Lecture 10 Simulation Methods

Lecturer: Jingyi Jessica Li Scribe: Huwenbo Shi

1 Monte Carlo Method

- 1. Goal: To evaluate $\theta = E[f(X)]$ for $X \sim P$, where P is the target distribution.
- 2. Direct Monte Carlo: Sample x_i as i.i.d. from P and take the average $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$. Examples: Can be used to evaluate $E[X^2]$, $P(X > c) = E[\mathbb{1}_{\{x > c\}}]$.
- 3. Monte Carlo methods are useful for:
 - (a) Sampling from posterior in Bayesian inference
 - (b) When dimension of the parameter space is high
 - (c) When analytic form of the distribution is not available
- 4. Vanilla Monte Carlo:

Question: Let $X \perp Y \sim Unif(0,1)$, what is $P(X^2 + Y^2 \ge 1)$? Simulate N data points, count the number of data points that satisfy ${x_i}^2 + {y_i}^2 \ge 1$. Estimate the probability by: $\frac{|S|}{N}$, where $S = \{(x_i, y_i) | x_i^2 + y_i^2 \ge 1, i = 1, \dots, n\}$.

Figure 1: Vanilla Monte Carlo

2 Simulating from A Distribution

1. Suppose the distribution is known with CDF F. Theorem: Let $U \sim Unif(0,1)$ and $X = F^{-1}(U)$, then $X \sim F$.

Proof:
$$P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$$
.

2. Example:

To sample $X \sim Exp(\lambda)$, in R: x <- rexp(n, lambda) First sample $u_1, \dots, u_n \sim Unif(0,1)$. CDF for exponential distribution is $F(x) = 1 - \mathrm{e}^{-\lambda x}, x \geqslant 0$ Let $y = 1 - \mathrm{e}^{-\lambda x}$, then $\mathrm{e}^{-\lambda x} = 1 - y, \ x = -\frac{1}{\lambda}log(1-y), y \in [0,1)$ So $F^{-1}(x) = -\frac{1}{\lambda}log(1-x), x \in [0,1)$ Let $x_i = -\frac{1}{\lambda}log(1-u_i)$, then x_1, \dots, x_n are samples from $Exp(\lambda)$.

3 Rejection Method (von Neumann 1951)

1. Setting:

- (a) Want to sample from a target distribution with density $\pi(x)$
- (b) The PDF of the target distribution is known up to a constant: $l(x) = c\pi(x)$, where l(x) is known, c and $\pi(x)$ unknown.
- (c) Can construct:
 - i. An envelope function g(x)
 - ii. A constant M such that $Mg(x) \ge l(x), \forall x$

Figure 2: Envelope function

2. Procedure:

- (a) Draw a sample x from g(x) and compute the ratio $r = \frac{l(x)}{Mg(x)} \in [0, 1]$
- (b) Flip a coin with success probability r
 - i. If head turns up, accept and keep \boldsymbol{x}
 - ii. Otherwise, discard x

(c) Go back to step (a) until the n^{th} sample is accepted

3. Why Does It Work?

Proof: Let $I = \begin{cases} 1 & \text{if sample } x \sim g \text{ is accepted.} \\ 0 & \text{otherwise.} \end{cases}$

$$P(I = 1) = \int P(I = 1 | X = x)g(x) dx = \int \frac{l(x)}{Mg(x)}g(x) dx = \int \frac{l(x)}{M} dx = \int \frac{c\pi(x)}{M} dx = \frac{c}{M}$$

$$P(X = x | I = 1) = \frac{P(X = x, I = 1)}{P(I = 1)} = \frac{P(I = 1 | X = x)g(x)}{P(I = 1)} = \frac{\frac{l(x)}{Mg(x)}g(x)}{\frac{c}{M}} = \frac{l(x)}{c} = \pi(x)$$

4. Example: Truncated Gaussian

Target distribution with density $\pi(x) \propto \phi(x) \mathbb{1}_{\{x>c\}}$, where $\phi(x)$ is the PDF of N(0,1).

Figure 3: Truncated Gaussian, c=50

Envelope 1: $g(x) = \phi(x), M = 1$

First, we notice that $Mg(x) \ge \phi(x), \forall x$.

$$r = \frac{\phi(x)\mathbb{1}_{\{x>c\}}}{\phi(x)} = \mathbb{1}_{\{x>c\}}, E[r] = E[\mathbb{1}_{\{x>c\}}] = 1 - \Phi(c), \text{ where } \Phi(x) \text{ is the CDF of } N(0,1).$$

Envelope 1 procedure:

Draw x from N(0,1), keep if x > c.

Repeat until the n^{th} sample is accepted.

Envelope 2:

Let
$$g(x) = \lambda e^{-\lambda(x-c)}, x \ge c$$
.

An envelope function must satisfy $Mg(x) \ge \phi(x), x \ge c$.

