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As the development of high throughput technology, it becomes more and more important for us to look at the behavior of
genes, proteins and metabolites at whole genome level. Instead of studying a single gene, by understanding biological process
at network level, we can shed light on some new mechanisms in both developmental processes and diseases. Modeling of these
networks is an important challenge in the post genomic era. Several statistical models have been applied to analysis the biological
networks including logic-based models, continuous models and correlation-based models. In this review, we focus on the different
methods for reconstructing biological networks and analysis of their functionality.

Categories and Subject Descriptors: 1.5.1 [Networks Analysis]: Models—Biological Networks
General Terms: Network Analysis
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1. INTRODUCTION

In the post-genomic era, genome-wide experiments have become commonplace and methods to inter-
rogate such datasets are becomingly increasingly important. One approach to analyzing these large
datasets is to model the experimental observations using a network approach. In a process known
as (re)construction, inference, identification or reverse engineering, model parameters are fit to the
data yielding a defined network that can then be analyzed to gain higher level insights into the com-
plex molecular biology. Network biology is an expansive field and there are many different methods
that are employed. In this survey paper we briefly review the frameworks of several popular mod-
eling methods including logical models, boolean networks, Bayesian networks, weighted correlation
networks, differential equations, and some basic network analysis concepts.

2. STATISTICAL MODELS IN NETWORK CONSTRUCTION
2.1 Logical Model

Logical model is the simplest method for constructing network and was first introduced by Kauffman
and Thomas[Glass and Kauffman 1973][Thomas 1973]. Logical models represent the local state of each
node in the system (for example, genes and proteins) at any time as a discrete level, and the temporal
development of the system is often assumed to occur synchronously. Thus, with logical models, the
researchers can only rely on the qualitative knowledge. Several statistical method have been applied
in this type of discrete and logic-based models including Boolean networks, and Bayesian networks.

2.1.1 Boolean Networks. Boolean networks are a dynamic model of synchronous interactions be-
tween nodes in a network. The nodes can attain two alternative states: active(1) or inactive(0); in this
way, the network is able to show the expression state of a gene or protein and the state of each node in
the network is updated synchronously according to a Boolean function (Figure 1 A).

A Boolean Network (BN) could be described as a directed graph G(X, F) where the nodes, X =
Z1,Ts9,...,2, are a set of binary-valued Boolean variables and a vector of Boolean functions f =
(f1,.-., fn). At certain time point, the states of each nodes represent the states of the network, given by
the vector S(t) = (x1(t), z2(t), ..., zn(t)). The Boolean functions are decided by the parents of the nodes.
In the next time point, the states of all nodes are updated synchronously according to their respective
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Boolean functions:
zi(t+1) = filw;1(t), 2:2(¢), ..., 2;l(t))

2.1.1.1 Limitations and Extensions. In order to study the dynamic of cell-cycle regulation in yeast,
Li et al. [Li et al. 2004] constructed a Boolean network based on pervious literature. The models gener-
ated trajectories with a high degree of overlap, most of which led into a path that corresponded to the
cell-cycle phases of yeast. In addition, most small changes in the network did not significantly change
its dynamic behavior, indicating that it is robust.

Boolean network is limited in several aspects such as its discreteness and synchronism. In reality,
the gene expression levels are always continuous. Thus the assumption of the discretization of the orig-
inal data often reduces its ability to capture some real signals. In addition, the updates of the network
states in this model are synchronous, whereas biological networks are typically asynchronous. Finally,
despite their simplicity, only small nets can be reverse engineered with the current state-of-the-art
algorithms.

2.1.2 Bayesian Network. A Bayesian network is a representation of a joint probability distri-
bution. This representation consists of two components: a directed acyclic graph(DAG) G, whose ver-
tices correspond to the random variables X,..., X,,, and 6 describing a conditional distribution for
each variable, given its parents in G. Together, these two components specify a unique distribution on
X1, X

The graph G represents conditional independence assumptions that allow the joint distribution to
be decomposed, economizing on the number of parameters. The graph G encodes the Markov assump-
tion(*): each variable X; is independent of its non-descendants, given its parents in G.

By applying the chain rule of probabilities and properties of conditional independencies, any joint
distribution that satisfies (¥) can be decomposed into the product form

P(X1,...,X,) = ﬁP(XAPaG(Xi)) (1)

i=1

where Pa%(X;) is the set of parents of X; in G.

The probabilistic nature of Bayesian network allows it to handle noise inherent in both biological
processes and follow-up microarray or sequencing experiments. The gene expression profiles could
provide a complete joint distribution of gene expression level, while a Bayesian networks expand the
joint probability in terms of simpler conditional probabilities. There are several statistical methods for
learning can be applied to the network including BNarray[Chen et al. 2006], B-course[Myllyméki et al.
2002], BNT[Murphy et al. 2001] and Werhli’s implementation of BN[Werhli et al. 2006].

A major advantage of Bayesian network models is the ability to learn from observed data. Bayesian
networks can capture linear, non-linear, combinatorial, stochastic and other types of relationships
among variables. They are suitable for modeling gene networks because of their ability to represent
stochastic events, to describe locally interacting processes, to handle noisy or missing biological data
in a principled statistical way and to possibly make causal inferences from the derived models. Hence,
Bayesian networks, including their variants Dynamic Bayesian networks, Gaussian networks, Module
networks, mixture Bayesian networks and state-space models (SSMs), etc., have become widely used
tools for regulatory-network modeling.

