StatsM254 Statistical Methods in Computational Biology Lecture 2 - 04/03/2014

Gene Expression Analysis

Lecturer: Jingyi Jessica Li

Scribe: Sepideh Mazrouee

1 Introduction: Gene selection by comparative analysis

Table 1: Expression data matrix							
Condition	1	2	3		Ν		
Gene1	X_{11}	X_{12}	X_{13}		X_{1N}		
Gene2	X_{21}	X_{22}	X_{23}		X_{2N}		
•	•	•	•		•		
•	•		•	•••	•		
	•						
GeneM	X_{M1}	X_{M2}	X_{M3}		X_{MN}		

To identify genes that are differentially expressed between 2 expressional conditions (summarized in Table 2)

Table 2: Two sample comparison						
Replicates Gene Gene	$\frac{1}{2}$	Condition 1 $1, 2, \cdots, n_1$	Condition 2 $1, 2, \cdots, n_2$			
Gene	$\frac{1}{M}$					

Hypothesis test for gene m (m = 1, ..., M)

 $\begin{aligned} H_0: \mu_{m1} &= \mu_{m2} \\ H_1: \mu_{m1} &\neq \mu_{m2} \end{aligned} \tag{True expression of gene m in condition1)}$

Note: we need to use the above data points to test this hypothesis

Generally, ignore the gene index m. Observe expression values:

 x_1, \ldots, x_{n1} (from condition1) y_1, \ldots, y_{n2} (from condition2)

1.1 *t* **test:**

to test this hypothesis we can do "t test". The underlying assumptions are as below: iid

$$X_1, \dots, X_{n1} \stackrel{int}{\sim} \mathcal{N}(\mu_1, \sigma^2)$$
$$Y_1, \dots, Y_{n2} \stackrel{iid}{\sim} \mathcal{N}(\mu_2, \sigma^2)$$

(this is considered as an extreme case)

Define:

$$\bar{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$$
, $\bar{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$ Sample Mean (1)

$$S_X^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} \left(X_i - \bar{X} \right)^2 \qquad , \qquad S_Y^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \quad \text{Sample Variance}$$
(2)

$$S_P^2 = \frac{(n_1 - 1)S_X^2 - (n_2 - 1)S_Y^2}{n_1 + n_2 - 2}$$
 Pooled Sample Variance (3)

T statistic:

$$T = \frac{X - Y}{S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2} \qquad \text{if } H_0 \text{ is true}$$
(4)

Given data, we can calculate the observed value of T statistic:

$$t = \frac{\bar{x} - \bar{y}}{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \tag{5}$$

Figure 1 shows the distribution of t test which looks close to a Normal distribution:

Figure 1: t test Distribution We first assume it's true and then compare our observation with the distribution. We reject Null Hypothesis at the significance level α (let's say 0.05).

To summarize:

- If P-value $\leq \alpha$: reject Null Hypothesis \Rightarrow genes are differentially expressed
- If P-value > α : accept Null Hypothesis \Rightarrow genes are NOT differentially expressed

1.2*F*-test:

we can also do F-test with the Null hypothesis as the gene expressions have the same mean but different variance under the two conditions (which is considered as another extreme case)

 $H_0: \sigma_1{}^2 = \sigma_2{}^2$

$$H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$$

$$X_{1}, \dots, X_{n1} \sim N(\mu, \sigma_{1}^{2})$$

$$Y_{1}, \dots, Y_{n2} \sim N(\mu, \sigma_{2}^{2})$$

$$S_{X}^{2} = \frac{1}{n_{1} - 1} \sum_{i=1}^{n_{1}} \left(X_{i} - \bar{X} \right)^{2} , \qquad S_{Y}^{2} = \frac{1}{n_{2} - 1} \sum_{i=1}^{n_{2}} (Y_{i} - \bar{Y})^{2}$$
(6)

F-Statistic:

$$F = \frac{S_X^2}{S_Y^2} \sim F_{n_1 - 1, n_2 - 1} \qquad \text{if } H_0 \text{ is true}$$
(7)

Let f be the observed value of the F-Statistic. Assuming the null hypothesis is true.

Figure 2: F distribution - two-sided H_1 : $\sigma_1^2 \neq \sigma_2^2$ (two-sided test)

Based on different assumptions, we might test one sided as well. Then the alternative hypothesis would change to

 $H_1: \sigma_1^2 < \sigma_2^2$ (one-sided test)

Note: the second one uses the same data as first one. The only difference is the alternative hypothesis.

1.3 Permutation test:

The two previous cases were both extreme cases. Let's look at a more general case in which we do permutation. Advantages of permutation test could be listed as:

- 1. Distribution free: it does not apply specific distribution on the data.
- 2. No need to find the probabilistic distribution of the test statistic.

Let say for previous example if we did not have Normal distribution for data X and Y, we sould not be able to apply t test or F test for them.