What is the smallest M such that $M \geqslant \frac{\phi(x)}{g(x)}, \forall x \geqslant c$?

$$M\geqslant \tfrac{\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-x^2/2}}{\lambda\mathrm{e}^{-\lambda(x-c)}}=\tfrac{1}{\sqrt{2\pi}\lambda}\mathrm{e}^{-(x^2/2-\lambda(x-c))}$$

So
$$M = \min_{x \geqslant c} \frac{1}{\sqrt{2\pi}\lambda} e^{-(x^2/2 - \lambda(x-c))} = \frac{1}{\sqrt{2\pi}\lambda} e^{(\lambda^2/2 - \lambda c)}$$

$$Mg(x) = \frac{1}{\sqrt{2\pi}} e^{(-\lambda^2/2 - \lambda x)}$$

What
$$\lambda$$
 to choose?

We want λ^* that maximizes the acceptance rate r.

maximize $r=\frac{\phi(x)}{Mg(x)}=\frac{\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-x^2/2}}{\frac{1}{\sqrt{2\pi}}\mathrm{e}^{(-\lambda^2/2-\lambda x)}},$ subject to $x\geqslant c,$ which is equivalent to maximize $\frac{-x^2}{2} + \lambda x$, subject to $x \ge c$, $\lambda^* = c$, solved.

Envelope 2 procedure:

- (a) Sample x from Exp(c), let y = x + c
- (b) Flip a coin with success rate $\frac{e^{-x^2/2}}{e^{(-c^2/2-cx)}}$, if success keep y
- (c) Go back to step (a) until we accept the n^{th} sample

Acceptance rate comparison for Envelope 1 and Envelope 2:

Envelope	c = -1	c=2	c = 3
1	0.84	0.02	0.0009
2	0.57	0.88	0.96

Envelope 1 samples from the tail of a Gaussian distribution and has slow acceptance rate, whereas Envelope 2 samples from an exponential distribution and has high acceptance rate.

- 5. Good Envelope Function Properties:
 - (a) Easy to construct
 - (b) Easy to sample from
 - (c) Close to the target distribution
 - (d) Low rejection rate

4 Importance Sampling

1. Goal:

To evaluate
$$E_{\pi}[h(X)], X \sim \pi$$

- 2. Algorithm (Marshall 1956):
 - (a) Draw x_1, \ldots, x_n from a trial distribution g
 - (b) Calculate the importance weight $w_i = \frac{\pi(x_i)}{g(x_i)}$
 - (c) Estimate $E_{\pi}[h(X)]$ by $\frac{1}{n} \frac{\sum_{i=1}^{n} h(x_i)w_i}{\sum_{i=1}^{n} w_i}$
- 3. Proof:

$$E_{\pi}[h(X)] = \int h(x)\pi(x) \, dx = \int h(x) \frac{\pi(x)}{g(x)} g(x) \, dx = E_g[h(X) \frac{\pi(X)}{g(X)}], X \sim g$$

4. Example:
$$\pi(x) = \frac{\phi(x)}{\int_0^1 \phi(x) \, dx} \mathbbm{1}_{\{x \in [0,1]\}}, \text{ where } \phi(x) \text{ is the PDF of } N(0,1).$$

Vanilla Simulation Approach:

Take draws from N(0,1) and only keep draws in [0,1].

This is inefficient because acceptance rate is $\Phi(1) - \Phi(0)$, where $\Phi(x)$ is the CDF of N(0,1).

The good part: It gives you the actual draws.

The bad part: It rejects draws.

Importance Sampling Approach:

Draw $x_1, \ldots, x_n \sim Unif(0, 1)$ so that $g(x) = 1, \forall x \in [0, 1]$.

The importance weight is $w_i = \frac{\pi(x_i)}{g(x_i)} = \frac{\phi(x_i)}{\int_0^1 \phi(x) dx}$.

The mean is $\frac{1}{n}\sum_{i=1}^{n} x_i w_i$.

The good part: It doesn't reject any draw.

The bad part: It doesn't give you the actual draws.

5. Another Example of Importance Sampling: Target: $f(x,y) = 0.5e^{-90(x-0.5)^2-10(y+0.1)^4}$

Proposal: $g(x,y) \propto 0.5e^{-90(x-0.5)^2-10(y+0.1)^2}$ This is the density of $N\left(\begin{bmatrix} 0.5\\ -0.1\end{bmatrix}, \begin{bmatrix} 1/180 & 0\\ 0 & 1/20\end{bmatrix}\right)$. To compute the weights, we use $w(x,y) = \frac{f(x,y)}{g(x,y)}$.

References

- [1] J. von Neumann, "Various techniques used in connection with random digits. Monte Carlo methods", Nat. Bureau Standards, 12 (1951), pp. 3638.
- [2] Marshall, A. W. (1956). The use of multi-stage sampling schemes in Monte Carlo computations. In M. Meyer (Ed.), Symposium on Monte Carlo Methods, pp. 123-140. New York: Wiley