
StatsM254 Statistical Methods in Computational Biology Lecture 4 - 04/10/2014

Lecture 4
Lecturer: Jingyi Jessica Li Scribe: Megan Roytman

1 K-means

Algorithm:

1. Given a cluster of assignments C, we find cluster centers as mk = 1
nk

∑
C(i)=k xi , where k = 1, ...,K

2. Given the cluster centers {mk}Kk=1 we find the cluster assignment

C(i) = argmin
1≤k≤K

‖xi −mk‖2

3. Iterate steps 1 and 2 until C converges.

2 K-medoids

Similar to k-means, but requires {mk}Kk=1 to be data points. Advantage: robust to outliers.

Algorithm:

1. Given a cluster of assignments C, find the data point in the cluster to minimize the total distance to
other data points in that cluster.

i∗k = argmin
i: C(i)=k

∑
C(j)=k

d(xi, xj)

Then mk = xi∗k
, k = 1, ...,K (new cluster centers)

Note: d(xi, xj) can be any distance metric, e.g. |xi − xj |.

2. Given current cluster centers {mk}Kk=1, assign each data point to the closest center:

C(i) = argmin
1≤k≤K

d(xi,mk)

where i = 1, ..., n

3. Iterate steps 1 and 2 until C converges.

This algorithm is a heuristic search to

C(i) = min
C,{ik}Kk=1

K∑
k=1

∑
C(i)=k

d(xi, xik)

Comment:

1. k-means is based on Euclidian distance. If you change the metric to L1 norm, you get k-medians. Both
do not require the cluster centers to be data points.

2. In k-medoids, you can use any distance metric, but the cluster centers are restricted to be data points.
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3 Heirarchical Clustering

Don’t need to specify K, the number of clusters. A hierarchical tree will be built. This is agglomerative
clustering.

Two things required:

1. distance metric (required by every clustering algorithm)

2. distance between a point and a cluster, and between 2 clusters

(a) Single linkage (SL)
dSL(G,H) = min

i∈G
i′∈H

dii′

(b) Complete linkage (CL)
dCL(G,H) = max

i∈G
i′∈H

dii′

(c) Group average (GA)

dGA(G,H) =
1

NGNH

∑
i∈G

∑
i′∈H

dii′

Example: Euclidian distance + single linkage

Procedure:

1. Start with the 2 points closest to each other. Merge them into 1 cluster. x1, x2 ⇒ x∗1

2. Find the closest pair among x∗1, x3, x4, x5. x3, x4 ⇒ x∗3

3. Find the closest pair among x∗1, x
∗
3, x5. x∗1, x

∗
3 ⇒ x∗∗1

4. Merge x∗∗1 and x5.
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4 How to determine K, the number of clusters?

Within-cluster dissimilarity WK as a function of K, e.g. Euclidian distance.
K clusters: C1, ..., CK , each is a set of indices of data points in each cluster.
nk = |Ck| = number of data points in cluster k.

Dk =
∑

i,i′∈Ck

dii′ =
∑

i,i′∈Ck

(xi − xi′)
2

Wk =

K∑
k=1

1

2nk
Dk

Graphical method: Silhouettes (Rousseau, 1987) - R package

Suppose that xi ∈ A.
a(i) = average dissimilarity of xi to other points in A.
d(i, C) = average dissimilarity of xi to all points in cluster C.
b(i) = min

C 6=A
d(i, C).

Silhouette:

S(i) =
b(i)− a(i)

max(a(i), b(i))
=


1− a(i)

b(i) if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i) − 1 if a(i) > b(i)

−1 ≤ S(i) ≤ 1
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In the case above, K = 3 is a more reasonable choice than K = 2.
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