| StatsM254 Statistical Methods in Computational Biology | Lecture 4-04/10/2014 |
| :--- | :--- |
| Lecture 4 |  |
| Lecturer: Jingyi Jessica Li |  |

## 1 K-means

Algorithm:

1. Given a cluster of assignments $C$, we find cluster centers as $m_{k}=\frac{1}{n_{k}} \sum_{C(i)=k} x_{i} \quad$, where $k=1, \ldots, K$
2. Given the cluster centers $\left\{m_{k}\right\}_{k=1}^{K}$ we find the cluster assignment

$$
C(i)=\underset{1 \leq k \leq K}{\operatorname{argmin}}\left\|x_{i}-m_{k}\right\|^{2}
$$

3. Iterate steps 1 and 2 until $C$ converges.

## 2 K-medoids

Similar to k-means, but requires $\left\{m_{k}\right\}_{k=1}^{K}$ to be data points. Advantage: robust to outliers.
Algorithm:

1. Given a cluster of assignments $C$, find the data point in the cluster to minimize the total distance to other data points in that cluster.

$$
i_{k}^{*}=\underset{i: C(i)=k}{\operatorname{argmin}} \sum_{C(j)=k} d\left(x_{i}, x_{j}\right)
$$

Then $m_{k}=x_{i_{k}^{*}}, k=1, \ldots, K$ (new cluster centers)
Note: $d\left(x_{i}, x_{j}\right)$ can be any distance metric, e.g. $\left|x_{i}-x_{j}\right|$.
2. Given current cluster centers $\left\{m_{k}\right\}_{k=1}^{K}$, assign each data point to the closest center:

$$
C(i)=\underset{1 \leq k \leq K}{\operatorname{argmin}} d\left(x_{i}, m_{k}\right)
$$

where $i=1, \ldots, n$
3. Iterate steps 1 and 2 until $C$ converges.

This algorithm is a heuristic search to

$$
C(i)=\min _{C,\left\{i_{k}\right\}_{k=1}^{K}} \sum_{k=1}^{K} \sum_{C(i)=k} d\left(x_{i}, x_{i_{k}}\right)
$$

Comment:

1. k -means is based on Euclidian distance. If you change the metric to $L_{1}$ norm, you get k-medians. Both do not require the cluster centers to be data points.
2. In k-medoids, you can use any distance metric, but the cluster centers are restricted to be data points.

## 3 Heirarchical Clustering

Don't need to specify $K$, the number of clusters. A hierarchical tree will be built. This is agglomerative clustering.

Two things required:

1. distance metric (required by every clustering algorithm)
2. distance between a point and a cluster, and between 2 clusters
(a) Single linkage (SL)

$$
d_{S L}(G, H)=\min _{\substack{i \in G \\ i^{\prime} \in H}} d_{i i^{\prime}}
$$

(b) Complete linkage (CL)

$$
d_{C L}(G, H)=\max _{\substack{i \in G \\ i^{\prime} \in H}} d_{i i^{\prime}}
$$

(c) Group average (GA)

$$
d_{G A}(G, H)=\frac{1}{N_{G} N_{H}} \sum_{i \in G} \sum_{i^{\prime} \in H} d_{i i^{\prime}}
$$

Example: Euclidian distance + single linkage


Procedure:

1. Start with the 2 points closest to each other. Merge them into 1 cluster. $x_{1}, x_{2} \Rightarrow x_{1}^{*}$
2. Find the closest pair among $x_{1}^{*}, x_{3}, x_{4}, x_{5} . x_{3}, x_{4} \Rightarrow x_{3}^{*}$
3. Find the closest pair among $x_{1}^{*}, x_{3}^{*}, x_{5} . x_{1}^{*}, x_{3}^{*} \Rightarrow x_{1}^{* *}$
4. Merge $x_{1}^{* *}$ and $x_{5}$.

## 4 How to determine $K$, the number of clusters?

Within-cluster dissimilarity $W_{K}$ as a function of $K$, egg. Euclidian distance. $K$ clusters: $C_{1}, \ldots, C_{K}$, each is a set of indices of data points in each cluster. $n_{k}=\left|C_{k}\right|=$ number of data points in cluster $k$.

$$
\begin{gathered}
D_{k}=\sum_{i, i^{\prime} \in C_{k}} d_{i i^{\prime}}=\sum_{i, i^{\prime} \in C_{k}}\left(x_{i}-x_{i^{\prime}}\right)^{2} \\
W_{k}=\sum_{k=1}^{K} \frac{1}{2 n_{k}} D_{k}
\end{gathered}
$$



Graphical method: Silhouettes (Rousseau, 1987) - R package
Suppose that $x_{i} \in A$.
$a(i)=$ average dissimilarity of $x_{i}$ to other points in $A$.
$d(i, C)=$ average dissimilarity of $x_{i}$ to all points in cluster C .
$b(i)=\min _{C \neq A} d(i, C)$.


Silhouette:

$$
S(i)=\frac{b(i)-a(i)}{\max (a(i), b(i))}= \begin{cases}1-\frac{a(i)}{b(i)} & \text { if } a(i)<b(i) \\ 0 & \text { if } a(i)=b(i) \\ \frac{b(i)}{a(i)}-1 & \text { if } a(i)>b(i)\end{cases}
$$

$-1 \leq S(i) \leq 1$

(1) $k=2: s(1), \ldots, s(12)$

(2) $k=3:$


In the case above, $K=3$ is a more reasonable choice than $K=2$.

