal distribution of µX − µY could then be obtained by another integration as in
Section 3.6.1. Several integrations would thus have to be done, either analytically or
numerically. Special Monte Carlo methods have been devised for high dimensional
Bayesian problems, but we will not consider them here.

An approximate result can be obtained using improper priors. We take (µX , µY , ξ)

to be independent. The means µX and µY are given improper priors that are constant
on (−∞, ∞), and ξ is given the improper prior f,(ξ) = ξ−1. The posterior is thus
proportional to the likelihood multiplied by ξ−1:

fpost(µX , µY , ξ) ∝ ξ
n+m

2 −1 exp

(
−ξm+n

2

[
n∑

i=1

(xi − µX )2 +
m∑

j=1

(y j − µY )2

])
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Next, using
∑n

i=1(xi −µX )2 = (n −1)s2
x +n(µX − x̄)2 and the analogous expression

for the y j , we have

fpost(µX , µY , ξ) ∝ ξ
n+m

2 −1 exp
(

−ξ

2

[
(n − 1)s2

x + (m − 1)s2
y

])

× exp
(

−nξ

2
(µX − x̄)2

)
exp

(
−mξ

2
(µY − ȳ)2

)

From the form of this expression as a function of µX and µY , we see that for fixed ξ ,
µX and µY are independent normally distributed with means x̄ and ȳ and precisions
nξ and mξ . Their difference, µX − µY , is thus normally distributed with mean x̄ − ȳ
and variance ξ−1(n−1 + m−1).

With further analysis similar to that of Section 8.6, it can be shown that the
marginal posterior distribution of ) = µX − µY can be related to the t distribution:

) − (x̄ − ȳ)

sp

√
n−1 + m−1

∼ tn+m−2

Although formally similar to Theorem A of Section 11.2.1, the interpretation is dif-
ferent: x̄ − ȳ and sp are random in Theorem A but are fixed here, and ) = µX − µY

is random here but fixed in Theorem A. The Bayesian formalism makes probability
statements about ) given the observed data.

The posterior probability that ) > 0 can thus be found using the t distribution. Let
T denote a random variable with a tm+n−2 distribution. Then, denoting the observations
by X and Y

P() > 0 | X, Y ) = P

(
) − (x̄ − ȳ)

sp

√
n−1 + m−1

≥ −(x̄ − ȳ)

sp

√
n−1 + m−1

| X, Y

)

= P

(
T ≥ ȳ − x̄

sp

√
n−1 + m−1

)

Letting X denote the measurements of method A, and Y denote the measurements
of method B in Example A of Section 11.2.1, we find that for that example,

P() > 0|X, Y ) = t19(−3.33) = .998

This posterior probability is very close to 1.0, and there is thus little doubt that the
mean of method A is larger than the mean of method B.

The confidence interval calculated in Section 11.2.1 is formally similar but has
a different interpretation under the Bayesian model, which concludes that

P(.015 ≤ ) ≤ .065|X, Y ) = .95

by integration of the posterior t distribution over a region containing 95% of the
probability.

11.3 Comparing Paired Samples
In Section 11.2, we considered the problem of analyzing two independent samples.
In many experiments, the samples are paired. In a medical experiment, for example,
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subjects might be matched by age or weight or severity of condition, and then one
member of each pair randomly assigned to the treatment group and the other to the
control group. In a biological experiment, the paired subjects might be littermates.
In some applications, the pair consists of a “before” and an “after” measurement on
the same object. Since pairing causes the samples to be dependent, the analysis of
Section 11.2 does not apply.

Pairing can be an effective experimental technique, as we will now demonstrate
by comparing a paired design and an unpaired design. First, we consider the paired
design. Let us denote the pairs as (Xi , Yi ), where i = 1, . . . , n, and assume the X ’s
and Y ’s have means µX and µY and variances σ 2

X and σ 2
Y . We will assume that different

pairs are independently distributed and that Cov(Xi , Yi ) = σXY . We will work with
the differences Di = Xi − Yi , which are independent with

E(Di ) = µX − µY

Var(Di ) = σ 2
X + σ 2

Y − 2σXY

= σ 2
X + σ 2

Y − 2ρσXσY

when ρ is the correlation of members of a pair. A natural estimate of µX − µY is
D = X − Y , the average difference. From the properties of Di , it follows that

E(D) = µX − µY

Var(D) = 1
n

(
σ 2

X + σ 2
Y − 2ρσXσY

)

Suppose, on the other hand, that an experiment had been done by taking a sample
of n X ’s and an independent sample of n Y ’s. Then µX − µY would be estimated by
X − Y and

E(X − Y ) = µX − µY

Var(X − Y ) = 1
n

(
σ 2

X + σ 2
Y

)

Comparing the variances of the two estimates, we see that the variance of D is
smaller if the correlation is positive—that is, if the X ’s and Y ’s are positively cor-
related. In this circumstance, pairing is the more effective experimental design. In
the simple case in which σX = σY = σ , the two variances may be more simply
expressed as

Var(D) = 2σ 2(1 − ρ)

n

in the paired case and as

Var(X − Y ) = 2σ 2

n

in the unpaired case, and the relative efficiency is

Var(D)

Var(X − Y )
= 1 − ρ
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If the correlation coefficient is .5, for example, a paired design with n pairs of subjects
yields the same precision as an unpaired design with 2n subjects per treatment. This
additional precision results in shorter confidence intervals and more powerful tests if
the degrees of freedom for estimating σ 2 are sufficiently large.

We next present methods based on the normal distribution for analyzing data
from paired designs and then a nonparametric, rank-based method.

11.3.1 Methods Based on the Normal Distribution
In this section, we assume that the differences are a sample from a normal distribution
with

E(Di ) = µX − µY = µD

Var(Di ) = σ 2
D

Generally, σD will be unknown, and inferences will be based on

t = D − µD

sD

which follows a t distribution with n − 1 degrees of freedom. Following familiar
reasoning, a 100(1 − α)% confidence interval for µD is

D ± tn−1(α/2)sD

A two-sided test of the null hypothesis H0: µD = 0 (the natural null hypothesis for
testing no treatment effect) at level α has the rejection region

|D| > tn−1(α/2)sD

If the sample size n is large, the approximate validity of the confidence interval
and hypothesis test follows from the central limit theorem. If the sample size is small
and the true distribution of the differences is far from normal, the stated probability
levels may be considerably in error.

E X A M P L E A To study the effect of cigarette smoking on platelet aggregation, Levine (1973) drew
blood samples from 11 individuals before and after they smoked a cigarette and
measured the extent to which the blood platelets aggregated. Platelets are involved
in the formation of blood clots, and it is known that smokers suffer more often
from disorders involving blood clots than do nonsmokers. The data are shown in
the following table, which gives the maximum percentage of all the platelets that
aggregated after being exposed to a stimulus.
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Before After Difference

25 27 2
25 29 4
27 37 10
44 56 12
30 46 16
67 82 15
53 57 4
53 80 27
52 61 9
60 59 −1
28 43 15

From the column of differences, D = 10.27 and sD = 2.40. The uncertainty
in D is quantified in sD or in a confidence interval. Since t10(.05) = 1.812, a 90%
confidence interval is D ± 1.812sD , or (5.9, 14.6). We can also formally test the null
hypothesis that means before and after are the same. The t statistic is 10.27/2.40 =
4.28, and since t10(.005) = 3.169, the p-value of a two-sided test is less than .01.
There is little doubt that smoking increases platelet aggregation.

The experiment was actually more complex than we have indicated. Some sub-
jects also smoked cigarettes made of lettuce leaves and “smoked” unlit cigarettes.
(You should reflect on why these additional experiments were done.)

Figure 11.7 is a plot of the after values versus the before values. They are corre-
lated, with a correlation coefficient of .90. Pairing was a natural and effective exper-
imental design in this case. ■
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F I G U R E 11.7 Plot of platelet aggregation after smoking versus aggregation before
smoking.
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11.3.2 A Nonparametric Method—The Signed Rank Test
A nonparametric test based on ranks can be constructed for paired samples. We
illustrate the calculation with a very small example. Suppose there are four pairs,
corresponding to “before” and “after” measurements listed in the following table:

Before After Difference |Difference| Rank Signed Rank

25 27 2 2 2 2
29 25 −4 4 3 −3
60 59 −1 1 1 −1
27 37 10 10 4 4

The test statistic is calculated by the following steps:

1. Calculate the differences, Di , and the absolute values of the differences and rank
the latter.

2. Restore the signs of the differences to the ranks, obtaining signed ranks.
3. Calculate W+, the sum of those ranks that have positive signs. For the table, this

sum is W+ = 2 + 4 = 6.

