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StatsM254 Statistical Methods in Computational Biology

Lecturer: Jingyi Jessica Li

Lecture 12 Hidden Markov Model

Lecture 12 - 05/20/2014

Scribe: Yida Zhang, Le Shu

Usage in Bioinformatics

. gene finding: GLIMMER, GENSCAN
motif finding
. segmentation analysis: chromHMM

. find CpG islands

Simple example

. Sample sequence data:

X ATGCGACTGCATAGCACTT observed symbols
Y ElEQEgElggEgElEzEg I 111 E[EQE;;ElEQEg hidden states
Exon Intron Exon

. Problem: find exon and intron in this sequence
. Assumption: exon and intron have different probability of seeing a

. Hidden states in this example:{intron, exon}

nucleotide

more specifically: states={F1, Eo, F3, I}, where E} is the first nucleotide in a codon, Es is the second

nucleotide in a codon, Fs5 is the third nucleotide in a codon, and I is a nucleotide in an intron.

. Markov chain example (transition diagram, see Figure 1):

. Five things we care about:

(a) observed sequence
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Figure 1: Markov chain example

(b) hidden state

¢) transition probability
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(d) initial probability

(e) emission probaility

7. Some notations:
X: observed symbols (ATCG in this example)
Y: hidden states (E1,FEs,FE3,I in this example)

O: Set of parameters, including:

(a) Transition probability, {t;;},i,j € {E1, Ea, Es, I}
(b) Emission probability, {e(z,|i)},n € {1,...,L},i € {E1, E2, E3, I}
(c) Initial probability, {m;},i € {E1, Ea, Es, I}

8. Question:

(a) p(X|©)?
(b) What are the hidden states? Y* = argmax p(X|0)?
Y

(¢) how to estimate ©7

Answers:

1. p(X]©)?

p(X[0) =3, p(X,Y[©). However, simple enumeration is not computationally feasible.



To solve this problem, we use forward algorithm:
a(n, i) = p(x1, 2, oolp, Y = 1|O)

= Dke (BB .13 (0 — L R)E(R, D)e(zn]i)]
start: «(1,4) = 7(7)
Finally, p(X[©) = Zz’e{El,EQ,Eg,I} a(L,i)

The computational complexity of this algorithm is O(L - 4?)

. What are the hidden states? Y* = argmaxp(X,Y|0)?
Y

Here we use Viterbi algorithm - a dynamic programming algorithm for finding the most likely
sequence of hidden states.

T(n,i) = ylmzzx ) P(X1, oy Xy Y1y ooy Y1, Yn = |©)

Recursively,

T(n,i) = m}gx[F(n — 1, k)t(k,i)e(X,|i)] = mkaXF(L, k) = mij(X,y|@)

Traceback:

y; = argmaxI'(L, k), y;_, = argmaxI'(L — 1,k),...
k k

computation time O(L - 4?)

What if we are more interested in ¢, = argmax P(y, = i|X, 0)?
i

. P(Xl,...,XL,yn :Z|@) P(X177Xnayn:7f‘®)P(Xn+177XL|yn:7/7@)
P = X = =
(v = iX, ) P(X1,..,XL|0) P(X|0)

Last time we defined a(n, i) = P(X1, ..., Xn, yn = |O)

Now, B(n,i) £ P(Xni1, .o, XL|yn = 4,0)

Backward algorithm:

5(77'7 Z) = Z[ﬂ(n +1, k)e(Xn+1|k)t(i7 k)]

k
= P(Xn+2; ---;XL‘ynJrl = k7@>P(Xn+1|yn+1 = kae))P(ynJrl = k|yn - 27@> (1)

= ZP(Xn+1a "'aXL7y’n+1 = k|yn = 7’76)
k

What is (L —1,1)?

BL-1,0) = P(Xilyr1=i.0)= Y P(Xpo1 =7 Xlys1 = i.0)
~ve{A,T,C,G}

S D e(Xpor =Ali) - tlik) - e(Xplk)

ke{E\,E2,E3,E4} ¥



Given «a(n,i) and B(n,i), we have
a(n,i)B(n,1) .

= §p = argmax a(n, ) B(n, i)

Xk: a(n, k)B(n, k) i

This serves as a second way of finding hidden states (as opposed to Viterbi).

. Estimate © - Training

We use Baum - Welch algorithm, which is similar to EM algorithm.
From the forward-backward algorithm: P(y, = i|X,00™) = j{™
E-step, m-th iteration: g™ = Ely,| X, 00™)]

M-step, @+ = argmax P(X, ng(Lm)\@)
o



