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1 Introduction

Alternative splicing plays crucial roles in development and disease and is very important
in regulating gene function in higher eukaryotes [1]. The importance of alternative splicing
is remarkably highlighted by its ability of generating mulitple mRNA and protein isoform
from a single gene [2]. Xu et al. first applied expressed sequence tags (ESTs) to detect
the tissue-specific exons [3]. However, low throughput and high nosie limits the capacity of
EST-based analysis for detecting differential alternative splicing[4]. As the development of
high-throughput RNA sequencing techonology (RNA-seq), it has become feasible to conduct
genome-wide quantitative analyses of RNA alternative aplicing [5][6]. By comparing the
RNA-seq data from two biological conditions, exons with changes in exon inclusion levels
could be identified. In previous study, different approaches such as Fisher exact test [7][8]
and Bayesian statistics [9][10][11] have been applied to estimate the statistical significance
of the differential alternative splicing events.

In this paper [12], in order to test flexible hypothesis of differential alternative splicing
patterns on RNA-seq, Shen et al. have developed MATS (multivariate analysis of transcript
splicing) based on a Bayesian statistical framework. MATS uses a multivariate uniform
prior to model the between sample correlation in exon splicing patterns, and a Markov
chain Monte Carlo (MCMC) method coupled with a simulation-based adaptive sampling
procedure to calculate the P-value and false discovery rate (FDR) of differential alternative
splicing. MATS has several advantages compared to previous methods of detecting differ-
ential alternative splicing. First of all, MATS provides the flexibility for using user-defined
pattern to identify differential alternative splicing events. Also, the multivariate uniform
prior implemented in MATS is more general and better captures the genome-wid similarity
in exon splicing patterns between biological conditions. Finally, Markov chain Monte Carlo
(MCMC) method coupled with a simulation-based adaptive sampling procedure employed
by MATS is applicable to almost any type of null hypotheses of interest.

2 MATS, multivariate analysis of transcript splicing

2.1 Notations

Define the exon inclusion level (ψ) of an alternatively spliced exon as the percentage of
’exon inclusion’ transcripts among all such ’exon inclusion’ transcripts plus ’exon skipping’
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transcripts.
Define NI , NS, lI , lS as (Fig. 1):
NI : Number of reads inclusion
NS : Number of reads skipping
lI : length of inclusion isoform
lS : length of skipping isoform

Figure1. Illustration of alternative splicing and notations. The pre-mRNA transcripts could
be spliced into inclusion isforms and skipping isoforms. We denote the lI as the length of
inclusion isoform while lS as the length of skipping isoform.

2.2 Likelihood for NI

NI |ψ ∼ Binominal(NI +NS,
lIψ

lIψ + lS(1− ψ)
)

2.3 Example

Consider we have two RNA-seq data with different exon inclusion level ψ1 and ψ2. c
represents the user-defined threshold for splicing change. The null and alternative hypotheses
are:

H0 : |ψ1 − ψ2| ≤ c

H1 : |ψ1 − ψ2| > c

Then,the test statistics are:

−2log

(
max(ψ1,ψ2)

Lo(ψ1,ψ2)

max(ψ1,ψ2)
L(ψ1,ψ2)

)
∼χ2
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while,
Lo(ψ1, ψ2) is constraint likelihood under |ψ1 − ψ2| ≤ c
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L(ψ1, ψ2) is unconstraint likelihood
For example, for the gene RLEN, it has different exon inclusion level in brain(89

Figure2. Different alternative spliced form of gene RELN have different inclusion level in
brain and muscle.

Based on MATS, we can get the H0, H1 and unconstrained L and constrained L0 as
shown in Figure 3.
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