StatsM254 Statistical Methods in Computational Biology	Lecture 11-05/08/2014	
Lecture 11		
Lecturer: Jingyi Jessica Li		Scribe: Kai Fu

1 Markov Chain Monte Carlo (MCMC)

1. Monto Carlo Simulator

Goal: evaluate $E[f(X)]$ for $X \sim P$ (target distribution) sample x_{1}, \ldots, x_{n} as i.i.d. from P and calculate $\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$
(a) vanilla MC
(b) rejection sampling
(c) importance sampling
2. MCMC VS MC

Construct a i.i.d. markov chain x_{1}, \ldots, x_{n}. Estimate θ as $\hat{\theta}=\frac{1}{n-k} \sum_{i=k+1}^{n} f\left(x_{i}\right)$, the chunk that is thrown away is called the burn-in period
3. Background: First-order Markov Chain
(a) $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, \ldots$
(b) First order
$P\left(x_{n+1} \mid x_{1}, \ldots, x_{n}\right)=P\left(x_{n+1} \mid x_{n}\right)$
(c) Invariant distribution
Π is the probability. π is the density
$\Pi(d y)=\int T(x, d y) \pi(x) d x$
$T(x, d y)$ is called transition probability
e.g. in the discrete case, $\Pi=\pi, x_{i} \in\{1,2\}$,
$\pi\left(x_{n+1}=2\right)=\sum_{i=1}^{2} P\left(x_{n+1}=2 \mid x_{n}=i\right) \cdot \pi\left(x_{n}=i\right)=\sum_{i=1}^{2} T(i, 2) \cdot \pi\left(x_{n}=i\right)$
(d) Transition probability
$T(x, d y)=P\left(x_{n+1} \in d y \mid x_{n}=x\right)$
(e) Markov chain converges to invariant distribution

Transition probability of different orders: For starting value x , we have
$p^{(1)}(x, A)=T(x, A)$
$p^{(2)}(x, A)=\int p^{(1)}(x, d y) T(y, A)$
$p^{(3)}(x, A)=\int p^{(2)}(x, d y) T(y, A)$
\vdots
$p^{(n)}(x, A)=\int p^{(n-1)}(x, d y) T(y, A) \approx \Pi(A)$
(f) Markov Chain theory is mainly concerned about: for a given $T(x, d y)$, what is Π ?
(g) MCMC goes backwards: given a marginal distribution (target distribution) Π, can we create a Markov chain with some $T(x, d y)$ that Π is the invariant distribution?
(h) "reversibility" criterion
$\pi(x) \cdot t(x, y)=\pi(y) \cdot t(y, x)$, where $t(x, y)=\frac{d}{d y} T(x, d y)$
$\Rightarrow \int T(x, A) \pi(x) d x=\iint_{A} t(x, y) d y \pi(x) d x$
$=\int_{A} \int t(x, y) \pi(x) d x d y$
$=\int_{A} \int t(y, x) \pi(y) d x d y$
$=\int_{A}\left(\int t(y, x) d x\right) \pi(y) d y=\int_{A} \pi(y) d y=\pi(A)$
4. Setup of MCMC
(a) Π is known
(b) how to construct $T(x, d y)$?

Suppose we take any conditional probability $q(x, y)$, e.g. $q(x, y)=f(y \mid x)=\phi(y-x)$ and we have $\pi(x) \cdot q(x, y)>\pi(y) \cdot q(y, x)$
we "fudge" $q(x, y)$ by multiplying a "fudge" factor, $\alpha(x, y) \leq 1$ such that
$\pi(x) q(x, y) \alpha(x, y)=\pi(y) q(y, x) \alpha(y, x)$
(LHS) (RHS)
Theorem $\alpha(x, y)=\min \left[\frac{\pi(y) \cdot q(y, x)}{\pi(x) \cdot q(x, y)}, 1\right]$
Proof. When $\pi(x) q(x, y)<\pi(y) q(y, x)$
$\Rightarrow \alpha(x, y)=1, \alpha(y, 1)=\frac{\pi(x) \cdot q(x, y)}{\pi(y) \cdot q(y, x)}$
so $\mathrm{LHS}=\pi(x) q(x, y) ; \mathrm{RHS}=\pi(x) q(x, y)$
When $\pi(x) q(x, y)>\pi(y) q(y, x)$, can prove LHS $=$ RHS in a similar way

2 The Metropolis-Hasting algorithm (MH)

Given an (arbitrary) starting value X_{1}, generate X_{2} as follows.

- Sample Y from the conditional density $q\left(x_{1}\right)$ and $U \sim U n i f(0,1), Y \perp U$.
- If $U \leq \alpha\left(X_{1}, Y\right)$, accept the candidate Y and set $X_{2}=Y$
- Else reject the candidate Y and set $X_{2}=X_{1}$

3 The Gibbs Sampler

1. We want to samples $x=\left(x^{(1)}, \cdots, x^{(m)}\right) \sim P$, the joint distribution is complicated
2. sample each $x^{(i)}$ conditional on others, that is, in iteration $(n+1)$,
$x_{n+1}^{(1)} \sim P\left(x^{(1)} \mid x_{n}^{(2)}, x_{n}^{(3)}, \cdots, x_{n}^{(m)}\right)$
$x_{n+1}^{(2)} \sim P\left(x^{(2)} \mid x_{n+1}^{(1)}, x_{n}^{(2)}, \cdots\right)$
\vdots
$x_{n+1}^{(m)} \sim P\left(x^{(2)} \mid x_{n+1}^{(1)}, \cdots, x_{n+1}^{(m-1)}\right)$
3. Gibbs sampler is useful because conditional distributions are often much simpler
4. Relationship to Metropolis-Hasting

Gibbs sampler is in fact an MH algorithm with the conditional distribution:
$q\left(\left(x_{n}^{(i)}, x^{(-i)}\right),\left(x_{n+1}^{(i)}, x^{(-i)}\right)\right)=P\left(x_{n+1}^{(i)} \mid x^{(-i)}\right)$ The "fudge" factor (acceptance probability):
$\alpha\left(\left(x_{n}^{(i)}, x^{(-i)}\right),\left(x_{n+1}^{(i)}, x^{(-i)}\right)\right)$
$=\frac{\pi\left(x_{n+1}^{(i)}, x^{(-i)}\right) \cdot p\left(x_{n}^{(i)} \mid x^{(-i)}\right)}{\pi\left(x_{n}^{(i)}, x^{(-i)}\right) \cdot p\left(x_{n+1}^{(i)} \mid x^{(-i)}\right)}$
$=\frac{p\left(x^{(-i)}\right) \cdot p\left(x_{n+1}^{(i)} \mid x^{(-i)}\right) \cdot p\left(x_{n}^{(i)} \mid x^{(-i)}\right)}{p\left(x^{(-i)}\right) \cdot p\left(x_{n+1}^{(i)} \mid x^{(-i)}\right) \cdot p\left(x_{n}^{(i)} \mid x^{(-i)}\right)}$
$=1$

4 Critique

Draw from the points discussed in class. Write the critques in about a paragraph for each paper.

5 Possible Extensions

6 Conclusions

References

[1] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, M. and J. Crowcroft, "XORs in the air: practical wireless network coding", IEEE/ACM Transactions on Networking,, vol. 16, no. 3, pp. 497-510, 2008.
[2] H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat, "Learning to Share: Narrowband-Friendly Wideband Wireless Networks", ACM SIGCOMM Computer Communication Review, vol. 38, no. 4, pp. 147-158, 2008.

