StatsM254 Statistical Methods in Computational Biology	Lecture 2-04/03/2014
Gene Expression Analysis	
Lecturer: Jingyi Jessica Li	Scribe: Sepideh Mazrouee

1 Introduction: Gene selection by comparative analysis

Table 1: Expression data matrix

Condition	1	2	3	\cdots	N
Gene1	X_{11}	X_{12}	X_{13}	\ldots	$X_{1 N}$
Gene2	X_{21}	X_{22}	X_{23}	\ldots	$X_{2 N}$
\cdot	\cdot	\cdot	\cdot	\cdots	\cdot
\cdot	\cdot	\cdot	\cdot	\cdots	\cdot
.	\cdot	\cdot	\cdot	\cdots	\cdot
GeneM	$X_{M 1}$	$X_{M 2}$	$X_{M 3}$	\cdots	$X_{M N}$

To identify genes that are differentially expressed between 2 expressional conditions (summarized in Table 2)

Table 2: Two sample comparison

		Condition 1	Condition 2
Replicates		$1,2, \cdots, n_{1}$	$1,2, \cdots, n_{2}$
Gene	1		
Gene	2		
	\vdots		
Gene	M		

Hypothesis test for gene $m(m=1, \ldots, M)$
$H_{0}: \mu_{m 1}=\mu_{m 2} \quad$ (True expression of gene m in condition1)
$H_{1}: \mu_{m 1} \neq \mu_{m 2}$
Note: we need to use the above data points to test this hypothesis
Generally, ignore the gene index m. Observe expression values:

$$
\begin{aligned}
& x_{1}, \ldots, x_{n 1} \quad \text { (from condition1) } \\
& y_{1}, \ldots, y_{n 2} \quad \text { (from condition2) }
\end{aligned}
$$

$1.1 \quad t$ test:

to test this hypothesis we can do " t test". The underlying assumptions are as below:
$X_{1}, \ldots, X_{n 1} \stackrel{i i d}{\sim} \mathrm{~N}\left(\mu_{1}, \sigma^{2}\right)$
$Y_{1}, \ldots, Y_{n 2} \stackrel{i i d}{\sim} \mathrm{~N}\left(\mu_{2}, \sigma^{2}\right)$
(this is considered as an extreme case)

Define:

$$
\begin{gather*}
\bar{X}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} X_{i} \quad, \quad \bar{Y}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} Y_{i} \quad \text { Sample Mean } \tag{1}\\
S_{X}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(X_{i}-\bar{X}\right)^{2} \quad, \quad S_{Y}^{2}=\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(Y_{i}-\bar{Y}\right)^{2} \quad \text { Sample Variance } \tag{2}\\
S_{P}^{2}=\frac{\left(n_{1}-1\right) S_{X}^{2}-\left(n_{2}-1\right) S_{Y}^{2}}{n_{1}+n_{2}-2} \quad \text { Pooled Sample Variance } \tag{3}
\end{gather*}
$$

T statistic:

$$
\begin{equation*}
T=\frac{\bar{X}-\bar{Y}}{S_{P} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2}-2} \quad \text { if } H_{0} \text { is true } \tag{4}
\end{equation*}
$$

Given data, we can calculate the observed value of T statistic:

$$
\begin{equation*}
t=\frac{\bar{x}-\bar{y}}{s_{P} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \tag{5}
\end{equation*}
$$

Figure1 shows the distribution of t test which looks close to a Normal distribution:

Figure 1: t test Distribution
We first assume it's true and then compare our observation with the distribution. We reject Null Hypothesis at the significance level α (let's say 0.05).

