StatsM254 Statistical Methods in Computational Biology	Lecture 3 - $04/08/2014$		
Multiple Testing Issues & K-Means Clustering			
Lecturer: Jingyi Jessica Li	Scribe: Arturo Ramirez		

Multiple Testing Issues

When trying to find differentially expressed genes, we're performing a test on each gene. If we have genes 1, 2, ...m, we're performing m tests.

Table 1: Decision matrix				
Decisions	Accept H_0	Reject H_0	Total	
True H_0	U	V	m_0	
False H_0	T	S	$m - m_0$	
Total	m-R	R	\overline{m}	

R is the total number of differentially expressed genes we called through the m tests. U is the number of true negatives. T is the number of false negatives (type II error). V is the number of false positives (type I error). S is the number of true positives.

Definitions related to the significance level (or type I error) of multiple tests

1: PCER

Per Comparison Error Rate (PCER) = $\frac{E[V]}{m}$

2: FWER

Family Wise Error Rate (FWER) = $P(V \ge 1)$

3: FDR

False Discovery Rate (FDR)

$$FDR = \begin{cases} E[\frac{V}{R}] \\ 0, & \text{if } R = V = 0 \end{cases}$$

PCER

Suppose we test each of the *m* hypotheses at significance level α , then

$$\Rightarrow P(\text{reject } H_0^{(i)} | H_0^{(i)} \text{ is true}) = \alpha, i = 1, 2...m$$

PCER =
$$\frac{\mathrm{E}[V]}{m} = \frac{\sum_{i=1}^{m} P(\text{reject } H_0^{(i)} \text{ and } H_0^{(i)} \text{ is true})}{m}$$

$$=\frac{\sum_{i=1}^{m} P(\text{reject } H_0^{(i)} | H_0^{(i)} \text{ is true}) P(H_0^{(i)} \text{ is true})}{m}$$
(1)

We know $P(H_0^{(i)} \text{ is true}) \in [0, 1]$, so

$$(1) \leq \frac{\sum_{i=1}^{m} P(\text{reject } H_0^{(i)} | H_0^{(i)} \text{ is true})}{m} = \frac{m \times \alpha}{m} = \alpha$$

Thus, PCER is bounded by α

FWER

 $FWER = P(V \ge 1) = P(\text{Reject at least one } H_0) = P(\bigcup_{i=1}^m \{\text{reject } H_0^{(i)}\}) \le \sum_{i=1}^m P(\text{reject } H_0^{(i)}) \le m \times \alpha$

 $m\times\alpha$ is a bad upper bound because it can take values that don't make sense (e.g. $m=100,\alpha=0.05$), but it can still give us useful information.

 \Rightarrow If we reduce the significance level of each test to $\frac{\alpha}{m}$ the FWER $\leq \alpha$

This is called the **Bonferroni Correction**

e.g. Suppose you have 1,000 genes and you want the FWER to be ≤ 0.05 . Then you call the gene differentially expressed only if its p-value $\leq \frac{0.05}{1000}$

This correction is very stringent. You could miss true differentially expressed genes.

 \Rightarrow May result in the discovery of too few genes. What do we do?

Comment : If all $H_0^{(i)}$ are true and have level α , $\mathbf{V} \sim Bin(m, \alpha)$

FDR (Benjamini and Hochberg, 1995)

goal: control FDR = $E[\frac{V}{R}] \le \alpha$

procedure: consider testing $H_0^{(i)}, ..., H_0^{(m)}$ based on p-values $p_1, ..., p_m$.

Let's order the p-values as $p_{(1)} \leq p_{(2)} \leq ... \leq p_{(m)}$ and their corresponding H_0 's as $[H_{(1)}, H_{(2)}, ..., H_{(m)}]$

Let k be the largest i such that $p_{(i)} \leq \frac{i}{m} \times \alpha$.

Then we reject all $H_{(i)}$ for which $i \leq k$

In this example $\alpha = 0.2$ and m = 7. Here the red line is at $h = \alpha$ and the black line increases at $b = \frac{\alpha}{m}$

Intuition: Reject all p-values below the black line

Here you compare the i^{th} p-value to $\frac{i}{m}\times\alpha$ to make a decision \Rightarrow loose

In Bonferroni you compare every p-value to $\frac{\alpha}{m}$ to make a decision \Rightarrow stringent

Why does this procedure work?

