StatsM254 Statistical Methods in Computational Biology Lecture 12-05/20/2014
Lecture 12 Hidden Markov Model
Lecturer: Jingyi Jessica Li
Scribe: Yida Zhang, Le Shu

1 Usage in Bioinformatics

1. gene finding: GLIMMER, GENSCAN
2. motif finding
3. segmentation analysis: chromHMM
4. find CpG islands

2 Simple example

1. Sample sequence data:

| X | ATGCGACT G C A T A G C A C T T | observed symbols |
| :--- | :--- | :--- | :--- |
| Y | $\frac{E_{1} E_{2} E_{3} E_{1} E_{2} E_{3} E_{1} E_{2} E_{3} I I I I I}{\text { Exon }} \frac{E_{1} E_{2} E_{3} E_{1} E_{2} E_{3}}{\text { Intron }}$Exon | hidden states |

2. Problem: find exon and intron in this sequence
3. Assumption: exon and intron have different probability of seeing a nucleotide
4. Hidden states in this example: $\{$ intron, exon $\}$
more specifically: states $=\left\{E_{1}, E_{2}, E_{3}, I\right\}$, where E_{1} is the first nucleotide in a codon, E_{2} is the second nucleotide in a codon, E_{3} is the third nucleotide in a codon, and I is a nucleotide in an intron.
5. Markov chain example (transition diagram, see Figure 1):
6. Five things we care about:
(a) observed sequence

Figure 1: Markov chain example
(b) hidden state
(c) transition probability
(d) initial probability
(e) emission probaility
7. Some notations:
X : observed symbols (ATCG in this example)
$Y:$ hidden states $\left(E_{1}, E_{2}, E_{3}, I\right.$ in this example $)$
Θ : Set of parameters, including:
(a) Transition probability, $\left\{t_{i j}\right\}, i, j \in\left\{E_{1}, E_{2}, E_{3}, I\right\}$
(b) Emission probability, $\left\{e\left(x_{n} \mid i\right)\right\}, n \in\{1, \ldots, L\}, i \in\left\{E_{1}, E_{2}, E_{3}, I\right\}$
(c) Initial probability, $\left\{\pi_{i}\right\}, i \in\left\{E_{1}, E_{2}, E_{3}, I\right\}$
8. Question:
(a) $p(X \mid \Theta)$?
(b) What are the hidden states? $Y^{*}=\underset{Y}{\operatorname{argmax}} p(X \mid \Theta)$?
(c) how to estimate Θ ?

Answers:

1. $p(X \mid \Theta)$?
$p(X \mid \Theta)=\sum_{y} p(X, Y \mid \Theta)$. However, simple enumeration is not computationally feasible.

To solve this problem, we use forward algorithm:

$$
\begin{aligned}
\alpha(n, i) & =p\left(x_{1}, x_{2}, \ldots \ldots x_{n}, y_{n}=i \mid \Theta\right) \\
& =\sum_{k \in\left\{E_{1}, E_{2}, E_{3}, I\right\}}\left[\alpha(n-1, k) t(k, i) e\left(x_{n} \mid i\right)\right]
\end{aligned}
$$

start: $\alpha(1, i)=\pi(i)$
Finally, $p(X \mid \Theta)=\sum_{i \in\left\{E_{1}, E_{2}, E_{3}, I\right\}} \alpha(L, i)$
The computational complexity of this algorithm is $O\left(L \cdot 4^{2}\right)$
2. What are the hidden states? $Y^{*}=\underset{Y}{\operatorname{argmax}} p(X, Y \mid \Theta)$?

Here we use Viterbi algorithm - a dynamic programming algorithm for finding the most likely sequence of hidden states.
$\Gamma(n, i)=\max _{y_{1}, \ldots y_{n-1}} P\left(X_{1}, \ldots, X_{n}, y_{1}, \ldots, y_{n-1}, y_{n}=i \mid \Theta\right)$
Recursively,
$\Gamma(n, i)=\max _{k}\left[\Gamma(n-1, k) t(k, i) e\left(X_{n} \mid i\right)\right] \Rightarrow \max _{k} \Gamma(L, k)=\max _{y} P(X, y \mid \Theta)$
Traceback:
$y_{L}^{*}=\underset{k}{\operatorname{argmax}} \Gamma(L, k), y_{L-1}^{*}=\underset{k}{\operatorname{argmax}} \Gamma(L-1, k), \ldots$
computation time $O\left(L \cdot 4^{2}\right)$

What if we are more interested in $\hat{y_{n}}=\operatorname{argmax} P\left(y_{n}=i \mid X, \Theta\right)$?
$P\left(y_{n}=i \mid X, \Theta\right)=\frac{P\left(X_{1}, \ldots, X_{L}, y_{n}=i \mid \Theta\right)}{P\left(X_{1}, \ldots, X_{L} \mid \Theta\right)}=\frac{P\left(X_{1}, \ldots, X_{n}, y_{n}=i \mid \Theta\right) P\left(X_{n+1}, \ldots, X_{L} \mid y_{n}=i, \Theta\right)}{P(X \mid \Theta)}$
Last time we defined $\alpha(n, i)=P\left(X_{1}, \ldots, X_{n}, y_{n}=i \mid \Theta\right)$
Now, $\beta(n, i) \triangleq P\left(X_{n+1}, \ldots, X_{L} \mid y_{n}=i, \Theta\right)$

Backward algorithm:

$$
\begin{align*}
\beta(n, i) & =\sum_{k}\left[\beta(n+1, k) e\left(X_{n+1} \mid k\right) t(i, k)\right] \\
& =P\left(X_{n+2}, \ldots, X_{L} \mid y_{n+1}=k, \Theta\right) P\left(X_{n+1} \mid y_{n+1}=k, \Theta\right) P\left(y_{n+1}=k \mid y_{n}=i, \Theta\right) \tag{1}\\
& =\sum_{k} P\left(X_{n+1}, \ldots, X_{L}, y_{n+1}=k \mid y_{n}=i, \Theta\right)
\end{align*}
$$

What is $\beta(L-1, i)$?

$$
\begin{align*}
\beta(L-1, i) & =P\left(X_{L} \mid y_{L-1}=i, \Theta\right)=\sum_{\gamma \in\{A, T, C, G\}} P\left(X_{L-1}=\gamma, X_{L} \mid y_{L-1}=i, \Theta\right) \tag{2}\\
& =\sum_{k \in\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}} \sum_{\gamma} e\left(X_{L-1}=\gamma \mid i\right) \cdot t(i, k) \cdot e\left(X_{L} \mid k\right)
\end{align*}
$$

Given $\alpha(n, i)$ and $\beta(n, i)$, we have
$P\left(y_{n}=i \mid X, \Theta\right)=\frac{\alpha(n, i) \beta(n, i)}{\sum_{k} \alpha(n, k) \beta(n, k)} \Rightarrow \hat{y}_{n}=\underset{i}{\operatorname{argmax}} \alpha(n, i) \beta(n, i)$
This serves as a second way of finding hidden states (as opposed to Viterbi).
3. Estimate Θ - Training

We use Baum - Welch algorithm, which is similar to EM algorithm.
From the forward-backward algorithm: $P\left(y_{n}=i \mid X, \Theta^{(m)}\right) \Rightarrow \tilde{y}_{n}^{(m)}$
E-step, m-th iteration: $\tilde{y}_{n}^{(m)}=E\left[y_{n} \mid X, \Theta^{(m)}\right]$
M-step, $\Theta^{(m+1)}=\underset{\Theta}{\operatorname{argmax}} P\left(X, \tilde{y}_{n}^{(m)} \mid \Theta\right)$