The idea behind the signed rank test (sometimes called the Wilcoxon signed rank
test) is intuitively simple. If there is no difference between the two paired conditions,
we expect about half the Di to be positive and half negative, and W+ will not be too
small or too large. If one condition tends to produce larger values than the other, W+
will tend to be more extreme. We therefore can use W+ as a test statistic and reject
for extreme values.

Before continuing, we need to specify more precisely the null hypothesis we are
testing with the signed rank test: H0 states that the distribution of the Di is symmetric
about zero. This will be true if the members of pairs of experimental units are assigned
randomly to treatment and control conditions, and the treatment has no effect at all.

As usual, in order to define a rejection region for a test at level α, we need to
know the sampling distribution of W+ if the null hypothesis is true. The rejection
region will be located in the tails of this null distribution in such a way that the
test has level α. The null distribution may be calculated in the following way. If H0

is true, it makes no difference which member of the pair corresponds to treatment
and which to control. The difference Xi − Yi = Di has the same distribution as the
difference Yi − Xi = −Di , so the distribution of Di is symmetric about zero. The kth
largest value of D is thus equally likely to be positive or negative, and any particular
assignment of signs to the integers 1, . . . , n (the ranks) is equally likely. There are 2n

such assignments, and for each we can calculate W+. We obtain a list of 2n values (not
all distinct) of W+, each of which occurs with probability 1/2n . The probability of
each distinct value of W+ may thus be calculated, giving the desired null distribution.

The preceding argument has assumed that the Di are a sample from some con-
tinuous probability distribution. If we do not wish to regard the Xi and Yi as random
variables and if the assignments to treatment and control have been made at random,
the hypothesis that there is no treatment effect may be tested in exactly the same
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manner, except that inferences are based on the distribution induced by the random-
ization, as was done for the Mann-Whitney test.

The null distribution of W+ is calculated by many computer packages, and tables
are also available.

The signed rank test is a nonparametric version of the paired sample t test.
Unlike the t test, it does not depend on an assumption of normality. Since differences
are replaced by ranks, it is insensitive to outliers, whereas the t test is sensitive. It
has been shown that even when the assumption of normality holds, the signed rank
test is nearly as powerful as the t test. The nonparametric method is thus generally
preferable, especially for small sample sizes.

E X A M P L E A The signed rank test can be applied to the data on platelet aggregation considered
previously (Example A in Section 11.3.1). In this case, it is easier to work with W−
rather than W+, since W− is clearly 1. From Table 9 of Appendix B, the two-sided
test is significant at α = .01. ■

If the sample size is greater than 20, a normal approximation to the null distri-
bution can be used. To find this, we calculate the mean and variance of W+.

T H E O R E M A

Under the null hypothesis that the Di are independent and symmetrically dis-
tributed about zero,

E(W+) = n(n + 1)

4

Var(W+) = n(n + 1)(2n + 1)

24

Proof
To facilitate the calculation, we represent W+ in the following way:

W+ =
n∑

k=1

k Ik

where

Ik =
{

1, if the kth largest |Di | has Di > 0
0, otherwise

Under H0, the Ik are independent Bernoulli random variables with p = 1
2 , so

E(Ik) = 1
2

Var(Ik) = 1
4
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We thus have

E(W+) = 1
2

n∑

k=1

k = n(n + 1)

4

Var(W+) = 1
4

n∑

k=1

k2 = n(n + 1)(2n + 1)

24

as was to be shown. ■

If some of the differences are equal to zero, the most common technique is to
discard those observations. If there are ties, each |Di | is assigned the average value of
the ranks for which it is tied. If there are not too many ties, the significance level of
the test is not greatly affected. If there are a large number of ties, modifications must
be made. For further information on these matters, see Hollander and Wolfe (1973)
or Lehmann (1975).

11.3.3 An Example—Measuring Mercury Levels in Fish
Kacprzak and Chvojka (1976) compared two methods of measuring mercury levels
in fish. A new method, which they called “selective reduction,” was compared to
an established method, referred to as “the permanganate method.” One advantage
of selective reduction is that it allows simultaneous measurement of both inorganic
mercury and methyl mercury. The mercury in each of 25 juvenile black marlin was
measured by both techniques. The 25 measurements for each method (in ppm of
mercury) and the differences are given in the following table.

Fish Selective Reduction Permanganate Difference Signed Rank

1 .32 .39 .07 +15.5
2 .40 .47 .07 +15.5
3 .11 .11 .00
4 .47 .43 −.04 −11
5 .32 .42 .10 +19
6 .35 .30 −.05 −13.5
7 .32 .43 .11 +20
8 .63 .98 .35 +23
9 .50 .86 .36 +24

10 .60 .79 .19 +22
11 .38 .33 −.05 −13.5
12 .46 .45 −.01 −2.5

(Continued)
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Fish Selective Reduction Permanganate Difference Signed Rank

13 .20 .22 .02 +6.5
14 .31 .30 −.01 −2.5
15 .62 .60 −.02 −6.5
16 .52 .53 .01 +2.5
17 .77 .85 .08 +17.5
18 .23 .21 −.02 −6.5
19 .30 .33 .03 +9.0
20 .70 .57 −.13 −21
21 .41 .43 .02 +6.5
22 .53 .49 −.04 −11
23 .19 .20 .01 +2.5
24 .31 .35 .04 +11
25 .48 .40 −.08 −17.5

In analyzing such data, it is often informative to check whether the differences
depend in some way on the level or size of the quantity being measured. The differ-
ences versus the permanganate values are plotted in Figure 11.8. This plot is quite
interesting. It appears that the differences are small for low permanganate values and
larger for higher permanganate values. It is striking that the differences are all posi-
tive and large for the highest four values. The investigators do not comment on these
phenomena. It is not uncommon for the size of fluctuations to increase as the value
being measured increases; the percent error may remain nearly constant but the actual
error does not. For this reason, data of this nature are often analyzed on a log scale.
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F I G U R E 11.8 Plot of differences versus permanganate values.
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Because the observations are paired (two measurements on each fish), we will
use the paired t test for a parametric test. The sample size is large enough that the test
should be robust against nonnormality. The mean difference is .04, and the standard
deviation of the differences is .116. The t statistic is 1.724; with 24 degrees of freedom,
this corresponds to a p-value of .094 for a two-sided test. Although this p-value is
fairly small, the evidence against H0: µD = 0 is not overwhelming. The test does not
reject at the significance level .05.

The signed ranks are shown in the last column of the table above. Note that the
single zero difference was set aside, and also note how the tied ranks were handled.
The test statistic W+ is 194.5. Under H0, its mean and variance are

E(W+) = 24 × 25
4

= 150

Var(W+) = 24 × 25 × 49
24

= 1225

Since n is greater than 20, we use the normalized test statistic, or

Z = W+ − E(W+)√
Var(W+)

= 1.27

The p-value for a two-sided test from the normal approximation is .20, which is not
strong evidence against the null hypothesis. It is possible to correct for the presence
of ties, but in this case the correction only amounts to changing the standard deviation
of W+ from 35 to 34.95.

Neither the parametric nor the nonparametric test gives conclusive evidence that
there is any systematic difference between the two methods of measurement. The
informal graphical analysis does suggest, however, that there may be a difference for
high concentrations of mercury.

11.4 Experimental Design
This section covers some basic principles of the interpretation and design of experi-
mental studies and illustrates them with case studies.

11.4.1 Mammary Artery Ligation
A person with coronary artery disease suffers from chest pain during exercise because
the constricted arteries cannot deliver enough oxygen to the heart. The treatment
of ligating the mammary arteries enjoyed a brief vogue; the basic idea was that
ligating these arteries forced more blood to flow into the heart. This procedure had the
advantage of being quite simple surgically, and it was widely publicized in an article
in Reader’s Digest (Ratcliffe 1957). Two years later, the results of a more careful study
(Cobb et al. 1959) were published. In this study, a control group and an experimental
group were established in the following way. When a prospective patient entered
surgery, the surgeon made the necessary preliminary incisions prior to tying off the
mammary artery. At that point, the surgeon opened a sealed envelope that contained
instructions about whether to complete the operation by tying off the artery. Neither
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the patient nor his attending physician knew whether the operation had actually been
carried out. The study showed essentially no difference after the operation between
the control group (no ligation) and the experimental group (ligation), although there
was some suggestion that the control group had done better.

