StatsM254 Statistical Methods in Computational Biology Lecture 5 - 04/15/2014

Lecture 5

Lecturer: Jingyi Jessica Li Scribe: Artur Jaroszewicz

1 Introduction: How to choose a proper k for k-means and
k-medoid clustering

We would like to find wy as a function of k. Define the following:

e Data: x1,...,x, € RP, where p is defined as the number of samples, and each vector represents one
gene.

e Assignment: cy,...,c; where ¢, denotes the index of observations in cluster r, and n, =| ¢, |.
. . 1— i Li
e Distance metric: d;y, e.g., di;y = Z§=1 (zij — xirj)? or dyyy = w € [0, 1].

I . k
e Within-cluster variance: wy, =Y, 5= >, e, diir.
= r s 13

To choose k either:

1. Plot log(u}:il) as a function of k£ (see notes on lecture 4), OR

2. Use the Gap Statistic [1].

2 Gap Statistic

Define the Gap Statistic:
Gapn (k) = E;, [log(Wy)] — log(wx)

and look for the largest difference between observed and expected within-cluster variance.
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However, we cannot simply choose the largest gap, as

Gap(k)

clusters and account for some degree of random noise.
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we must have a penalty for creating too many
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Thus, we add error bars to account for noise. For a reference distribution to calculate E[log(Wy)], we
consider two choices:

a Generate each reference feature (e.g., sample) uniformly over the range of observed values for that feature.
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b Generate the reference features from a uniform distribution over a box aligned with the principal compo-
nents of the data.
More specifically, if X is our N x P data matrix, assume that the columns (e.g., samples) have mean
0 and compute the singular value decomposition (SVD) such that X = VDV '.
We then transform X/ = XV and draw uniform features Zs over the ranges of the columns of X.
Finally, we transform back via Z = ZV'T to give our reference data Z.
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3 Algorithm

Note: R package available [2].

1. Cluster the observed data X, Xo, ..., X,,. Vary numbers of clusters from k = 1,.., K (where K is the
upper bound), resulting in wy, k € {1, ..., K}.

2. Generate B reference data sets using the uniform prescription a or b above, and cluster each dataset
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under each k, resulting in wj,, b=1,...,B, k=1,..., K. Compute the (estimated) gap statistic

B
1
Gap(k) = 5 Zlog(w,’;b) — log(wg),
b=1




where & Zle log(wj,) is the estimator for E;: [log(Wy)].

3. Let I =+ Zle log(wy,). Compute the standard deviation

B
1 _
sdy = 5 Z(log(wkb) —1)?
b=1
and define s = sdp4/1 + %. (Note: we use logs to make estimates more robust to outliers if we assume

it is logarithmically concave as normal distributions). Finally, choose the number of clusters via k=
smallest k such that

Gap(k) > Gap(k + 1) — sg41

Practical Issues

1. Apply some filtering criteria before clustering genes to avoid housekeeping gene bias, e.g., via Coefficient
of Variation: CV = %, or

o1 2 (T — T
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CV (i) = , LTy = — ii-
" O P

Afterward, filter out genes with low CV (e.g., 20%).

2. Distance metric (in comparison of two samples):

Sample 2

Sample 1

May have high Pearson correlation, but may not mean the two samples are good replicates. As a
solution, try either:

i) log transformation, or

ii) rank correlation.



5 Liquid Association

To measure dynamic correlation between datasets, we can use Liquid Association (LA) [3].

1. Static similarity between the expression profiles / patterns of two genes X and Y

Gene Y

Gene X

will always be highly correlated.

2. Dynamic correlation between X and Y, depending on the cellular state
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supposes the cellular state is positively correlated with a third gene Z.



5.1 Definition of Liquid Association
Suppose X, Y, and Z all have mean 0 and variance 1. Then
LA(X,Y|Z) = Elg(Z)],

where
g9(z) = corr(X,Y|Z = z) = E[XY|Z = z].

Then if Z ~ N(0,1), then using Stein’s Lemma,
Elg(2)) = Blg(2)7) = BIEIXY|2)7] = EIXY 7).

5.2 Calculation of LA score

1. Standardize each gene expression profile (g1, ..., g,) with a normal score transformation. Record the
ranks of the n values as Ry, ..., R, and obtain the transformed profile:

Y iz ), @Y i ).

n+1 n+1
We transform the gene pattern to a normal distribution by ranking the values and sampling to a normal
distribution.

2. Compute the average product of the three transformed profiles

XNz + ...+ X\ Y2,
- .

5.3 Statistical Significance

Randomly permute the expression profile of genes z = (21, ..., z,,) after transformation and for each permuted
profile z*, compute the LA score of X and Y. For a significance estimate, calculate how often LA(X,Y|Z*) >

LA(X,Y|Z).



References

[1] R. Tibshirani, G. Walther and T. Hastie, “Estimating the Number of Data Clusters via the Gap Statis-
tic”, J.R. Statist. Soc. B, vol. 63, Part 2, pp. 411-423, 2001.

[2] M Maechler, “Gap Statistic for Estimating the Number of Clusters”, Seminar for Statistics, Swiss
Federal Institute of Technology Zurich, 2014.

[3] K. Li, “Genome-wide coexpression dynamics: Theory and application”, PNAS, vol. 99, no. 26, pp.
16876—16880, 2002.



