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Introduction

What are computer experiments?

Computer experiments are increasingly being used to explore the behavior
of complex physical systems.

A computer model is a large computer code that implements a complex
mathematical model of a physical process.
e.g., simultaneous differential solver, finite element analysis computational
fluid dynamics.
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Computer Experiments

A typical engineering model (Page 1 of 3)
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Computer Experiments
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Figure 1: Computer experiment
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Computer Experiments

Characteristics of computer experiments

Mostly deterministic (lack of random error)

May take hours or even days to produce a single output

Many input variables

The performance of the predictor depends upon the choice of the training
data (design).

Principles in traditional DOE are irrelevant

Replication

Blocking

Randomization
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Modeling Computer Experiments: Kriging

For x ∈ Rm, treat the deterministic response y(x) as a realization of a
stochastic process

Y (x) =
k∑

j=1

βj fj (x) + Z (x),

where fj (x) are known functions, βj are unknown parameters and Z (·) is a
Gaussian process with mean 0 and covariance

cov (Z (w),Z (x)) = σ2R(w , x).

This is the Kriging model used in spatial statistics.

Also called Gaussian process model in Machine Learning.

R packages: DiceKriging, kergp, etc.
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Prediction

Given a design S = {s1, . . . , sn} and data yS = (y(s1), . . . , y(sn))T . Consider
the linear predictor

ŷ(x) = c(x)T yS .

Frequentists replace yS by the random vector YS = {Y (s1), . . . ,Y (sn)}T , and
compute the MSE.
The Best Linear Unbiased Predictor (BLUP): choose c(x) to minimize

MSE [ŷ(x)] = E [c(x)TYS − Y (x)]2

subject to
E [ŷ(x)] = E [c(x)TYS ] = E [Y (x)]
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BLUP

Kriging model: Y (x) = f (x)Tβ + Z (x), where

f (x) = (f1(x), . . . , fk (x))T , β = (β1, . . . , βk )T

In matrix form:
YS = Fβ + Z , cov (Z ) = σ2R

F = (f (s1), . . . , f (sn))T = (fj (si ))n×k

R = (R(si , sj ))n×n

r(x) = (R(s1, x), . . . ,R(sn, x))T

The generalized LS estimate and BLUP are

β̂ = (FTR−1F )−1FTR−1YS

ŷ(x) = f (x)T β̂ + r(x)TR−1(YS − F β̂)

The GP interpolates the observed data: ŷ(si ) = y(si ) for si ∈ S .
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Correlation Functions

The correlation R(w , x) has to be specified. Commonly used functions:

R(w , x) =
∏

exp(−θj |wj − xj |pj ), 0 < pj ≤ 2,

R(w , x) =
∏

K (|wj − xj |; θj )

where K () is Matérn correlation function with parameter ν = 5/2.

K (h; θ) =

(
1 +

√
5h

θ
+

5h2

3θ2

)
exp

(
−
√

5h

θ

)
.

The correlation parameters (e.g., θj , pj ) need to be specified or estimated (by
MLE or cross validation)
Given the correlation parameters, the MLEs are

β̂ = generalized l.s. estimate

σ̂2 =
1

n
(YS − F β̂)′R−1(YS − F β̂)
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Examples of Matérn ν = 5/2 correlation functions
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A toy example: Kriging
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Data: y = sin(2x)/(1 + x); Kriging: Y = µ+ Z (x).
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A toy example: Kriging vs Polynomial models
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Data: y = sin(2x)/(1 + x); Kriging: Y = µ+ Z (x).
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Designs for Computer Experiments

Constructing a “good” design is crucial for the success of a computer
experiment.

A “good” design should be space-filling (i.e., cover as much space as
possible), and have good projection properties.

Latin hypercube designs (LHD) [McKay et al. (1979)]
Maximin and minimax distance designs [Johnson et al. (1990)]
Orthogonal Array-based designs [Owen (1992), Tang (1993), He and Tang

(2013, 2014)]
Uniform designs [Fang et al. (2006)]
Maximum projection designs [Joseph et al. (2015)]
Uniform projection designs [Sun et al. (2019)]

Optimality criteria: maximin distance, minimax distance,
column-orthogonality, uniformity (discrepancy) etc.

