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Lecture 10 Simulation Methods

Lecturer: Jingyi Jessica Li Scribe: Huwenbo Shi

Monte Carlo Method

. Goal: To evaluate § = E[f(X)] for X ~ P, where P is the target distribution.

R n

. Direct Monte Carlo: Sample z; as i.i.d. from P and take the average 6§ = 1 > f(z;).
i=1

Examples: Can be used to evaluate E[X?], P(X > ¢) = E[l>a]

. Monte Carlo methods are useful for:

(a) Sampling from posterior in Bayesian inference

(b) When dimension of the parameter space is high

(¢) When analytic form of the distribution is not available
. Vanilla Monte Carlo:

Question: Let X 1Y ~ Unif(0,1), what is P(X2 +Y2 > 1)?
Simulate N data points, count the number of data points that satisfy z;2 + y;2 > 1.

. . S .
Estimate the probability by: %, where S = {(z;, ;) |v? +vi2 > 1,i=1,...,n}.
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Figure 1: Vanilla Monte Carlo

2 Simulating from A Distribution

1. Suppose the distribution is known with CDF F'.

Theorem: Let U ~ Unif(0,1) and X = F~1(U), then X ~ F.




Proof: P(X <z)=P(F~Y(U) <z)=P(U < F(x)) = F(x).

2. Example:
To sample X ~ Exp(A), in R: x <- rexp(n, lambda)
First sample uy,...,u, ~ Unif(0,1).
CDF for exponential distribution is F(z) =1 —e 2> 0
Let y =1—e™ " then e =1—y, v = —1log(1 —y),y € [0,1)
So F~(z) = —3log(1 —z),z € [0,1)
Let z; = —%log(l —u;), then x4, ..., x, are samples from Exp()).

3 Rejection Method (von Neumann 1951)

1. Setting:

(a) Want to sample from a target distribution with density m(z)

(b) The PDF of the target distribution is known up to a constant:
I(x) = cm(x), where [(z) is known, ¢ and 7(z) unknown.

(¢) Can construct:

i. An envelope function g(x)
ii. A constant M such that Mg(x) = (), Vx
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Figure 2: Envelope function

2. Procedure:

(a) Draw a sample z from g(x) and compute the ratio r = ]Vl[(qx()m) € [0,1]

(b) Flip a coin with success probability r

i. If head turns up, accept and keep =
ii. Otherwise, discard =



(c) Go back to step (a) until the n'" sample is accepted

3. Why Does It Work?
1 if sample x ~ g is accepted.

Proof: Let I =
0 otherwise.
(z) . fem(z) , ¢
P(I= JPI—1|X—x Mg Jde—J,M dx—M
Iz)
P(X =z,1=1) = 1|X —2)g(z) T 9@ I(x)

P(X =2 =1) = - - - A

(X =all =1) P(I=1) P(I=1) < ;. ~ @)

4. Example: Truncated Gaussian
Target distribution with density 7(z)ocd(x)1,5cy, where ¢(z) is the PDF of N (0, 1).
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Figure 3: Truncated Gaussian, c=50

Envelope 1: g(z) = ¢(z), M =1
First, we notice that Mg(z) > ¢(x), V.

= ARz B[] = B[] = 1 — @(c), where ®(z) is the CDF of N(0, 1),

Envelope 1 procedure:
Draw z from N(0,1), keep if x > ¢.
Repeat until the n** sample is accepted.

Envelope 2:
Let g(z) = de M=% 2 > ¢
An envelope function must satisfy Mg(z) = ¢(x),z = c.

What is the smallest M such that M > ¢Em§ Yo = c?

1 —a2?)2

V2= C _ 1 —(z?/2—=A(z—c))
M > Xe2@=a) = Jzaa®



1 2 1 2
So M = mi —(@*/2=Xz—c)) — __ = (A*/2=Xc)
© 220 J2mA” NN

1 (a2/a i
Mg(x)z—%e( N/

What A to choose?

We want \* that maximizes the acceptance rate 7.
.2
o(x) ="

maximize r = = -
Mg(x) ie(—kz/Q—)\z) )

subject to x > ¢, which is equivalent to

. . — 2 .
maximize —~ + Az, subject to x > ¢, \* = ¢, solved.

Envelope 2 procedure:

(a) Sample x from Ezp(c), let y =2+ ¢

z2/2

(b) Flip a coin with success rate %, if success keep y
e c —cCcT

(c) Go back to step (a) until we accept the n'* sample

Acceptance rate comparison for Envelope 1 and Envelope 2:
Envelope | c=—-1|c=2|c=3
1 0.84 0.02 | 0.0009
2 0.57 0.88 | 0.96

Envelope 1 samples from the tail of a Gaussian distribution and has slow acceptance rate, whereas

Envelope 2 samples from an exponential distribution and has high acceptance rate.

. Good Envelope Function Properties:
(a)
(b)
(c)

)

(d) Low rejection rate

Easy to construct
Easy to sample from

Close to the target distribution

Importance Sampling

. Goal:
To evaluate E.[h(X)],X ~7

. Algorithm (Marshall 1956):

(a) Draw x1,...,x, from a trial distribution g
(b) Calculate the importance weight w; = ggf;
(c) Estimate Er[h(X)] by 4 Zig (0w
. Proof:
EL[X)) = [be)n(a) do = 1) T D gte) do = B0 TESLX ~ g
. Example:
m(x) = %l{xe[al]}, where ¢(z) is the PDF of N(0,1).



Vanilla Simulation Approach:

Take draws from N (0, 1) and only keep draws in [0, 1].

This is inefficient because acceptance rate is ®(1) — ®(0), where ®(z) is the CDF of N(0,1).
The good part: It gives you the actual draws.

The bad part: It rejects draws.

Importance Sampling Approach:

Draw z1,...,z, ~ Unif(0,1) so that g(z) = 1,Yz € [0,1].
m(xi) _ _ ¢(xi)

g(z:) — S(l) o(z)dx’

The importance weight is w; =

The mean is 137" | x;w;.
n 1=
The good part: It doesn’t reject any draw.
The bad part: It doesn’t give you the actual draws.

5. Another Example of Importance Sampling;:
Target: f(z,y) = 0.50—90(z—0.5)*~10(y+0.1)
Proposal: g(z, y)060.56790(””*0-5)2*10(y+0.1)2

This is the density of N ([ 0-5 ] , [1/180 0 ])

—01]|'| o 1/2
To compute the weights, we use w(z,y) = ggi;’;
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