The Ratcliffe and Cobb studies differ in that in the earlier one there was no
control group and thus no benchmark by which to gauge improvement. The reported
improvement of the patients in this earlier study could have been due to the placebo
effect, which we discuss next. The design of the later study protected against possible
unconscious biases by randomly assigning the control and experimental groups and
by concealing from the patients and their physicians the actual nature of the treatment.
Such a design is called a double-blind, randomized controlled experiment.

11.4.2 The Placebo Effect
The placebo effect refers to the effect produced by any treatment, including dummy
pills (placebos), when the subject believes that he or she has been given an effective
treatment. The possibility of a placebo effect makes the use of a blind design necessary
in many experimental investigations.

The placebo effect may not be due entirely to psychological factors, as was
shown in an interesting experiment by Levine, Gordon, and Fields (1978). A group
of subjects had teeth extracted. During the extraction, they were given nitrous oxide
and local anesthesia. In the recovery room, they rated the amount of pain they were
experiencing on a numerical scale. Two hours after surgery, the subjects were given
a placebo and were again asked to rate their pain. An hour later, some of the subjects
were given a placebo and some were given naloxone, a morphine antagonist. It is
known that there are specific receptors to morphine in the brain and that the body
can also release endorphins that bind to these sites. Naloxone blocks the morphine
receptors. In the study, it was found that when those subjects who responded positively
to the placebo received naloxone, they experienced an increase in pain that made their
pain levels comparable to those of the patients who did not respond to the placebo.
The implication is that those who responded to the placebo had produced endorphins,
the actions of which were subsequently blocked by the naloxone.

An instance of the placebo effect was demonstrated by a psychologist, Claude
Steele (2002), who gave a math exam to a group of male and female undergraduates
at Stanford University. One group (treatment) was told that the exam was gender-
neutral, and the other group (controls) was not so informed. The men outperformed
the women in the control group. In the treatment group, men and women performed
equally well. Men in the treatment group did worse than men in the control group.
(Economist Feb 21, 2002).

11.4.3 The Lanarkshire Milk Experiment
The importance of the randomized assignment of individuals (or other experimental
units) to treatment and control groups is illustrated by a famous study known as the
Lanarkshire milk experiment. In the spring of 1930, an experiment was carried out in
Lanarkshire, Scotland, to determine the effect of providing free milk to schoolchildren.
In each participating school, some children (treatment group) were given free milk
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and others (controls) were not. The assignment of children to control or treatment
was initially done at random; however, teachers were allowed to use their judgment
in switching children between treatment and control to obtain a better balance of
undernourished and well-nourished individuals in the groups.

A paper by Gosset (1931), who published under the name Student (as in Stu-
dent’s t test), is a very interesting critique of the experiment. An examination of the
data revealed that at the start of the experiment the controls were heavier and taller.
Student conjectured that the teachers, perhaps unconsciously, had adjusted the initial
randomization in a manner that placed more of the undernourished children in the
treatment group. A further complication was caused by weighing the children with
their clothes on. The experimental data were weight gains measured in late spring
relative to early spring or late winter. The more well-to-do children probably tended to
be better nourished and may have had heavier winter clothing than the poor children.
Thus, the well-to-do children’s weight gains were vitiated as a result of differences in
clothing, which may have influenced comparisons between the treatment and control
groups.

11.4.4 The Portacaval Shunt
Cirrhosis of the liver, to which alcoholics are prone, is a condition in which resistance
to blood flow causes blood pressure in the liver to build up to dangerously high levels.
Vessels may rupture, which may cause death. Surgeons have attempted to relieve this
condition by connecting the portal artery, which feeds the liver, to the vena cava,
one of the main veins returning to the heart, thus reducing blood flow through the
liver. This procedure, called the Portacaval shunt, had been used for more than 20
years when Grace, Muench, and Chalmers (1966) published an examination of 51
studies of the method. They examined the design of each study (presence or absence
of a control group and presence or absence of randomization) and the investigators’
conclusions (categorized as markedly enthusiastic, moderately enthusiastic, or not
enthusiastic). The results are summarized in the following table, which speaks for
itself:

Enthusiasm

Design Marked Moderate None

No controls 24 7 1
Nonrandomized controls 10 3 2
Randomized controls 0 1 3

The differences between the experiments that used controls and those that did
not is not entirely surprising, because the placebo effect was probably operating. The
importance of randomized assignment to treatment and control groups is illustrated
by comparing the conclusions for the randomized and nonrandomized controlled
experiments. Randomization can help to ensure against subtle unconscious biases that
may creep into an experiment. For example, a physician might tend to recommend
surgery for patients who are somewhat more robust than the average. Articulate
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patients might be more likely to have an influence on the decision as to which group
they are assigned to.

11.4.5 FD&C Red No. 40
This discussion follows Lagakos and Mosteller (1981). During the middle and late
1970s, experiments were conducted to determine possible carcinogenic effects of a
widely used food coloring, FD&C Red No. 40. One of the experiments involved
500 male and 500 female mice. Both genders were divided into five groups: two
control groups, a low-dose group, a medium-dose group, and a high-dose group. The
mice were bred in the following way: Males and females were paired and before
and during mating were given their prescribed dose of Red No. 40. The regime was
continued during gestation and weaning of the young. From litters that had at least
three pups of each sex, three of each sex were selected randomly and continued
on their parents’ dosage throughout their lives. After 109–111 weeks, all the mice
still living were killed. The presence or absence of reticuloendothelial tumors was
of particular interest. Although there were significant differences between some of
the treatment groups, the results were rather confusing. For example, there was a
significant difference between the incidence rates for the two male control groups,
and among the males the medium-dose group had the lowest incidence.

Several experts were asked to examine the results of this and other experiments.
Among them were Lagakos and Mosteller, who requested information on how the
cages that housed the mice were arranged. There were three racks of cages, each
containing five rows of seven cages in the front and five rows of seven cages in the
back. Five mice were housed in each cage. The mice were assigned to the cages in a
systematic way: The first male control group was in the top of the front of rack 1; the
first female control group was in the bottom of the front of rack 1; and so on, ending
with the high-dose females in the bottom of the back of rack 3 (Figure 11.9). Lagakos
and Mosteller showed that there were effects due to cage position that could not be
explained by gender or by dosage group. A random assignment of cage positions
would have eliminated this confounding. Lagakos and Mosteller also suggested some
experimental designs to systematically control for cage position.

Front

Rack 1

Male–C1

Female–C1

Back Male–C2

Female–C2

Female–C1

Rack 2

Male–L

Female–L

Male–M

Female–L

Female–C2

Rack 3

Male–H

Male–H

Female–H

Female–M

F I G U R E 11.9 Location of mice cages in racks.
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It was also possible that a litter effect might be complicating the analysis, since
littermates received the same treatment and littermates of the same sex were housed
in the same or contiguous cages. In the presence of a litter effect, mice from the same
litter might show less variability than that present among mice from different litters.
This reduces the effective sample size—in the extreme case in which littermates react
identically, the effective sample size is the number of litters, not the total number of
mice. One way around this problem would have been to use only one mouse from
each litter.

The presence of a possible selection bias is another problem. Because mice were
included in the experiment only if they came from a litter with at least three males
and three females, offspring of possibly less healthy parents were excluded. This
could be a serious problem since exposure to Red No. 40 might affect the parents’
health and the birth process. If, for example, among the high-dose mice, only the
most hardy produced large enough litters, their offspring might be hardier than the
controls’ offspring.

11.4.6 Further Remarks on Randomization
As well as guarding against possible biases on the part of the experimenter, the pro-
cess of randomization tends to balance any factors that may be influential but are
not explicitly controlled in the experiment. Time is often such a factor; background
variables such as temperature, equipment calibration, line voltage, and chemical com-
position can change slowly with time. In experiments that are run over some period of
time, therefore, it is important to randomize the assignments to treatment and control
over time. Time is not the only factor that should be randomized, however. In agricul-
tural experiments, the positions of test plots in a field are often randomly assigned.
In biological experiments with test animals, the locations of the animals’ cages may
have an effect, as illustrated in the preceding section.

