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Basics of Information Theory
Lecturer: Jingyi Jessica Li Scribe: Austin Quach

This lecture is based on the tutorial paper titled Information theory in molecular biology [1].

1 Shannon’s entropy (an uncertainty measure)

Suppose X is a discrete random variable that takes N different values, then Shannon’s entropy H(X) for
X is defined as:

H(X) = −
N∑
i=1

Pi logPi (1)

Entropy itself only describes the uncertainty in this random variable or an event but it never means informa-
tion, e.g. if an observer is interested in a sequence of L nucleotides, then the number of possible sequences is
4L. Entropy describes the observer’s uncertainty about the true sequence. At Position 1, if the observer has
no prior knowledge then he/she would guess: PA = PT = PC = PG = 1

4 . Therefore, the entropy at Position
1 is:

H(X1) = −
∑

i∈{A,T,G,C}

1

4
log

1

4

base 2
= 2 (log2 relates H to the unit of information known as the bit) (2)

On the other hand, if the observer knows A is more likely to be at Position 1, then the entropy will be less
than 2.

There is also a book titled Elements of information theory [2] for those interested in learning more. This
book describes the entropy function as corresponding to the smallest number of yes/no questions necessary
on average to identify the state of random variable X (we need a minimum of 2 questions to determine
the nucleotide at Position 1). In other words, entropy can be viewed as the “[...] length of the shortest
description of X [...]”.

2 What is Information?

Information is defined as a relative quantity which measures the difference in entropy (uncertainty). For
example, we can consider the case where X and Y are two discrete random variables. We introduce the
joint entropy H(XY ) which measures the uncertainty about the joint distribution of X and Y , i.e. if X
takes M values and Y takes N values, then XY can take MN values. If X and Y are independent, then we
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can show that the joint entropy is simply a sum of the individual entropies of X and Y :

H(XY ) = −
M∑
i=1

N∑
j=1

Pij logPij

= −
M∑
i=1

N∑
j=1

piqj log (piqj)

= −(

M∑
i=1

N∑
j=1

piqj log pi +

M∑
i=1

N∑
j=1

piqj log qj)

= −
M∑
i=1

pi log pi −
N∑
j=1

qj log qj

= H(X) + H(Y )

(3)

Because of this the mutual information I is defined as:

I(X,Y ) = H(X) + H(Y )−H(XY ) (4)

In the case that that they are completely dependent, X = Y (M = N):

H(XY ) =

M∑
i=1

Pi logPi = H(X) (because Pij = Pi if j = 1 or Pij = 0 otherwise) (5)

We also have another definition called conditional entropy H(X|Y ) which measures the extent of reduction
in the uncertainty of X conditioned on Y :

H(X|Y ) = H(XY )−H(Y ) (6)

Substituting, we can express the mutual information as:

⇒ I(X,Y ) = H(X)−H(X|Y ) (7)

We can apply this concept in the context of biological sequences. The highest entropy we can have for DNA
at one position is 2. If we have prior knowledge that the sequence in a specific region is GC-rich, then the
entropy will be much less. In the study RNA secondary structure, researchers use the reduction in entropy
to guide them in finding the sequences that should bind together. The base entropy for protein sequences is
higher because there are 20 possible amino acids, i.e. log2 20 = 4.32 bits.

Also to recap on the mutual information coefficient (MIC), the MIC method estimates the mutual
information by drawing an m × n grid on a scatterplot of X and Y to transform X and Y into discrete
variables. Using these discretized variables and a normalization factor we can find:

MIC =
I(X,Y )

log min (m,n)
(8)

There is some dispute of the utility of MIC as the normalization term in the denominator is thought to be
a source of bias and it has been shown to be no better than the mutual information itself. Additionally the
method uses heuristic methods to discretize the variables which also imposes biases.
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