
StatsM254 Statistical Methods in Computational Biology Lecture 5 - 04/15/2014

Lecture 5
Lecturer: Jingyi Jessica Li Scribe: Artur Jaroszewicz

1 Introduction: How to choose a proper k for k-means and
k-medoid clustering

We would like to find wk as a function of k. Define the following:

• Data: x1, ..., xn ∈ Rp, where p is defined as the number of samples, and each vector represents one
gene.

• Assignment: c1, ..., ck where cr denotes the index of observations in cluster r, and nr =| cr |.

• Distance metric: dii′, e.g., dii′ =
∑p
j=1 (xij − xi′j)

2 or dii′ = 1−corr(xi,xi′)
2 ∈ [0, 1].

• Within-cluster variance: wk =
∑k
r=1

1
2nr

∑
i,i′∈cr dii′.

To choose k either:

1. Plot log( wk

wk+1
) as a function of k (see notes on lecture 4), OR

2. Use the Gap Statistic [1].

2 Gap Statistic

Define the Gap Statistic:
Gapn(k) = E∗n[log(Wk)]− log(wk)

and look for the largest difference between observed and expected within-cluster variance.
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However, we cannot simply choose the largest gap, as we must have a penalty for creating too many
clusters and account for some degree of random noise.
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Thus, we add error bars to account for noise. For a reference distribution to calculate E∗n[log(Wk)], we
consider two choices:

a Generate each reference feature (e.g., sample) uniformly over the range of observed values for that feature.
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b Generate the reference features from a uniform distribution over a box aligned with the principal compo-
nents of the data.
More specifically, if X is our N × P data matrix, assume that the columns (e.g., samples) have mean
0 and compute the singular value decomposition (SVD) such that X = VDV>.
We then transform X′ = XV and draw uniform features Z′ over the ranges of the columns of X′.
Finally, we transform back via Z = Z′V> to give our reference data Z.
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3 Algorithm

Note: R package available [2].

1. Cluster the observed data X1, X2, ..., Xn. Vary numbers of clusters from k = 1, ..,K (where K is the
upper bound), resulting in wk, k ∈ {1, ...,K}.

2. Generate B reference data sets using the uniform prescription a or b above, and cluster each dataset
under each k, resulting in w∗kb, b = 1, ..., B, k = 1, ...,K. Compute the (estimated) gap statistic

Gap(k) =
1

B

B∑
b=1

log(w∗kb)− log(wk),
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where 1
B

∑B
b=1 log(w∗kb) is the estimator for E∗n[log(Wk)].

3. Let l̄ = 1
B

∑B
b=1 log(w∗kb). Compute the standard deviation

sdk =

√√√√ 1

B

B∑
b=1

(log(w∗kb)− l̄)2

and define sk = sdk

√
1 + 1

B . (Note: we use logs to make estimates more robust to outliers if we assume

it is logarithmically concave as normal distributions). Finally, choose the number of clusters via k̂ =
smallest k such that

Gap(k) ≥ Gap(k + 1)− sk+1

.

4 Practical Issues

1. Apply some filtering criteria before clustering genes to avoid housekeeping gene bias, e.g., via Coefficient
of Variation: CV = σ

µ , or

CV (i) =

√
1
p−1

∑p
j=1(xij − x̄i)2

(x̄i)2
, x̄i =

1

p

p∑
j=1

xij .

Afterward, filter out genes with low CV (e.g., 20%).

2. Distance metric (in comparison of two samples):
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May have high Pearson correlation, but may not mean the two samples are good replicates. As a
solution, try either:

i) log transformation, or

ii) rank correlation.
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5 Liquid Association

To measure dynamic correlation between datasets, we can use Liquid Association (LA) [3].

1. Static similarity between the expression profiles / patterns of two genes X and Y
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2. Dynamic correlation between X and Y, depending on the cellular state
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supposes the cellular state is positively correlated with a third gene Z.
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5.1 Definition of Liquid Association

Suppose X, Y, and Z all have mean 0 and variance 1. Then

LA(X,Y |Z) = E[g′(Z)],

where
g(z) = corr(X,Y |Z = z) = E[XY |Z = z].

Then if Z ∼ N(0, 1), then using Stein’s Lemma,

E[g′(Z)] = E[g(Z)Z] = E[E[XY |Z]Z] = E[XY Z].

5.2 Calculation of LA score

1. Standardize each gene expression profile (g1, ..., gn) with a normal score transformation. Record the
ranks of the n values as R1, ..., Rn and obtain the transformed profile:

Φ−1(
R1

n + 1
), ...,Φ−1(

Rn
n + 1

).

We transform the gene pattern to a normal distribution by ranking the values and sampling to a normal
distribution.

−4 −2 0 2 4

2. Compute the average product of the three transformed profiles

X1Y1Z1 + ... + XnYnZn
n

.

5.3 Statistical Significance

Randomly permute the expression profile of genes z = (z1, ..., zn) after transformation and for each permuted
profile z∗, compute the LA score of X and Y. For a significance estimate, calculate how often LA(X,Y |Z∗) ≥
LA(X,Y |Z).

7



References

[1] R. Tibshirani, G. Walther and T. Hastie, “Estimating the Number of Data Clusters via the Gap Statis-
tic”, J.R. Statist. Soc. B, vol. 63, Part 2, pp. 411–423, 2001.

[2] M Maechler, “Gap Statistic for Estimating the Number of Clusters”, Seminar for Statistics, Swiss
Federal Institute of Technology Zurich, 2014.

[3] K. Li, “Genome-wide coexpression dynamics: Theory and application”, PNAS, vol. 99, no. 26, pp.
16876–16880, 2002.

8