Although rarer than in other areas, randomized experiments have been carried
out in the social sciences as well (Economist Feb 28, 2002). Randomized trials have
been used to evaluate such programs as driver training, as well as the criminal justice
system and reduced classroom size. In evaluations of “whole-language” approaches to
reading (in which children are taught to read by evaluating contextual clues rather than
breaking down words), 52 randomized studies carried out by the National Reading
Panel in 2000 showed that effective reading instruction requires phonics. Randomized
studies of “scared straight” programs, in which juvenile delinquents are introduced
to prison inmates, suggested that the likelihood of subsequent arrests is actually
increased by such programs.

Generally, if it is anticipated that a variable will have a significant effect, that
variable should be included as one of the controlled factors in the experimental design.
The matched-pairs design of this chapter can be used to control for a single factor.
To control for more than one factor, factorial designs, which are briefly introduced in
the next chapter, may be used.
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11.4.7 Observational Studies, Confounding,
and Bias in Graduate Admissions
It is not always possible to conduct controlled experiments or use randomization.
In evaluating some medical therapies, for example, a randomized, controlled experi-
ment would be unethical if one therapy was strongly believed to be superior. For many
problems of psychological interest (effects of parental modes of discipline, for exam-
ple), it is impossible to conduct controlled experiments. In such situations, recourse
is often made to observational studies. Hospital records may be examined to compare
the outcomes of different therapies, or psychological records of children raised in
different ways may be analyzed. Although such studies may be valuable, the results
are seldom unequivocal. Because there is no randomization, it is always possible that
the groups under comparison differ in respects other than their “treatments.”

As an example, let us consider a study of gender bias in admissions to graduate
school at the University of California at Berkeley (Bickel and O’Connell 1975). In
the fall of 1973, 8442 men applied for admission to graduate studies at Berkeley, and
44% were admitted; 4321 women applied, and 35% were admitted. If the men and
women were similar in every respect other than sex, this would be strong evidence
of sex bias. This was not a controlled, randomized experiment, however; sex was not
randomly assigned to the applicants. As will be seen, the male and female applicants
differed in other respects, which influenced admission.

The following table shows admission rates for the six most popular majors on
the Berkeley campus.

Men Women

Number of Percentage Number of Percentage
Major Applicants Admitted Applicants Admitted

A 825 62 108 82
B 560 63 25 68
C 325 37 593 34
D 417 33 375 35
E 191 28 393 34
F 373 6 341 7

If the percentages admitted are compared, women do not seem to be unfavorably
treated. But when the combined admission rates for all six majors are calculated, it
is found that 44% of the men and only 30% of the women were admitted, which
seems paradoxical. The resolution of the paradox lies in the observation that the
women tended to apply to majors that had low admission rates (C through F) and
the men to majors that had relatively high admission rates (A and B). This factor
was not controlled for, because the study was observational in nature; it was also
“confounded” with the factor of interest, sex; randomization, had it been possible,
would have tended to balance out the confounded factor.

Confounding also plays an important role in studies of the effect of coffee
drinking. Several studies have claimed to show a significant association of coffee
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consumption with coronary disease. Clearly, randomized, controlled trials are not
possible here—a randomly selected individual cannot be told that he or she is in the
treatment group and must drink 10 cups of coffee a day for the next five years. Also, it
is known that heavy coffee drinkers also tend to smoke more than average, so smoking
is confounded with coffee drinking. Hennekens et al. (1976) review several studies
in this area.

11.4.8 Fishing Expeditions
Another problem that sometimes flaws observational studies, and controlled exper-
iments as well, is that they engage in “fishing expeditions.” For example, consider
a hypothetical study of the effects of birth control pills. In such a case, it would be
impossible to assign women to a treatment or a placebo at random, but a nonrandom-
ized study might be conducted by carefully matching controls to treatments on such
factors as age and medical history. The two groups might be followed up on for some
time, with many variables being recorded for each subject such as blood pressure,
psychological measures, and incidences of various medical problems. After termina-
tion of the study, the two groups might be compared on each of these variables, and
it might be found, say, that there was a “significant difference” in the incidence of
melanoma. The problem with this “significant finding” is the following. Suppose that
100 independent two-sample t tests are conducted at the .05 level and that, in fact, all
the null hypotheses are true. We would expect that five of the tests would produce a
“significant” result. Although each of the tests has probability .05 of type I error, as a
collection they do not simultaneously have α = .05. The combined significance level
is the probability that at least one of the null hypotheses is rejected:

α = P{at least one H0 rejected}
= 1 − P{no H0 rejected}
= 1 − .95100 = .994

Thus, with very high probability, at least one “significant” result will be found, even
if all the null hypotheses are true.

There are no simple cures for this problem. One possibility is to regard the
results of a fishing expedition as merely providing suggestions for further experiments.
Alternatively, and in the same spirit, the data could be split randomly into two halves,
one half for fishing in and the other half to be locked safely away, unexamined.
“Significant” results from the first half could then be tested on the second half. A
third alternative is to conduct each individual hypothesis test at a small significance
level. To see how this works, suppose that all null hypotheses are true and that each
of n null hypotheses is tested at level α. Let Ri denote the event that the i th null
hypothesis is rejected, and let α∗ denote the overall probability of a type I error. Then

α∗ = P{R1 or R2 or · · · or Rn}
≤ P{R1} + P{R2} + · · · + P{Rn}
= nα

Thus, if each of the n null hypotheses is tested at level α/n, the overall significance
level is less than or equal to α. This is often called the Bonferroni method.
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11.5 Concluding Remarks
This chapter was concerned with the problem of comparing two samples. Within this
context, the fundamental statistical concepts of estimation and hypothesis testing,
which were introduced in earlier chapters, were extended and utilized. The chapter
also showed how informal descriptive and data analytic techniques are used in sup-
plementing more formal analysis of data. Chapter 12 will extend the techniques of
this chapter to deal with multisample problems. Chapter 13 is concerned with similar
problems that arise in the analysis of qualitative data.

We considered two types of experiments, those with two independent samples
and those with matched pairs. For the case of independent samples, we developed
the t test, based on an assumption of normality, as well as a modification of the t test
that takes into account possibly unequal variances. The Mann-Whitney test, based on
ranks, was presented as a nonparametric method, that is, a method that is not based
on an assumption of a particular distribution. Similarly, for the matched-pairs design,
we developed a parametric t test and a nonparametric test, the signed rank test.

We discussed methods based on an assumption of normality and rank methods,
which do not make this assumption. It turns out, rather surprisingly, that even if the
normality assumption holds, the rank methods are quite powerful relative to the t test.
Lehmann (1975) shows that the efficiency of the rank tests relative to that of the t
test—that is, the ratio of sample sizes required to attain the same power—is typically
around .95 if the distributions are normal. Thus, a rank test using a sample of size
100 is as powerful as a t test based on 95 observations. Collecting the extra 5 pieces
of data is a small price to pay for a safeguard against nonnormality.

The bootstrap appeared again in this chapter. Indeed, uses of this recently de-
veloped technique are finding applications in a great variety of statistical problems.
In contrast with earlier chapters, where bootstrap samples were generated from one
distribution, here we have bootstrapped from two empirical distributions.

The chapter concluded with a discussion of experimental design, which empha-
sized the importance of incorporating controls and randomization in investigations.
Possible problems associated with observational studies were discussed. Finally, the
difficulties encountered in making many comparisons from a single data set were
pointed out; such problems of multiplicity will come up again in Chapter 12.

11.6 Problems
1. A computer was used to generate four random numbers from a normal distribution

with a set mean and variance: 1.1650, .6268, .0751, .3516. Five more random
normal numbers with the same variance but perhaps a different mean were then
generated (the mean may or may not actually be different): .3035, 2.6961, 1.0591,
2.7971, 1.2641.

a. What do you think the means of the random normal number generators were?
What do you think the difference of the means was?

b. What do you think the variance of the random number generator was?
c. What is the estimated standard error of your estimate of the difference of the

means?
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d. Form a 90% confidence interval for the difference of the means of the random
number generators.

e. In this situation, is it more appropriate to use a one-sided test or a two-sided
test of the equality of the means?

f. What is the p-value of a two-sided test of the null hypothesis of equal means?
g. Would the hypothesis that the means were the same versus a two-sided alter-

native be rejected at the significance level α = .1?
h. Suppose you know that the variance of the normal distribution was σ 2 = 1.

How would your answers to the preceding questions change?

