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Gene Expression Analysis
Lecturer: Jingyi Jessica Li Scribe: Sepideh Mazrouee

1 Introduction: Gene selection by comparative analysis

Table 1: Expression data matrix

Condition 1 2 3 . . . N
Gene1 X11 X12 X13 . . . X1N

Gene2 X21 X22 X23 . . . X2N

. . . . . . . .

. . . . . . . .

. . . . . . . .
GeneM XM1 XM2 XM3 . . . XMN

To identify genes that are differentially expressed between 2 expressional conditions (summarized in Table
2)

Table 2: Two sample comparison

Condition 1 Condition 2
Replicates 1, 2, · · · , n1 1, 2, · · · , n2

Gene 1
Gene 2

...
Gene M

Hypothesis test for gene m (m = 1, . . . ,M)
H0 : µm1 = µm2 (True expression of gene m in condition1)
H1 : µm1 6= µm2

Note: we need to use the above data points to test this hypothesis

Generally, ignore the gene index m. Observe expression values:
x1, . . . , xn1 (from condition1)
y1, . . . , yn2 (from condition2)

1.1 t test:

to test this hypothesis we can do “t test”. The underlying assumptions are as below:

X1, . . . , Xn1
iid∼ N(µ1,σ2)

Y1, . . . , Yn2
iid∼ N(µ2,σ2)

(this is considered as an extreme case)
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Define:

X̄ =
1

n1

n1∑
i=1

Xi , Ȳ =
1

n2

n2∑
i=1

Yi Sample Mean (1)

S2
X =

1

n1 − 1

n1∑
i=1

(
Xi − X̄

)2
, S2

Y =
1

n2 − 1

n2∑
i=1

(Yi − Ȳ )2 Sample Variance (2)

S2
P =

(n1 − 1)S2
X − (n2 − 1)S2

Y

n1 + n2 − 2
Pooled Sample Variance (3)

T statistic:

T =
X̄ − Ȳ

SP

√
1
n1

+ 1
n2

∼ tn1+n2−2 if H0 is true (4)

Given data, we can calculate the observed value of T statistic:

t =
x̄− ȳ

sP

√
1
n1

+ 1
n2

(5)

Figure1 shows the distribution of t test which looks close to a Normal distribution:

௡భା௡మିଶݐ
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P-value

Figure 1: t test Distribution
We first assume it’s true and then compare our observation with the distribution. We reject Null Hypothesis
at the significance level α (let’s say 0.05).

To summarize:

• If P-value≤ α: reject Null Hypothesis ⇒ genes are differentially expressed

• If P-value> α: accept Null Hypothesis ⇒ genes are NOT differentially expressed

1.2 F -test:

we can also do F -test with the Null hypothesis as the gene expressions have the same mean but different
variance under the two conditions (which is considered as another extreme case)

H0: σ1
2 = σ2

2
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H1: σ1
2 6= σ2

2

X1, . . . , Xn1 ∼ N(µ, σ2
1)

Y1, . . . , Yn2 ∼ N(µ, σ2
2)

S2
X =

1

n1 − 1

n1∑
i=1

(
Xi − X̄

)2
, S2

Y =
1

n2 − 1

n2∑
i=1

(Yi − Ȳ )2 (6)

F -Statistic:

F =
S2
X

S2
Y

∼ Fn1−1,n2−1 if H0 is true (7)

Let f be the observed value of the F -Statistic. Assuming the null hypothesis is true.

f 1/f

௡భିଵ,௡మିଵܨ

P‐values

Figure 2: F distribution - two-sided
H1: σ1

2 6= σ2
2 (two-sided test)

Based on different assumptions, we might test one sided as well. Then the alternative hypothesis would
change to

H1: σ1
2 < σ2

2 (one-sided test)

Note: the second one uses the same data as first one. The only difference is the alternative hypothesis.