Figure 3: F distribution - one-sided

Procedure: two groups of iid random variables (gene expression values)

 X_1, \ldots, X_{n1} $Y_1, ..., Y_{n2}$

 H_0 : distributions of X and Y are the same

 H_1 : the distributions of X and Y are the different

So if null hypothesis is true, then $X_1, \ldots, X_{n1}, Y_1, \ldots, Y_{n2} \stackrel{iid}{\sim}$ common distribution. Then we have $Q = \binom{n_1+n_2}{n_1}$ possible ways to group $X_1, \ldots, X_{n1}, Y_1, \ldots, Y_{n2}$ into two groups (each of such groupings is a permutation).

Assumption: All the Q permutations have the same probability (iid) if H_0 is true.

If we care about the mean difference, we can still use t statistic:

$$T = \frac{\bar{X} - \bar{Y}}{S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
(8)

In each permutation say m compute the value of $t_m : (m = 1, ..., Q) \Rightarrow$ Empirical distribution of $t_1, ..., t_Q$ is as below

Example: $t_{obs} = \frac{\bar{x} - \bar{\mu}}{\frac{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}} = 3$ $n_1 = n_2 = 5 \text{ (5 replicates in each condition)}$ $Q = \binom{10}{5} = 252 \implies$ we can compute t_1, \dots, t_{252}

If at significance level $\alpha = 0.05$ then $252 * 0.05 \approx 13$. Then if we sort them ascending order we can fing the rejection region:

Approximation: if $\binom{n_1+n_2}{n_1} = Q$ is too large; Draw N (e.g. N=1000) random permutations to compute the p-value.

 t_{252}

2 Shrinkage estimator of variance

Back to the 2-sample *t*-test setting. Given gene g, (g = 1, ..., M)

$$X_{g_1}, \dots, X_{g_n} \stackrel{iid}{\sim} N(\mu_{g_1}, \sigma_g^2)$$
$$Y_{g_1}, \dots, Y_{g_m} \stackrel{iid}{\sim} N(\mu_{g_2}, \sigma_g^2)$$

Often n + m is small, but M is big (small number of reps, but many genes)

Pooled sample variance

$$S_g^2 = \frac{1}{m+n-2} \left(\sum_{i=1}^n \left(X_{g_i} - \bar{X}_g \right)^2 + \sum_{j=1}^m \left(Y_{g_i} - \bar{Y}_g \right)^2 \right) \quad unstable \tag{9}$$

$$t_g = \frac{\bar{X}_g - \bar{Y}_g}{\sqrt{(\frac{1}{n} + \frac{1}{m})S_g^2}} \qquad unstable \ too \tag{10}$$

We will use hierarchical modeling for $\sigma_g^2,\,(g=1,\ldots,M)$ (to help stabilize $S_g^2)$

2.1 Bayesian statistics: a prior for σ_g^2

we know that $\frac{(m+n-2)S_g^2}{\sigma_g^2} \sim \chi_{m+n-2}^2$ (*) An conjugate prior for χ^2 is inverse- χ^2 prior of σ_g^2 : $(g = 1, \dots, M)$: $Inv - \chi^2(v, s_0^2)$ (**) from (*): Let d = m + n - 2density: $\rightarrow p(S_g^2 | \sigma_g^2) \propto (\sigma_g^2)^{\frac{-d}{2}} e^{\frac{-dS_g^2}{2\sigma_g^2}}$ $\text{From}(^{**}) \rightarrow \text{prior: } \pi_{(\sigma_g^2|v,s_0^2)} \propto (\sigma^2)^{\frac{-v}{2}-1} e^{\frac{-vs_0^2}{2\sigma_g^2}}$

By Bayes theoreom:

$$\begin{split} \text{Posterior: } p(\sigma_g^2 | S_g^2, v, s_0^2) &\propto p(S_g^2 | \sigma_g^2) \pi(\sigma_g^2 | v, s_0^2) \propto (\sigma_g^2)^{-(\frac{v+d}{2}+1)} \exp[-\frac{v s_0^2 + d S_g^2}{2\sigma_g^2}] \\ &\sigma_g^2 | S_g^2 \sim Inv - \chi^2 \left(v + d, \frac{v S_0^2 + d s_g^2}{v+d}\right) \\ &\Rightarrow \hat{\sigma}_g^2 = E[\sigma_g^2 | S_g^2] = \frac{1}{v+d-2} (v s_0^2 + d S_g^2) \\ \text{Choose } v \gg d \Rightarrow \frac{v S_0^2 + d S_g^2}{v+d} \end{split}$$

Given a pre-specified prior parameter v, we can find the prior parameter s_0^2 by maximizing the joint density $\prod_{g=1}^{M} p(S_g^2|v, s_0^2) = \prod_{g=1}^{M} \int p(S_g^2, \sigma_g^2|v, s_0^2) d\sigma_g^2 = \prod_{g=1}^{M} \int p(S_g^2|\sigma_g^2) \pi(\sigma_g^2|v, s_0^2) d\sigma_g^2$

Then we replace S_g^2 by $\hat{\sigma}_g^2$ in the t statistic