2. The difference of the means of two normal distributions with equal variance is to
be estimated by sampling an equal number of observations from each distribution.
If it were possible, would it be better to halve the standard deviations of the
populations or double the sample sizes?

3. In Section 11.2.1, we considered two methods of estimating Var(X − Y ). Under
the assumption that the two population variances were equal, we estimated this
quantity by

s2
p

(
1
n

+ 1
m

)

and without this assumption by

s2
X

n
+ s2

Y

m

Show that these two estimates are identical if m = n.

4. Respond to the following:

Using the t distribution is absolutely ridiculous—another example of de-
liberate mystification! It’s valid when the populations are normal and have
equal variance. If the sample sizes were so small that the t distribution were
practically different from the normal distribution, you would be unable to
check these assumptions.

5. Respond to the following:

Here is another example of deliberate mystification—the idea of formulating
and testing a null hypothesis. Let’s take Example A of Section 11.2.1. It
seems to me that it is inconceivable that the expected values of any two
methods of measurement could be exactly equal. It is certain that there will
be subtle differences at the very least. What is the sense, then, in testing
H0: µX = µY ?

6. Respond to the following:

I have two batches of numbers and I have a corresponding x̄ and ȳ. Why
should I test whether they are equal when I can just see whether they are or
not?

7. In the development of Section 11.2.1, where are the following assumptions used?
(1) X1, X2, . . . , Xn are independent random variables; (2) Y1, Y2, . . . , Yn are
independent random variables; (3) the X ’s and Y ’s are independent.
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8. An experiment to determine the efficacy of a drug for reducing high blood pressure
is performed using four subjects in the following way: two of the subjects are
chosen at random for the control group and two for the treatment group. During
the course of treatment with the drug, the blood pressure of each of the subjects in
the treatment group is measured for ten consecutive days as is the blood pressure
of each of the subjects in the control group.

a. In order to test whether the treatment has an effect, do you think it is appropriate
to use the two-sample t test with n = m = 20?

b. Do you think it is appropriate to use the Mann-Whitney test with n = m = 20?

9. Referring to the data in Section 11.2.1.1, compare iron retention at concentra-
tions of 10.2 and .3 millimolar using graphical procedures and parametric and
nonparametric tests. Write a brief summary of your conclusions.

10. Verify that the two-sample t test at level α of H0: µX = µY versus HA: µX ≠ µY

rejects if and only if the confidence interval for µX − µY does not contain zero.

11. Explain how to modify the t test of Section 11.2.1 to test H0: µX = µY + )

versus HA: µX ≠ µY + ) where ) is specified.

12. An equivalence between hypothesis tests and confidence intervals was demon-
strated in Chapter 9. In Chapter 10, a nonparametric confidence interval for the
median, η, was derived. Explain how to use this confidence interval to test the
hypothesis H0: η = η0. In the case where η0 = 0, show that using this approach
on a sample of differences from a paired experiment is equivalent to the sign
test. The sign test counts the number of positive differences and uses the fact
that in the case that the null hypothesis is true, the distribution of the number of
positive differences is binomial with (n, .5). Apply the sign test to the data from
the measurement of mercury levels, listed in Section 11.3.3.

13. Let X1, . . . , X25 be i.i.d. N (.3, 1). Consider testing the null hypothesis H0: µ = 0
versus HA: µ > 0 at significance level α = .05. Compare the power of the sign
test and the power of the test based on normal theory assuming that σ is known.

14. Suppose that X1, . . . , Xn are i.i.d. N (µ, σ 2). To test the null hypothesis H0: µ =
µ0, the t test is often used:

t = X − µ0

sX

Under H0, t follows a t distribution with n − 1 df. Show that the likelihood ratio
test of this H0 is equivalent to the t test.

15. Suppose that n measurements are to be taken under a treatment condition and
another n measurements are to be taken independently under a control condi-
tion. It is thought that the standard deviation of a single observation is about 10
under both conditions. How large should n be so that a 95% confidence inter-
val for µX − µY has a width of 2? Use the normal distribution rather than the t
distribution, since n will turn out to be rather large.

16. Referring to Problem 15, how large should n be so that the test of H0: µX = µY

against the one-sided alternative HA: µX > µY has a power of .5 if µX −µY = 2
and α = .10?
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17. Consider conducting a two-sided test of the null hypothesis H0: µX = µY as
described in Problem 16. Sketch power curves for (a) α = .05, n = 20; (b) α =
.10, n = 20; (c) α = .05, n = 40; (d) α = .10, n = 40. Compare the curves.

18. Two independent samples are to be compared to see if there is a difference in the
population means. If a total of m subjects are available for the experiment, how
should this total be allocated between the two samples in order to (a) provide the
shortest confidence interval for µX − µY and (b) make the test of H0: µX = µY

as powerful as possible? Assume that the observations in the two samples are
normally distributed with the same variance.

19. An experiment is planned to compare the mean of a control group to the mean
of an independent sample of a group given a treatment. Suppose that there are to
be 25 samples in each group. Suppose that the observations are approximately
normally distributed and that the standard deviation of a single measurement in
either group is σ = 5.

a. What will the standard error of Y − X be?
b. With a significance level α = .05, what is the rejection region of the test of

the null hypothesis H0: µY = µX versus the alternative HA: µY > µX ?
c. What is the power of the test if µY = µX + 1?
d. Suppose that the p-value of the test turns out to be 0.07. Would the test reject

at significance level α = .10?
e. What is the rejection region if the alternative is HA: µY ≠ µX ? What is the

power if µY = µX + 1?

20. Consider Example A of Section 11.3.1 using a Bayesian model. As in the ex-
ample, use a normal model for the differences and also use an improper prior
for the expected difference and the precision (as in the case of unknown mean
and variance in Section 8.6). Find the posterior probability that the expected
difference is positive. Find a 90% posterior credibility interval for the expected
difference.

21. A study was done to compare the performances of engine bearings made
of different compounds (McCool 1979). Ten bearings of each type were tested.
The following table gives the times until failure (in units of millions of
cycles):

Type I Type II

3.03 3.19
5.53 4.26
5.60 4.47
9.30 4.53
9.92 4.67

12.51 4.69
12.95 12.78
15.21 6.79
16.04 9.37
16.84 12.75
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a. Use normal theory to test the hypothesis that there is no difference between
the two types of bearings.

b. Test the same hypothesis using a nonparametric method.
c. Which of the methods—that of part (a) or that of part (b)—do you think is

better in this case?
d. Estimate π , the probability that a type I bearing will outlast a type II bearing.
e. Use the bootstrap to estimate the sampling distribution of π̂ and its standard

error.
f. Use the bootstrap to find an approximate 90% confidence interval for π .

22. An experiment was done to compare two methods of measuring the calcium
content of animal feeds. The standard method uses calcium oxalate precipitation
followed by titration and is quite time-consuming. A new method using flame
photometry is faster. Measurements of the percent calcium content made by each
method of 118 routine feed samples (Heckman 1960) are contained in the file
calcium. Analyze the data to see if there is any systematic difference between
the two methods. Use both parametric and nonparametric tests and graphical
methods.

23. Let X1, . . . , Xn be i.i.d. with cdf F , and let Y1, . . . , Ym be i.i.d. with cdf G. The
hypothesis to be tested is that F = G. Suppose for simplicity that m + n is even
so that in the combined sample of X ’s and Y ’s, (m + n)/2 observations are less
than the median and (m + n)/2 are greater.

a. As a test statistic, consider T , the number of X ’s less than the median of the
combined sample. Show that T follows a hypergeometric distribution under
the null hypothesis:

P(T = t) =

(
(m + n)/2

t

)(
(m + n)/2

n − t

)

(
m + n

n

)

Explain how to form a rejection region for this test.
b. Show how to find a confidence interval for the difference between the median

of F and the median of G under the shift model, G(x) = F(x − )). (Hint:
Use the order statistics.)

c. Apply the results (a) and (b) to the data of Problem 21.

24. Find the exact null distribution of the Mann-Whitney statistic, UY , in the case
where m = 3 and n = 2.

25. Referring to Example A in Section 11.2.1, (a) if the smallest observation for
method B (79.94) is made arbitrarily small, will the t test still reject? (b) If the
largest observation for method B (80.03) is made arbitrarily large, will the t test
still reject? (c) Answer the same questions for the Mann-Whitney test.