R packages: lhs, LHD, SLHD, UniDOE, MaxPro, etc.
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Design Criteria

Let ŷ(x) be BLUE of y(x) given a design S = {s1, . . . , sn}.
Integrated Mean Squared Error (IMSE)

min
S

:

∫
X

MSE [ŷ(x)]φ(x)dx ,

where φ(x) is a given weight function.

Maximum Mean Squared Error (MMSE)

min
S

: max
x∈X

MSE [ŷ(x)].

Entropy (Gaussian process)

max
S

: det(R) = det(R(si , sj )).

Maximin distance criterion:

max
S

: min
i<j

d(si , sj )
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Figure 2: Maximin LHD (left) and Minimax LHD (right) with n = 7 and m = 2
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Maximin distance designs

For an (n, sm) design D = (xik )n×m,

dp(xi , xj ) =
m∑

k=1

|xik − xjk |p,

Define the Lp-distance of D as

dp(D) = min{dp(xi , xj ), 1 ≤ i < j ≤ n}

Maximin distance design: maximize dp(D) among all designs
Most constructions are based on stochastic algorithms:

Morris and Mitchell (1995), Joseph and Hung (2008),
Ba, Myers and Brenneman (2015, R package SLHD), etc.
Flexible but are not effective for large designs.

Low-dimensional projections may not be space-filling.
Saturated OA(n, 2m)’s are maximin distance designs when m = n − 1 (Xu
1999).
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Uniform designs

Idea: choose design points from the design region with empirical distribution as
“uniform” as possible (Fang et al, 2006).
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Uniform Designs and Centered L2-Discrepancy

For an n ×m design D over [0, 1]m,

Disc(D) =

{∫
[0,1]m

∣∣∣∣Vol(J(ax, x))− N(D ∩ J(ax, x))

n

∣∣∣∣2 dx
}1/2

.

The (squared) centered L2-discrepancy is defined by

CD(D) =

 ∑
u⊆{1:m}

|Disc(Du)|2
 ,

where Du is the projected design of D onto dimensions indexed by the
elements of u.

Uniform designs may have poor projections in lower dimensional spaces.
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Uniform Projection Designs: A New Class of Space-Filling
Designs

Focus on 2-dim projection uniformity

Uniform projection criterion (Sun, Wang and Xu, 2019, Annals of
Statistics)

φ(D) =
2

m(m − 1)

∑
|u|=2

CD(Du), (1)

A design achieving the minimum φ(D) value is a uniform projection
design (UPD).

The discrepancy has an analytical expression; for D = (zik ) over [0, 1]m:

CD(D) =
1

n2

n∑
i=1

n∑
j=1

m∏
k=1

(
1 +

1

2
|zik |+

1

2
|zjk | −

1

2
|zik − zjk |

)
−2

n

n∑
i=1

m∏
k=1

(
1 +

1

2
|zik | −

1

2
|zik |2

)
+

(
13

12

)m

.
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Why we need a new criterion? Four 25× 3 LHDs

Uniform D1 Maximin D2 MaxPro D3 UPD D4
18 16 14 0 2 20 0 6 12 2 3 2
19 9 0 1 20 10 1 15 5 4 5 13
11 1 2 2 7 12 2 18 21 0 11 9
16 20 3 3 13 21 3 9 0 3 16 17
20 22 12 4 9 3 4 12 17 1 22 22
14 7 10 5 19 0 5 0 10 8 0 7

4 17 1 6 23 19 6 21 3 6 8 19
12 12 7 7 14 13 7 4 19 9 14 24
10 15 24 8 0 7 8 23 13 5 18 4
22 14 5 9 3 17 9 11 7 7 20 11

2 21 22 10 21 8 10 14 24 12 2 21
15 11 21 11 8 9 11 3 1 10 9 0

1 5 4 12 6 1 12 8 15 14 12 14
3 10 11 13 18 23 13 19 9 13 15 6

23 3 8 14 15 2 14 1 22 11 24 15
0 13 15 15 10 18 15 7 4 17 4 10
8 23 6 16 24 16 16 16 18 15 7 5
7 8 18 17 16 11 17 24 6 19 10 18
9 4 13 18 1 15 18 13 11 16 19 20
6 19 9 19 22 4 19 22 23 18 23 1