1.3 Permutation test:

The two previous cases were both extreme cases. Let’s look at a more general case in which we do permu-
tation. Advantages of permutation test could be listes as:

1. Distribution free: it does not apply specific distribution on the data.

2. No need to find the probabilistic distribution of the test statistic.

Let say for previous example if we did not have Normal distribution for data X and Y , we sould not be able
to apply t test or F test for them.
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P‐value

Figure 3: F distribution - one-sided

Procedure: two groups of iid random variables (gene expression values)
X1, . . . , Xn1

Y1, . . . , Yn2

H0: distributions of X and Y are the same
H1: the distributions of X and Y are the different

So if null hypothesis is true, then X1, . . . , Xn1, Y1, . . . , Yn2
iid∼ common distribution. Then we have Q =(

n1+n2

n1

)
possible ways to group X1, . . . , Xn1, Y1, . . . , Yn2 into two groups (each of such groupings is a per-

mutation).

Assumption: All the Q permutations have the same probability (iid) if H0 is true.

If we care about the mean difference, we can still use t statistic:

T =
X̄ − Ȳ

SP

√
1
n1

+ 1
n2

(8)

In each permutation say m compute the value of tm : (m = 1, . . . , Q) ⇒ Empirical distributiom of t1, . . . , tQ
is as below
Example: tobs = x̄−µ̄

sP
√

1
n1

+ 1
n2

= 3

n1 = n2 = 5 (5 replicates in each condition)

Q =
(

10
5

)
= 252 ⇒ we can compute t1, . . . , t252

If at significance level α = 0.05 then 252 ∗ 0.05 ∼= 13. Then if we sort them ascending order we can fing
the rejection region:
Approximation: if

(
n1+n2

n1

)
= Q is too large;

Draw N (e.g. N=1000) random permutations to compute the p-value .
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Figure 4: Histogram of t1, ..., tq

Table 3: t observations
t1
.
.
.

t252

2 Shrinkage estimator of variance

Back to the 2-sample t-test setting. Given gene g, (g = 1, . . . ,M)

Xg1 , . . . , Xgn
iid∼ N(µg1 , σ

2
g)

Yg1 , . . . , Ygm
iid∼ N(µg2 , σ

2
g)

Often n+m is small, but M is big (small number of reps, but many genes)

Pooled sample variance

S2
g =

1

m+ n− 2

 n∑
i=1

(Xgi − X̄g)
2 +

m∑
j=1

(Ygi − Ȳg)2

 unstable (9)

tg =
X̄g − Ȳg√
( 1
n + 1

m )S2
g

unstable too (10)

We will use hierarchical modeling for σ2
g , (g = 1, . . . ,M) (to help stabilize S2

g)

2.1 Bayesian statistics: a prior for σ2
g

we know that
(m+n−2)S2

g

σ2
g

∼ χ2
m+n−2 (*)

An conjugate prior for χ2 is inverse-χ2

prior of σ2
g : (g = 1, . . . ,M) : Inv − χ2(v, s2

0) (**)

from (*): Let d = m+ n− 2

density: → p(S2
g |σ2

g) ∝ (σ2
g)

−d
2 e

−dS2
g

2σ2g
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From(**)→ prior: π(σ
2
g |v, s2

0) ∝ (σ2)
−v
2 −1e

−vs20
2σ2g

By Bayes theoreom:

Posterior: p(σ2
g |S2

g , v, s
2
0) ∝ p(S2

g |σ2
g)π(σ2

g |v, s2
0) ∝ (σ2

g)−( v+d2 +1) exp[−vs
2
0+dS2

g

2σ2
g

]

σ2
g |S2

g ∼ Inv − χ2
(
v + d,

vS2
0+ds2g
v+d

)
⇒ σ̂2

g = E[σ2
g |S2

g ] = 1
v+d−2 (vs2

0 + dS2
g)

Choose v � d ⇒ vS2
0+dS2

g

v+d

Given a pre-specified prior parameter v, we can find the prior parameter s2
0 by maximizing the joint density∏M

g=1 p(S
2
g |v, s2

0) =
∏M
g=1

∫
p(S2

g , σ
2
g |v, s2

0)dσ2
g =

∏M
g=1

∫
p(S2

g |σ2
g)π(σ2

g |v, s2
0)dσ2

g

Then we replace S2
g by σ̂2

g in the t statistic
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