26. Let X1, . . . , Xn be a sample from an N (0, 1) distribution and let Y1, . . . , Yn be
an independent sample from an N (1, 1) distribution.

a. Determine the expected rank sum of the X ’s.
b. Determine the variance of the rank sum of the X ’s.
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27. Find the exact null distribution of W+ in the case where n = 4.

28. For n = 10, 20, and 30, find the .05 and .01 critical values for a two-sided signed
rank test from the tables and then by using the normal approximation. Compare
the values.

29. (Permutation Test for Means) Here is another view on hypothesis testing that
we will illustrate with Example A of Section 11.2.1. We ask whether the mea-
surements produced by methods A and B are identical or exchangeable in the
following sense. There are 13 + 8 = 21 measurements in all and there are

(21
8

)
,

or about 2 × 105, ways that 8 of these could be assigned to method B. Is the
particular assignment we have observed unusual among these in the sense that
the means of the two samples are unusually different?

a. It’s not inconceivable, but it may be asking too much for you to generate all(21
8

)
partitions. So just choose a random sample of these partitions, say of size

1000, and make a histogram of the resulting values of X A − X B . Where on
this distribution does the value of X A − X B that was actually observed fall?
Compare to the result of Example B of Section 11.2.1.

b. In what way is this procedure similar to the Mann-Whitney test?

30. Use the bootstrap to estimate the standard error of and a confidence interval for
X A − X B and compare to the result of Example A of Section 11.2.1.

31. In Section 11.2.3, if F = G, what are E(π̂) and Var(π̂)? Would there be any
advantage in using equal sample sizes m = n in estimating π or does it make no
difference?

32. If X ∼ N (µX , σ 2
X ) and Y is independent N (µY , σ 2

Y ), what is π = P(X < Y ) in
terms of µX , µY , σX , and σY ?

33. To compare two variances in the normal case, let X1, . . . , Xn be i.i.d. N (µX , σ 2
X ),

and let Y1, . . . , Ym be i.i.d. N (µY , σ 2
Y ), where the X ’s and Y ’s are independent

samples. Argue that under H0: σX = σY ,

s2
X

s2
Y

∼ Fn−1, m−1

a. Construct rejection regions for one- and two-sided tests of H0.
b. Construct a confidence interval for the ratio σ 2

X/σ 2
Y .

c. Apply the results of parts (a) and (b) to Example A in Section 11.2.1. (Cau-
tion: This test and confidence interval are not robust against violations of the
assumption of normality.)

34. This problem contrasts the power functions of paired and unpaired designs. Graph
and compare the power curves for testing H0: µX = µY for the following two
designs.

a. Paired: Cov(Xi , Yi ) = 50, σX = σY = 10, i = 1, . . . , 25.
b. Unpaired: X1, . . . , X25 and Y1, . . . , Y25 are independent with variance as in

part (a).
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35. An experiment was done to measure the effects of ozone, a component of smog.
A group of 22 seventy-day-old rats were kept in an environment containing ozone
for 7 days, and their weight gains were recorded. Another group of 23 rats of a
similar age were kept in an ozone-free environment for a similar time, and their
weight gains were recorded. The data (in grams) are given below. Analyze the
data to determine the effect of ozone. Write a summary of your conclusions.
[This problem is from Doksum and Sievers (1976) who provide an interesting
analysis.]

Controls Ozone

41.0 38.4 24.9 10.1 6.1 20.4
25.9 21.9 18.3 7.3 14.3 15.5
13.1 27.3 28.5 −9.9 6.8 28.2

−16.9 17.4 21.8 17.9 −12.9 14.0
15.4 27.4 19.2 6.6 12.1 15.7
22.4 17.7 26.0 39.9 −15.9 54.6
29.4 21.4 22.7 −14.7 44.1 −9.0
26.0 26.6 −9.0

36. Lin, Sutton, and Qurashi (1979) compared microbiological and hydroxylamine
methods for the analysis of ampicillin dosages. In one series of experiments, pairs
of tablets were analyzed by the two methods. The data in the following table give
the percentages of claimed amount of ampicillin found by the two methods in
several pairs of tablets. What are X − Y and sX−Y ? If the pairing had been erro-
neously ignored and it had been assumed that the two samples were independent,
what would have been the estimate of the standard deviation of X − Y ? Ana-
lyze the data to determine if there is a systematic difference between the two
methods.

Microbiological Method Hydroxylamine Method

97.2 97.2
105.8 97.8

99.5 96.2
100.0 101.8

93.8 88.0
79.2 74.0
72.0 75.0
72.0 67.5
69.5 65.8
20.5 21.2
95.2 94.8
90.8 95.8
96.2 98.0
96.2 99.0
91.0 100.2
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37. Stanley and Walton (1961) ran a controlled clinical trial to investigate the effect
of the drug stelazine on chronic schizophrenics. The trials were conducted on
chronic schizophrenics in two closed wards. In each of the wards, the patients were
divided into two groups matched for age, length of time in the hospital, and score
on a behavior rating sheet. One member of each pair was given stelazine, and the
other a placebo. Only the hospital pharmacist knew which member of each pair
received the actual drug. The following table gives the behavioral rating scores
for the patients at the beginning of the trial and after 3 mo. High scores are good.

Ward A

Stelazine Placebo

Before After Before After

2.3 3.1 2.4 2.0
2.0 2.1 2.2 2.6
1.9 2.45 2.1 2.0
3.1 3.7 2.9 2.0
2.2 2.54 2.2 2.4
2.3 3.72 2.4 3.18
2.8 4.54 2.7 3.0
1.9 1.61 1.9 2.54
1.1 1.63 1.3 1.72

Ward B

Stelazine Placebo

Before After Before After

1.9 1.45 1.9 1.91
2.3 2.45 2.4 2.54
2.0 1.81 2.0 1.45
1.6 1.72 1.5 1.45
1.6 1.63 1.5 1.54
2.6 2.45 2.7 1.54
1.7 2.18 1.7 1.54

a. For each of the wards, test whether stelazine is associated with improvement
in the patients’ scores.

b. Test if there is any difference in improvement between the wards. [These data
are also presented in Lehmann (1975), who discusses methods of combining
the data from the wards.]

38. Bailey, Cox, and Springer (1978) used high-pressure liquid chromatography to
measure the amounts of various intermediates and by-products in food dyes. The
following table gives the percentages added and found for two substances in the
dye FD&C Yellow No. 5. Is there any evidence that the amounts found differ
systematically from the amounts added?
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Sulfanilic Acid Pyrazolone-T

Percentage Added Percentage Found Percentage Added Percentage Found

.048 .060 .035 .031

.096 .091 .087 .084

.20 .16 .19 .16

.19 .16 .19 .17

.096 .091 .16 .15

.18 .19 .032 .040

.080 .070 .060 .076

.24 .23 .13 .11
0 0 .080 .082
.040 .042 0 0
.060 .056

39. An experiment was done to test a method for reducing faults on telephone lines
(Welch 1987). Fourteen matched pairs of areas were used. The following table
shows the fault rates for the control areas and for the test areas:

Test Control

676 88
206 570
230 605
256 617
280 653
433 2913
337 924
466 286
497 1098
512 982
794 2346
428 321
452 615
512 519

a. Plot the differences versus the control rate and summarize what you see.
b. Calculate the mean difference, its standard deviation, and a confidence interval.
c. Calculate the median difference and a confidence interval and compare to the

previous result.
d. Do you think it is more appropriate to use a t test or a nonparametric method to

test whether the apparent difference between test and control could be due to
chance? Why? Carry out both tests and compare.

40. Biological effects of magnetic fields are a matter of current concern and research.
In an early study of the effects of a strong magnetic field on the development of
mice (Barnothy 1964), 10 cages, each containing three 30-day-old albino female
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mice, were subjected for a period of 12 days to a field with an average strength
of 80 Oe/cm. Thirty other mice housed in 10 similar cages were not placed in
a magnetic field and served as controls. The following table shows the weight
gains, in grams, for each of the cages.

a. Display the data graphically with parallel dotplots. (Draw two parallel num-
ber lines and put dots on one corresponding to the weight gains of the con-
trols and on the other at points corresponding to the gains of the treatment
group.)

b. Find a 95% confidence interval for the difference of the mean weight
gains.

c. Use a t test to assess the statistical significance of the observed difference.
What is the p-value of the test?

d. Repeat using a nonparametric test.
e. What is the difference of the median weight gains?
f. Use the bootstrap to estimate the standard error of the difference of median

weight gains.
g. Form a confidence interval for the difference of median weight gains based

on the bootstrap approximation to the sampling distribution.