24 18 19 20 4 6 20 2 14 21 1 16
21 6 23 21 5 24 21 17 2 23 6 23
13 24 17 22 12 5 22 10 20 22 13 3
17 0 16 23 17 22 23 5 8 20 17 12

5 2 20 24 11 14 24 20 16 24 21 8
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Bivariate projections of Uniform D1 and Maximin D2

Note: ‘X’ means that there are no points in the grid.
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Bivariate projections of MaxPro D3 and UPD D4

Note: ‘X’ means that there are no points in the grid.
23 / 40



Some Theoretical Results

Theorem 1

For a balanced (n, sm) design D and any 2 ≤ k ≤ m,

1(m
k

) ∑
|u|=k

φ(Du) = φ(D),

where Du is the projected design onto k factors indexed by u.

UPDs have good space-filling properties not only in two dimensions, but
also in all dimensions.
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Some Theoretical Results

Theorem 2

For a balanced (n, sm) design D = (xik ),

φ(D) =
g(D)

4m(m − 1)n2s2
+ C (m, s), (2)

where

g(D) =
n∑

i=1

n∑
j=1

d2
1 (xi , xj )−

2

n

n∑
i=1

( n∑
j=1

d1(xi , xj )

)2

(3)

φ(D) is a function of pairwise L1-distances of the rows of D.

An equidistant design under the L1-distance is a UPD.
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Application: Design and Modeling Comparison

A 3-drug combination experiment on lung cancer (Al-Shyoukh et al. 2011;
Xiao, Wang and Xu 2019).

A 512-run and 8-level full factorial design to study 3 drugs.

The response was the ATP level of the cells after the drug treatments.

Kriging model with noise: y(x) = µ+ Z (x) + ε

Table 1: Comparison of 1000×MSE for different models and designs

Normal Cell Cancer Cell
D512 RD80 MPD25 UPD25

Kriging 0.002 0.21 0.62 0.22
NN 0.37 1.28 3.12 1.79
Polynomial 0.48 1.16 3.22 0.74

D512 RD80 MPD25 UPD25

0.003 0.37 1.87 0.21
0.47 1.57 4.10 2.93
2.98 6.77 10.04 4.42

RD80: Random 80-run design; MPD25: MaxPro 25-run designs.
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Comparison of projection properties

We compare four LHD(19, 18)’s:

1 The uniform design is from the uniform design website(UD)

2 The maximin distance design via R package SLHD (Ba, Myers and
Brenneman, 2015, Technometrics).

3 The maximum projection (MaxPro) design were constructed via R
package MaxPro (Joseph et al., 2015, Biometrika)

4 The uniform projection design (UPD): Eb.

We ran R commands maximinSLHD (with slice parameter t = 1) and
MaxProLHD 100 times with default settings and chose the best designs.
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Comparison of projection properties

Four criteria will be used in the comparison:

1 minimum Euclidean distance

2 maximum projection criterion (Joseph et al. 2015)

ψ(D) =

 1(n
2

) n−1∑
i=1

n∑
j=i+1

1∏m
k=1(xik − xjk )2


1/m

3 relative maximum centered L2-discrepancy (CD)

4 maximum correlation ρave .

For each k , we evaluate all
(m

k

)
projected designs and determine the worst

projection with respect to four criteria.
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29 / 40



Construction Methods

Good Lattice Point (GLP) designs are LHDs and often used to construct
uniform designs (Fang and Wang, 1994).

Let h1 < . . . < hp be p integers (from 1 to n) coprime to n

D = (xij ) with xij = i × hj (mod n)

An example n = 7:

D =



1 2 3 4 5 6
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2
6 5 4 3 2 1
0 0 0 0 0 0


with d(D) = 12

(while dupper = 16)
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GLP designs

Results from Zhou and Xu (2015, Biometrika)

An upper bound (for L1-distance): For any N × n LHD D,

d(D) ≤ dupper = b(N + 1)n/3c,

where bxc is the integer part of x .