If all H_0 are true, then $E[V] = m \times p_{(k)} \Leftarrow$ actual significance level of each test

$$p_i = i^{th}$$
 p-value $= P(\text{reject } H_0^{(i)} | H_0^{(i)} \text{ is true})$

Here R = k(we decide) $\Rightarrow \mathbb{E}[\frac{V}{R}] = \frac{m \times p_{(k)}}{k} \le \frac{m}{k} \frac{k}{m} \times \alpha = \alpha$

Example: Account for correlation between genes

Table 2: Expression Value matrix				
Gene	Condition 1	Condition 2	Test Statistic	
	$1-c_1$ values	$1-c_2$ values	$ S_{(1)} $	
	\dots 1- c_1 values	\dots 1- c_2 values	$ S_{(m)} $	

We've got expression values for each gene where condition 1 has c_1 replicates and condition 2 has c_2 replicates. These $c_1 + c_2$ expression values are used to calculate a test statistic $|S_i|$ for each gene (e.g. a t-statistic - the larger the value, the more likely gene *i* is differentially expressed). These $|S_i|$'s are then ordered from greatest to smallest in the data matrix.

 \Rightarrow We then permute the expression values for each gene across the conditions (i.e., permute the columns of the Expression Value Matrix) for a total of N times, each resulting in a permuted data matrix.

We want to define a c such that the genes with $|S_i|$ below c is called "non differentially expressed" and the genes with $|S_i|$ above c is called "differentially expressed".

Using a decision rule $|S_i| > c$ we find a total of R genes to be differentially expressed.

Question: What is the FDR?

In permutation j, define V_j as the number of genes with $|S_i|$ statistic > c

Estimate FDR as

$$\Rightarrow \frac{\frac{1}{N} \sum_{i=1}^{N} V_j}{R}$$

Clustering Algorithms

1: K-Means

n genes, each with an expression vector $\in \mathbb{R}^p$ (p samples)

 $X_1, X_2, \ldots, X_n \in \mathbb{R}^p \Rightarrow$ assign them in to k clusters. The class label of X_i is C(i) and m_k is the cluster center for the k^{th} cluster.

Objective Function (goal):

We want to minimize the total within cluster distance

$$\sum_{k=1}^{K} \sum_{C(i)=k} ||X_i - m_k||^2$$

$$\Rightarrow \left(\{m_k^*\}_{k=1}^K, \{C(i)^*\}_{i=1}^n\right)$$

$$\left(\{m_k^*\}_{k=1}^K, \{C(i)^*\}_{i=1}^n\right) = \operatorname*{argmin}_{\{m_k\}_{k=1}^K, \{C(i)\}_{i=1}^n} \sum_{k=1}^K \sum_{C(i)=k} ||X_i - m_k||^2$$

Algorithm:

1)

For a given cluster assignment C, minmize the total within cluster distance with respect to $\{m_k\}_{k=1}^K$

$$m_k^* = \underset{m_k}{\operatorname{argmin}} \sum_{C(i)=k} ||X_i - m_k||^2$$

If $||X_i - m_k||^2 = (X_i - m_k)^2 \Rightarrow m_k^* = \frac{1}{n_k} \sum_{C(i)=k} X_i$

2)

Given the cluster centers $\{m_k\}_{k=1}^K$, minimize the total within cluster distance with regard to the cluster assignment.

e.g. 2-Dimensions. Given cluster centers 1,2,3,4, these cluster assignments would minimize within cluster distance for each cluster.

$$C(i)^* = \underset{1 \le k \le K}{\operatorname{argmin}} ||X_i - m_k||^2$$

Procedure

1) Find the optimal cluster centers given a cluster assignment; 2) Find the optimal cluster assignment given the cluster centers; 3) Iterate 1) and 2) until C converges.

Question:

Can we find the global $\min_{\{m_k\}_{k=1}^K, \{C(i)\}_{i=1}^n} \sum_{k=1}^K \sum_{C(i)=k} ||X_i - m_k||^2$ of the total within cluster distance?

This clustering algorithm is sensitive to initial cluster assignment. Not every initial cluster assignment can lead to the global min.

Solution:

Use multiple initial cluster assignments to check if there is a common solution reached by a majority of the initial assignment schemes.