Field Present Field Absent

22.8 23.5
10.2 31.0
20.8 19.5
27.0 26.2
19.2 26.5

9.0 25.2
14.2 24.5
19.8 23.8
14.5 27.8
14.8 22.0

41. The Hodges-Lehmann shift estimate is defined to be )̂ = median(Xi − Y j ),
where X1, X2, . . . , Xn are independent observations from a distribution F and
Y1, Y2, . . . , Ym are independent observations from a distribution G and are inde-
pendent of the Xi .

a. Show that if F and G are normal distributions, then E()̂) = µX − µY .
b. Why is )̂ robust to outliers?
c. What is )̂ for the previous problem and how does it compare to the differences

of the means and of the medians?
d. Use the bootstrap to approximate the sampling distribution and the standard

error of )̂.
e. From the bootstrap approximation to the sampling distribution, form an ap-

proximate 90% confidence interval for )̂.
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42. Use the data of Problem 40 of Chapter 10.

a. Estimate π , the probability that more rain will fall from a randomly selected
seeded cloud than from a randomly selected unseeded cloud.

b. Use the bootstrap to estimate the standard error of π̂ .
c. Use the bootstrap to form an approximate confidence interval for π .

43. Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are two independent samples.
As a measure of the difference in location of the two samples, the difference
of the 20% trimmed means is used. Explain how the bootstrap could be used to
estimate the standard error of this difference.

44. Interest in the role of vitamin C in mental illness in general and schizophrenia
in particular was spurred by a paper of Linus Pauling in 1968. This exercise
takes its data from a study of plasma levels and urinary vitamin C excretion in
schizophrenic patients (Subotic̆anec et al. 1986). Twenty schizophrenic patients
and 15 controls with a diagnosis of neurosis of different origin who had been
patients at the same hospital for a minimum of 2 months were selected for the
study. Before the experiment, all the subjects were on the same basic hospital
diet. A sample of 2 ml of venous blood for vitamin C determination was drawn
from each subject before breakfast and after the subjects had emptied their blad-
ders. Each subject was then given 1 g ascorbic acid dissolved in water. No foods
containing ascorbic acid were available during the test. For the next 6 h all urine
was collected from the subjects for assay of vitamin C. A second blood sample
was also drawn 2 h after the dose of vitamin C.

The following two tables show the plasma concentrations (mg/dl).

Schizophrenics Nonschizophrenics

0 h 2 h 0 h 2 h

.55 1.22 1.27 2.00

.60 1.54 .09 .41

.21 .97 1.64 2.37

.09 .45 .23 .41
1.01 1.54 .18 .79

.24 .75 .12 .94

.37 1.12 .85 1.72
1.01 1.31 .69 1.75

.26 .92 .78 1.60

.30 1.27 .63 1.80

.26 1.08 .50 2.08

.10 1.19 .62 1.58

.42 .64 .19 .86

.11 .30 .66 1.92

.14 .24 .91 1.54

.20 .89

.09 .24

.32 1.68

.24 .99

.25 .67
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a. Graphically compare the two groups at the two times and for the difference
in concentration at the two times.

b. Use the t test to assess the strength of the evidence for differences between
the two groups at 0 h, at 2 h, and the difference 2 h − 0 h.

c. Use the Mann-Whitney test to test the hypotheses of (b).
The following tables show the amounts of urinary vitamin C, both total

and milligrams per kilogram of body weight, for the two groups:

Schizophrenics Nonschizophrenics

Total mg/kg Total mg/kg

16.6 .19 289.4 3.96
33.3 .44 0.0 0.00
34.1 .39 620.4 7.95

0.0 .00 0.0 0.00
119.8 1.75 8.5 .10

.1 .01 5.5 .09
25.3 .27 43.2 .91

359.3 5.99 91.7 1.00
6.6 .10 200.9 3.46

.4 .01 113.8 2.01
62.8 .68 102.2 1.50

.2 .01 108.2 1.98
13.0 .15 36.9 .49

0.0 0.00 122.0 1.72
0.0 0.00 101.9 1.52
5.9 .10

.1 .01
6.0 .07

32.1 .42
0.0 0.00

d. Use descriptive statistics and graphical presentations to compare the two
groups with respect to total excretion and mg/kg body weight. Do the data
look normally distributed?

e. Use a t test to compare the two groups on both variables. Is the normality
assumption reasonable?

f. Use the Mann-Whitney test to compare the two groups. How do the results
compare with those obtained in part (e)?

The lower levels of plasma vitamin C in the schizophrenics before admin-
istration of ascorbic acid could be attributed to several factors. Interindividual
differences in the intake of meals cannot be excluded, despite the fact that
all patients were offered the same food. A more interesting possibility is
that the differences are the result of poorer resorption or of higher ascorbic
acid utilization in schizophrenics. In order to answer this question, another



11.6 Problems 471

experiment was run on 15 schizophrenics and 15 controls. All subjects were
given 70 mg of ascorbic acid daily for 4 weeks before the ascorbic acid load-
ing test. The following table shows the concentration of plasma vitamin C
(mg/dl) and the 6-h urinary excretion (mg) after administration of 1 g ascorbic
acid.

Schizophrenics Controls

Plasma Urine Plasma Urine

.72 86.20 1.02 190.14
1.11 21.55 .86 149.76

.96 182.07 .78 285.27
1.23 88.28 1.38 244.93

.76 76.58 .95 184.45

.75 18.81 1.00 135.34
1.26 50.02 .47 157.74

.64 107.74 .60 125.65

.67 .09 1.15 164.98
1.05 113.23 .86 99.65
1.28 34.38 .61 86.29

.54 8.44 1.01 142.23

.77 109.03 .77 144.60
1.11 144.44 .77 265.40

.51 172.09 .94 28.26

g. Use graphical methods and descriptive statistics to compare the two groups
with respect to plasma concentrations and urinary excretion.

h. Use the t test to compare the two groups on the two variables. Does the
normality assumption look reasonable?

i. Compare the two groups using the Mann-Whitney test.

45. This and the next two problems are based on discussions and data in Le Cam
and Neyman (1967), which is devoted to the analysis of weather modification
experiments. The examples illustrate some ways in which principles of experi-
mental design have been used in this field. During the summers of 1957 through
1960, a series of randomized cloud-seeding experiments were carried out in the
mountains of Arizona. Of each pair of successive days, one day was randomly
selected for seeding to be done. The seeding was done during a two-hour to
four-hour period starting at midday, and rainfall during the afternoon was mea-
sured by a network of 29 gauges. The data for the four years are given in the
following table (in inches). Observations in this table are listed in chronological
order.

a. Analyze the data for each year and for the years pooled together to see if there
appears to be any effect due to seeding. You should use graphical descriptive
methods to get a qualitative impression of the results and hypothesis tests to
assess the significance of the results.
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b. Why should the day on which seeding is to be done be chosen at random rather
than just alternating seeded and unseeded days? Why should the days be paired
at all, rather than just deciding randomly which days to seed?

1957 1958 1959 1960

Seeded Unseeded Seeded Unseeded Seeded Unseeded Seeded Unseeded

0 .154 .152 .013 .015 0 0 .010
.154 0 0 0 0 0 0 0
.003 .008 0 .445 0 .086 .042 .057
.084 .033 .002 0 .021 .006 0 0
.002 .035 .007 .079 0 .115 0 .093
.157 .007 .013 .006 .004 .090 0 .183
.010 .140 .161 .008 .010 0 .152 0

0 .022 0 .001 0 0 0 0
.002 0 .274 .001 .055 0 0 0
.078 .074 .001 .025 .004 .076 0 0
.101 .002 .122 .046 .053 .090 0 0
.169 .318 .101 .007 0 0 0 0
.139 .096 .012 .019 0 .078 .008 0
.172 0 .002 0 .090 .121 .040 .060

0 0 .066 0 .028 1.027 .003 .102
0 .050 .040 .012 0 .104 .011 .041

.032 .023

.133 .172

.083 .002
0 0

46. The National Weather Bureau’s ACN cloud-seeding project was carried out in
the states of Oregon and Washington. Cloud seeding was accomplished by dis-
persing dry ice from an aircraft; only clouds that were deemed “ripe” for seeding
were candidates for seeding. On each occasion, a decision was made at random
whether to seed, the probability of seeding being 2