To summarize:

- If P-value $\leq \alpha$: reject Null Hypothesis \Rightarrow genes are differentially expressed
- If P-value $>\alpha$: accept Null Hypothesis \Rightarrow genes are NOT differentially expressed

1.2 F-test:

we can also do F-test with the Null hypothesis as the gene expressions have the same mean but different variance under the two conditions (which is considered as another extreme case)
$H_{0}: \quad \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$
$H_{1}: \sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2}$

$$
X_{1}, \ldots, X_{n 1} \sim N\left(\mu, \sigma_{1}^{2}\right)
$$

$$
Y_{1}, \ldots, Y_{n 2} \sim N\left(\mu, \sigma_{2}^{2}\right)
$$

$$
\begin{equation*}
S_{X}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(X_{i}-\bar{X}\right)^{2} \quad, \quad S_{Y}^{2}=\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(Y_{i}-\bar{Y}\right)^{2} \tag{6}
\end{equation*}
$$

F-Statistic:

$$
\begin{equation*}
F=\frac{S_{X}^{2}}{S_{Y}^{2}} \sim F_{n_{1}-1, n_{2}-1} \quad \text { if } H_{0} \text { is true } \tag{7}
\end{equation*}
$$

Let f be the observed value of the F-Statistic. Assuming the null hypothesis is true.

Figure 2: F distribution - two-sided

$$
H_{1}: \sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2} \quad \text { (two-sided test) }
$$

Based on different assumptions, we might test one sided as well. Then the alternative hypothesis would change to

$$
H_{1}: \sigma_{1}{ }^{2}<\sigma_{2}^{2} \quad \text { (one-sided test) }
$$

Note: the second one uses the same data as first one. The only difference is the alternative hypothesis.

1.3 Permutation test:

The two previous cases were both extreme cases. Let's look at a more general case in which we do permutation. Advantages of permutation test could be listes as:

1. Distribution free: it does not apply specific distribution on the data.
2. No need to find the probabilistic distribution of the test statistic.

Let say for previous example if we did not have Normal distribution for data X and Y, we sould not be able to apply t test or F test for them.

Figure 3: F distribution - one-sided

Procedure: two groups of iid random variables (gene expression values)

$$
\begin{aligned}
& X_{1}, \ldots, X_{n 1} \\
& Y_{1}, \ldots, Y_{n 2}
\end{aligned}
$$

H_{0} : distributions of X and Y are the same
H_{1} : the distributions of X and Y are the different
So if null hypothesis is true, then $X_{1}, \ldots, X_{n 1}, Y_{1}, \ldots, Y_{n 2} \stackrel{i i d}{\sim}$ common distribution. Then we have $Q=$ $\binom{n_{1}+n_{2}}{n_{1}}$ possible ways to group $X_{1}, \ldots, X_{n 1}, Y_{1}, \ldots, Y_{n 2}$ into two groups (each of such groupings is a permutation).

Assumption: All the Q permutations have the same probability (iid) if H_{0} is true.
If we care about the mean difference, we can still use t statistic:

$$
\begin{equation*}
T=\frac{\bar{X}-\bar{Y}}{S_{P} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \tag{8}
\end{equation*}
$$

In each permutation say m compute the value of $t_{m}:(m=1, \ldots, Q) \Rightarrow$ Empirical distributiom of t_{1}, \ldots, t_{Q} is as below
Example: $t_{\text {obs }}=\frac{\bar{x}-\bar{\mu}}{s_{P} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=3$
$n_{1}=n_{2}=5$ (5 replicates in each condition)
$Q=\binom{10}{5}=252 \Rightarrow$ we can compute t_{1}, \ldots, t_{252}
If at significance level $\alpha=0.05$ then $252 * 0.05 \cong 13$. Then if we sort them ascending order we can fing the rejection region:
Approximation: if $\binom{n_{1}+n_{2}}{n_{1}}=Q$ is too large;
Draw N (e.g. $\mathrm{N}=1000$) random permutations to compute the p-value .

Figure 4: Histogram of t_{1}, \ldots, t_{q}
Table 3: t observations t_{1} -
t_{252}

2 Shrinkage estimator of variance

Back to the 2-sample t-test setting. Given gene $g,(g=1, \ldots, M)$

$$
\begin{aligned}
& X_{g_{1}}, \ldots, X_{g_{n}} \stackrel{i i d}{\sim} N\left(\mu_{g_{1}}, \sigma_{g}^{2}\right) \\
& Y_{g_{1}}, \ldots, Y_{g_{m}} \stackrel{i i d}{\sim} N\left(\mu_{g_{2}}, \sigma_{g}^{2}\right)
\end{aligned}
$$

