StatsM254 Statistical Methods in Computational Biology

Lecture 12 - 05/20/2014

Lecture 12 Hidden Markov Model

Lecturer: Jingyi Jessica Li Scribe: Yida Zhang, Le Shu

1 Usage in Bioinformatics

- 1. gene finding: GLIMMER, GENSCAN
- 2. motif finding
- 3. segmentation analysis: chromHMM
- 4. find CpG islands

2 Simple example

1. Sample sequence data:

$$X$$
 A T G C G A C T G C A T A G C A C T T observed symbols
$$Y = \underbrace{\frac{E_1E_2E_3E_1E_2E_3E_1E_2E_3}{\text{Exon}}}_{\text{Exon}} \underbrace{\frac{I \ I \ I}{\text{Exon}}}_{\text{Exon}} \underbrace{\frac{E_1E_2E_3E_1E_2E_3}{\text{Exon}}}_{\text{Exon}}$$
 hidden states

- 2. Problem: find exon and intron in this sequence
- 3. Assumption: exon and intron have different probability of seeing a nucleotide
- 4. Hidden states in this example: $\{intron, exon\}$ more specifically: states= $\{E_1, E_2, E_3, I\}$, where E_1 is the first nucleotide in a codon, E_2 is the second nucleotide in a codon, E_3 is the third nucleotide in a codon, and I is a nucleotide in an intron.
- 5. Markov chain example (transition diagram, see Figure 1):
- 6. Five things we care about:
 - (a) observed sequence

Figure 1: Markov chain example

- (b) hidden state
- (c) transition probability
- (d) initial probability
- (e) emission probaility

7. Some notations:

X: observed symbols (ATCG in this example)

Y: hidden states $(E_1, E_2, E_3, I \text{ in this example})$

 Θ : Set of parameters, including:

- (a) Transition probability, $\{t_{ij}\}, i, j \in \{E_1, E_2, E_3, I\}$
- (b) Emission probability, $\{e(x_n|i)\}, n \in \{1, ..., L\}, i \in \{E_1, E_2, E_3, I\}$
- (c) Initial probability, $\{\pi_i\}, i \in \{E_1, E_2, E_3, I\}$

8. Question:

- (a) $p(X|\Theta)$?
- (b) What are the hidden states? $Y^* = \underset{Y}{\operatorname{argmax}} p(X|\Theta)$?
- (c) how to estimate Θ ?

Answers:

1. $p(X|\Theta)$?

 $p(X|\Theta) = \sum_{y} p(X, Y|\Theta)$. However, simple enumeration is not computationally feasible.

To solve this problem, we use forward algorithm:

$$\alpha(n,i) = p(x_1, x_2, \dots, x_n, y_n = i | \Theta)$$

$$= \sum_{k \in \{E_1, E_2, E_3, I\}} [\alpha(n-1, k)t(k, i)e(x_n | i)]$$

start:
$$\alpha(1,i) = \pi(i)$$

Finally,
$$p(X|\Theta) = \sum_{i \in \{E_1, E_2, E_3, I\}} \alpha(L, i)$$

The computational complexity of this algorithm is $O(L \cdot 4^2)$

2. What are the hidden states? $Y^* = \underset{V}{\operatorname{argmax}} p(X, Y|\Theta)$?

Here we use **Viterbi algorithm** - a dynamic programming algorithm for finding the most likely sequence of hidden states.

$$\Gamma(n,i) = \max_{y_1,...,y_{n-1}} P(X_1,...,X_n,y_1,...,y_{n-1},y_n = i|\Theta)$$

Recursively,

$$\Gamma(n,i) = \max_{k} [\Gamma(n-1,k)t(k,i)e(X_n|i)] \Rightarrow \max_{k} \Gamma(L,k) = \max_{y} P(X,y|\Theta)$$

Traceback:

$$y_L^* = \operatorname*{argmax}_k \Gamma(L,k), \, y_{L-1}^* = \operatorname*{argmax}_k \Gamma(L-1,k), \ldots$$

computation time $O(L \cdot 4^2)$

What if we are more interested in $\hat{y_n} = \underset{i}{\operatorname{argmax}} P(y_n = i | X, \Theta)$?

$$P(y_n = i | X, \Theta) = \frac{P(X_1, ..., X_L, y_n = i | \Theta)}{P(X_1, ..., X_L | \Theta)} = \frac{P(X_1, ..., X_n, y_n = i | \Theta)P(X_{n+1}, ..., X_L | y_n = i, \Theta)}{P(X | \Theta)}$$

Last time we defined $\alpha(n,i) = P(X_1,...,X_n,y_n=i|\Theta)$

Now,
$$\beta(n, i) \triangleq P(X_{n+1}, ..., X_L | y_n = i, \Theta)$$

Backward algorithm:

$$\beta(n,i) = \sum_{k} [\beta(n+1,k)e(X_{n+1}|k)t(i,k)]$$

$$= P(X_{n+2},...,X_{L}|y_{n+1} = k,\Theta)P(X_{n+1}|y_{n+1} = k,\Theta)P(y_{n+1} = k|y_{n} = i,\Theta)$$

$$= \sum_{k} P(X_{n+1},...,X_{L},y_{n+1} = k|y_{n} = i,\Theta)$$
(1)

What is $\beta(L-1,i)$?

$$\beta(L-1,i) = P(X_L|y_{L-1} = i,\Theta) = \sum_{\gamma \in \{A,T,C,G\}} P(X_{L-1} = \gamma, X_L|y_{L-1} = i,\Theta)$$

$$= \sum_{k \in \{E_1,E_2,E_3,E_4\}} \sum_{\gamma} e(X_{L-1} = \gamma|i) \cdot t(i,k) \cdot e(X_L|k)$$
(2)

Given $\alpha(n,i)$ and $\beta(n,i)$, we have

$$P(y_n = i | X, \Theta) = \frac{\alpha(n, i)\beta(n, i)}{\sum_k \alpha(n, k)\beta(n, k)} \Rightarrow \hat{y}_n = \operatorname*{argmax}_i \alpha(n, i)\beta(n, i)$$

This serves as a second way of finding hidden states (as opposed to Viterbi).

3. Estimate Θ - Training

We use Baum - Welch algorithm, which is similar to EM algorithm.

From the forward-backward algorithm: $P(y_n = i | X, \Theta^{(m)}) \Rightarrow \tilde{y}_n^{(m)}$

E-step, m-th iteration: $\tilde{y}_n^{(m)} = E[y_n|X,\Theta^{(m)}]$

M-step, $\Theta^{(m+1)} = \mathop{\rm argmax}_{\Theta} P(X, \tilde{y}_n^{(m)} | \Theta)$