3 . This resulted in 22 seeded and
13 control cases. Three types of targets were considered, two of which are dealt
with in this problem. Type I targets were large geographical areas downwind from
the seeding; type II targets were sections of type I targets located so as to have,
theoretically, the greatest sensitivity to cloud seeding. The following table gives
the average target rainfalls (in inches) for the seeded and control cases, listed in
chronological order. Is there evidence that seeding has an effect on either type of
target? In what ways is the design of this experiment different from that of the
one in Problem 45?
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Control Cases Seeded Cases

Type I Type II Type I Type II

.0080 .0000 .1218 .0200

.0046 .0000 .0403 .0163

.0549 .0053 .1166 .1560

.1313 .0920 .2375 .2885

.0587 .0220 .1256 .1483

.1723 .1133 .1400 .1019

.3812 .2880 .2439 .1867

.1720 .0000 .0072 .0233

.1182 .1058 .0707 .1067

.1383 .2050 .1036 .1011

.0106 .0100 .1632 .2407

.2126 .2450 .0788 .0666

.1435 .1529 .0365 .0133
.2409 .2897
.0408 .0425
.2204 .2191
.1847 .0789
.3332 .3570
.0676 .0760
.1097 .0913
.0952 .0400
.2095 .1467

47. During 1963 and 1964, an experiment was carried out in France; its design dif-
fered somewhat from those of the previous two problems. A 1500-km target area
was selected, and an adjacent area of about the same size was designated as the
control area; 33 ground generators were used to produce silver iodide to seed
the target area. Precipitation was measured by a network of gauges for each suit-
able “rainy period,” which was defined as a sequence of periods of continuous
precipitation between dry spells of a specified length. When a forecaster deter-
mined that the situation was favorable for seeding, he telephoned an order to
a service agent, who then opened a sealed envelope that contained an order to
actually seed or not. The envelopes had been prepared in advance, using a table
of random numbers. The following table gives precipitation (in inches) in the
target and control areas for the seeded and unseeded periods.

a. Analyze the data, which are listed in chronological order, to see if there is an
effect of seeding.

b. The analysis done by the French investigators used the square root transfor-
mation in order to make normal theory more applicable. Do you think that
taking the square root was an effective transformation for this purpose?

c. Reflect on the nature of this design. In particular, what advantage is there to
using the control area? Why not just compare seeded and unseeded periods
on the target area?
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Seeded Unseeded

Target Control Target Control

1.6 1.0 1.1 2.2
28.1 27.0 3.5 5.2

7.8 .3 2.6 0.0
4.0 6.0 2.6 2.0
9.6 12.6 9.8 4.9
0.2 0.5 5.6 8.5

18.7 8.7 .1 3.5
16.5 21.5 0.0 1.1

4.6 13.9 17.7 11.0
9.3 6.7 19.4 19.8
3.5 4.5 8.9 5.3
0.1 0.7 10.6 8.9

11.5 8.7 10.2 4.5
0.0 0.0 16.0 13.0
9.3 10.7 9.7 21.1
5.5 4.7 21.4 15.9

70.2 29.1 6.1 19.5
0.7 1.9 24.3 16.3

38.6 34.7 20.9 6.3
11.3 10.2 60.2 47.0

3.3 2.7 15.2 10.8
8.9 2.8 2.7 4.8

11.1 4.3 0.3 0.0
64.3 38.7 12.2 5.7
16.6 11.1 2.2 5.1

7.3 6.5 23.3 30.6
3.2 3.0 9.9 3.7

23.9 13.6
0.6 0.1

48. Proteinuria, the presence of excess protein in urine, is a symptom of renal (kidney)
distress among diabetics. Taguma et al. (1985) studied the effects of captopril for
treating proteinuria in diabetics. Urinary protein was measured for 12 patients
before and after eight weeks of captopril therapy. The amounts of urinary protein
(in g/24 hrs) before and after therapy are shown in the following table. What
can you conclude about the effect of captopril? Consider using parametric or
nonparametric methods and analyzing the data on the original scale or on a log
scale.
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Before After

24.6 10.1
17.0 5.7
16.0 5.6
10.4 3.4

8.2 6.5
7.9 0.7
8.2 6.5
7.9 0.7
5.8 6.1
5.4 4.7
5.1 2.0
4.7 2.9

49. Egyptian researchers, Kamal et al. (1991), took a sample of 126 police officers
subject to inhalation of vehicle exhaust in downtown Cairo and found an average
blood level concentration of lead equal to 29.2 #g/dl with a standard deviation
of 7.5 #g/dl. A sample of 50 policemen from a suburb, Abbasia, had an average
concentration of 18.2 #g/dl and a standard deviation of 5.8 #g/dl. Form a confi-
dence interval for the population difference and test the null hypothesis that there
is no difference in the populations.

50. The file bodytemp contains normal body temperature readings (degrees
Fahrenheit) and heart rates (beats per minute) of 65 males (coded by 1) and
65 females (coded by 2) from Shoemaker (1996).

a. Using normal theory, form a 95% confidence interval for the difference of
mean body temperatures between males and females. Is the use of the normal
approximation reasonable?

b. Using normal theory, form a 95% confidence interval for the difference of
mean heart rates between males and females. Is the use of the normal approx-
imation reasonable?

c. Use both parametric and nonparametric tests to compare the body tempera-
tures and heart rates. What do you conclude?

51. A common symptom of otitis-media (inflamation of the middle ear) in young
children is the prolonged presence of fluid in the middle ear, called middle-ear
effusion. It is hypothesized that breast-fed babies tend to have less prolonged
effusions than do bottle-fed babies. Rosner (2006) presents the results of a study
of 24 pairs of infants who were matched according to sex, socioeconomic status,
and type of medication taken. One member of each pair was bottle-fed and the
other was breast-fed. The file ears gives the durations (in days) of middle-ear
effusions after the first episode of otitis-media.

a. Examine the data using graphical methods and summarize your conclusions.
b. In order to test the hypothesis of no difference, do you think it is more appro-

priate to use a parametric or a nonparametric test? Carry out a test. What do
you conclude?
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52. The media often present short reports of the results of experiments. To the crit-
ical reader or listener, such reports often raise more questions than they answer.
Comment on possible pitfalls in the interpretation of each of the following.

a. It is reported that patients whose hospital rooms have a window recover faster
than those whose rooms do not.

b. Nonsmoking wives whose husbands smoke have a cancer rate twice that of
wives whose husbands do not smoke.

c. A 2-year study in North Carolina found that 75% of all industrial accidents in
the state happened to workers who had skipped breakfast.

d. A school integration program involved busing children from minority schools
to majority (primarily white) schools. Participation in the program was vol-
untary. It was found that the students who were bused scored lower on stan-
dardized tests than did their peers who chose not to be bused.

e. When a group of students were asked to match pictures of newborns with
pictures of their mothers, they were correct 36% of the time.

f. A survey found that those who drank a moderate amount of beer were healthier
than those who totally abstained from alcohol.

g. A 15-year study of more than 45,000 Swedish soldiers revealed that heavy
users of marijuana were six times more likely than nonusers to develop
schizophrenia.

h. A University of Wisconsin study showed that within 10 years of the wedding,
38% of those who had lived together before marriage had split up, compared
to 27% of those who had married without a “trial period.”

i. A study of nearly 4,000 elderly North Carolinians has found that those who
attended religious services every week were 46% less likely to die over a
six-year period than people who attended less often or not at all, according to
researchers at Duke University Medical Center.

53. Explain why in Levine’s experiment (Example A in Section 11.3.1) subjects also
smoked cigarettes made of lettuce leaves and unlit cigarettes.

54. This example is taken from an interesting article by Joiner (1981) and from data in
Ryan, Joiner, and Ryan (1976). The National Institute of Standards and Technol-
ogy supplies standard materials of many varieties to manufacturers and other par-
ties, who use these materials to calibrate their own testing equipment. Great pains
are taken to make these reference materials as homogeneous as possible. In an ex-
periment, a long homogeneous steel rod was cut into 4-inch lengths, 20 of which
were randomly selected and tested for oxygen content. Two measurements were
made on each piece. The 40 measurements were made over a period of 5 days,
with eight measurements per day. In order to avoid possible bias from time-related
trends, the sequence of measurements was randomized. The file steelrods
contains the measurements. There is an unexpected systematic source of variabil-
ity in these data. Can you find it by making an appropriate plot? Would this effect
have been detectable if the measurements had not been randomized over time?