Often $n+m$ is small, but M is big (small number of reps, but many genes)
Pooled sample variance

$$
\begin{gather*}
S_{g}^{2}=\frac{1}{m+n-2}\left(\sum_{i=1}^{n}\left(X_{g_{i}}-\bar{X}_{g}\right)^{2}+\sum_{j=1}^{m}\left(Y_{g_{i}}-\bar{Y}_{g}\right)^{2}\right) \text { unstable } \tag{9}\\
t_{g}=\frac{\bar{X}_{g}-\bar{Y}_{g}}{\sqrt{\left(\frac{1}{n}+\frac{1}{m}\right) S_{g}^{2}}} \quad \text { unstable too } \tag{10}
\end{gather*}
$$

We will use hierarchical modeling for $\sigma_{g}^{2},(g=1, \ldots, M)$ (to help stabilize S_{g}^{2})

2.1 Bayesian statistics: a prior for σ_{g}^{2}

we know that $\frac{(m+n-2) S_{g}^{2}}{\sigma_{g}^{2}} \sim \chi_{m+n-2}^{2}\left(^{*}\right)$
An conjugate prior for χ^{2} is inverse- χ^{2}
prior of $\sigma_{g}^{2}:(g=1, \ldots, M): I n v-\chi^{2}\left(v, s_{0}^{2}\right)\left({ }^{* *}\right)$
from $\left(^{*}\right)$: Let $d=m+n-2$
density: $\rightarrow p\left(S_{g}^{2} \mid \sigma_{g}^{2}\right) \propto\left(\sigma_{g}^{2}\right)^{\frac{-d}{2}} e^{\frac{-d S_{g}^{2}}{2 \sigma_{g}^{2}}}$
$\operatorname{From}(* *) \rightarrow$ prior: $\left.\pi_{(} \sigma_{g}^{2} \mid v, s_{0}^{2}\right) \propto\left(\sigma^{2}\right)^{\frac{-v}{2}-1} e^{\frac{-v s_{0}^{2}}{2 \sigma_{g}^{2}}}$
By Bayes theoreom:
Posterior: $p\left(\sigma_{g}^{2} \mid S_{g}^{2}, v, s_{0}^{2}\right) \propto p\left(S_{g}^{2} \mid \sigma_{g}^{2}\right) \pi\left(\sigma_{g}^{2} \mid v, s_{0}^{2}\right) \propto\left(\sigma_{g}^{2}\right)^{-\left(\frac{v+d}{2}+1\right)} \exp \left[-\frac{v s_{0}^{2}+d S_{g}^{2}}{2 \sigma_{g}^{2}}\right]$

$$
\begin{aligned}
& \sigma_{g}^{2} \left\lvert\, S_{g}^{2} \sim I n v-\chi^{2}\left(v+d, \frac{v S_{0}^{2}+d s_{g}^{2}}{v+d}\right)\right. \\
& \Rightarrow \hat{\sigma}_{g}^{2}=E\left[\sigma_{g}^{2} \mid S_{g}^{2}\right]=\frac{1}{v+d-2}\left(v s_{0}^{2}+d S_{g}^{2}\right)
\end{aligned}
$$

Choose $v \gg d \Rightarrow \frac{v S_{0}^{2}+d S_{g}^{2}}{v+d}$
Given a pre-specified prior parameter v, we can find the prior parameter s_{0}^{2} by maximizing the joint density $\prod_{g=1}^{M} p\left(S_{g}^{2} \mid v, s_{0}^{2}\right)=\prod_{g=1}^{M} \int p\left(S_{g}^{2}, \sigma_{g}^{2} \mid v, s_{0}^{2}\right) d \sigma_{g}^{2}=\prod_{g=1}^{M} \int p\left(S_{g}^{2} \mid \sigma_{g}^{2}\right) \pi\left(\sigma_{g}^{2} \mid v, s_{0}^{2}\right) d \sigma_{g}^{2}$

Then we replace S_{g}^{2} by $\hat{\sigma}_{g}^{2}$ in the t statistic