Obtain the distances for four classes of GLP designs.

For an odd prime n, the n × (n − 1) GLP design has
d(D) = (n + 1)(n − 1)/4.
the upper bound is dupper = (n + 1)(n − 1)/3

The deff (D) = d(D)/dupper for a GLP design is 75%.

A surprising result: any linear level permutation of any column does not
decrease the distance d(D).
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GLP + Linear Permutation

Example: n = 7: Total 76 = 117, 649 linear permutations.

consider only 7 simple permutations: Di = D + i mod n

D → D1 = D + 1 mod n

1 2 3 4 5 6
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2
6 5 4 3 2 1
0 0 0 0 0 0


→



2 3 4 5 6 0
3 5 0 2 4 6
4 0 3 6 2 5
5 2 6 3 0 4
6 4 2 0 5 3
0 6 5 4 3 2
1 1 1 1 1 1


d(D) = 12 d(D1) = 13

After linear permutations, deff is about 90% for large n.
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How About Nonlinear Permutations?

Given an integer n, for x = 0, . . . , n − 1,

W (x) =

{
2x , for 0 ≤ x < n/2;
2(n − x)− 1, for n/2 ≤ x < n.

The W is a permutation of {0, . . . , n − 1}.

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

 n = 7 

x

W
(x

)

The W has been useful in

1. Latin squares, Williams (1949)

2. Orthogonal designs, Bailey (1982),
Edmondson (1993)

3. Orthogonal LHDs under a
second-order Fourier model, Butler
(2001)
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GLP + Williams Transformation

Algorithm (Wang, Xiao and Xu, 2018, Annals of Statistics)

Step 1. Generate an n × p GLP design D.

Step 2. For b = 0, . . . , n − 1, generate Db = D + b (mod n).

Step 3. Let Eb = W (Db).

Step 4. Find the best Eb which maximizes d(Eb).

Example: n = 7, b = 1

D → D1 = D + 1 (mod n) → E1 = W (D1)

1 2 3 4 5 6
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2
6 5 4 3 2 1
0 0 0 0 0 0


→



2 3 4 5 6 0
3 5 0 2 4 6
4 0 3 6 2 5
5 2 6 3 0 4
6 4 2 0 5 3
0 6 5 4 3 2
1 1 1 1 1 1


→



4 6 5 3 1 0
6 3 0 4 5 1
5 0 6 1 4 3
3 4 1 6 0 5
1 5 4 0 3 6
0 1 3 5 6 4
2 2 2 2 2 2


d(D) = 12 d(D1) = 13 d(E1) = 16 (= dupper )
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Comparison of Various n × (n − 1) LHDs
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Key Result

Let

b = W−1

(
n − 1

2
± c

)
where c = b

√
(n2 − 1)/12c.

Theorem 3

Given a prime n and p = n − 1, such defined b leads the best Eb, with

deff (Eb) ≥ 1− 2/
√

3(n2 − 1).

As n→∞, deff (Eb)→ 1.

No need for computer search: D → Db → Eb = W (Db)

Guaranteed efficiency

Larger n, better design
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Correlations

For any n × p design D = (xij ), define

ρave(D) =

∑
j 6=k |ρjk |

p(p − 1)
,

where ρjk is the correlation between columns j and k of D.
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Comparison of ρave for n × (n − 1) Designs
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Summary

Many available algorithms for constructing space-filling designs, but not
efficient for constructing large designs

A breakthrough — Wang, Xiao and Xu (2018) constructed maximin
distance designs via good lattice points and a nonlinear transformation
without computer search.

Large distance efficiencies: deff = 1 (or → 1)
Low average correlation ρave → 0 as n→∞
Asymptotically optimal under the uniform projection criterion.

A new class of space-filling designs — Uniform projection designs

suitable when only a subset of the input variables are active.
good space-filling not only in two dimensions, but also in all dimensions.
equivalent to maximin L1-distance criterion if L1-equidistant designs exist.
robust under other design criteria.

There are still many open problems to be investigated.
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