2.1.2.1 Limitations and Extensions. Bayesian network have been applied in several experiment
data. For example, Nir Friedman have used bayesian networks to inferring cellular networks[Friedman
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Fig. 1. An example of logical based models. (A) A Boolean network. each nodes in the network a, b and ¢ can be in state 0 or
1. State transition follow the boolean regulation function on the right which describe the rule of the model. (Figure modified
from [Karlebach and Shamir 2008]) (B) A simple Bayesian network structure. This network structure implies several condi-
tional independence statements: I(A; E), I(B; D|A, E),I(C; A, D, E|B),I(D; B,C,E|A),I(E : A, D). The network structure
also implies that the joint distribution has the product form P(A, B,C, D, E) = P(A)P(E)P(B|A, E)P(C|B)P(D|A)

2004]. They first built an unconstrained acyclic network where each gene can have a different regula-
tor set from the experiments of Pe’er et al. [Pe er et al. 2001] Then, by applying bayesian networks and
bootstrap estimates of the pre-built network they are able to identify some subnetwork of genes with
high confidence relations and biological manfulness among them.

Bayesian network work effective in dealing with noise, incompleteness and stochastic aspects of
gene regulation.One limitation of Bayesian networks for modeling genetic networks is that these mod-
els must be in the form of directed acyclic graphs and, as such, are not able to represent feedback
control mechanisms. Dynamic Bayesian networks, on the other hand, are Bayesian networks that are
capable of representing temporal processes[Kim et al. 2003; Zou and Conzen 2005] that may include
such feedback loops, but their benefits are hindered by the high computational cost required for learn-
ing the conditional dependencies in the cases where large numbers of genes are involved.

2.2 Continuous Models

2.2.1 Differential Equations. Differential equations (DEs) are used for the quantitative model-
ing of complex dynamical systems where a system of defined DEs forms a continuous and deterministic
model capable of describing non-linear and emerging phenomena [Aluru 2005]. In the application of
DEs on gene expression, they are used as rate equations to model the rate of change in the expression
of gene z; as a function of the current levels of expression of other genes (and possibly other quantified
factors such as environmental inputs). The general form of each DE for the n genes is:

qu;
dt

= fi(wi1, T2, ..., i) (2)
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where each z; is a continuous function representing the expression level of gene j; fi(...) quantifies
the combined effects of the regulators of z; subsuming all of their biochemical and molecular effects;

Zi1, Ti2, - - -, Ti; 1S the is a subset of all gene expression functions z1,zs, ..., z, that influence the ex-
pression of z;. f;(...) can be thought of as a function at that takes the input regulator gene levels
T, iz, . - ., T;; and produces an output rate for gene i.

In addition to the variables x; which represent the gene j expression levels, there will be many
free parameters depending on the form of the chosen f;(...). The parameters can be approximated
even if the analytical solutions are unknown using various numerical differential equation solvers.
The specific forms of the node functions f;(...) depend on the considerations of the model. Realistically
these functions should be nonlinear to accurately represent natural biomolecular phenomena such as
saturation. Sigmoid functions are commonly used such as the squashing function: f;(z(t)) = 1/(1 +
e (@#()+55)) where the constants «; and 3; are gene specific parameters that regulate the rapidity of
the expression response. Other more complicated nonlinear functions can be used such as Savageau’s
S-Systems[Kikuchi et al. 2003].

2.2.2 Linearized Additive Models. The simplest interesting form of f;(...) is the linear additive
model, also known as the weight matrix model, in which the rate equation becomes:

dt

where ext;(t) indicates possible external control on gene i such as experimental perturbation; w;; are
the parameters representing the linear effect of gene n on gene i. Additional possible terms can model
other influences such as intrinsic rate of degradation or environmental effects.

Linear additive DE models have several advantages. They intuitively represent the regulatory in-
fluence of gene j on gene ¢, i.e. the magnitude and sign of w;; corresponds to the strength and direction
of the regulatory influence. The linearized system is easily represented such that the coefficients rep-
resent the independent effects of gene j on gene i: w;; = 0f;/dz,;. When the experimental system is in
a steady state or equilibrium where dz;/dt = 0 and is brought to that steady state slowly, the linear
approximation holds as accurate. Further, linearization allows for the parameters w;; to be easily fit
to the data using linear algebra methods.

= ext;(t) + winz1(t) + ... winy () 3)

Za(t + 1) = za(t) + wa,cxc(t) + wq,qrq(t)
ap(t+1) = mp(t)

Te(t +1) = ze(t) + we,pzp(t)

2q(t+1) = 2q(t) + wa,c(t) + wa,pxs(t)
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Fig. 2. (A)Graph drawing of a toy gene regulatory network. (B)System of differential equations representing the toy gene
regulatory network. (C)Matrix representation of the toy gene regulatory network.

For experiment [, if we let (") and ext(") be column vectors representing the gene expression functions
Z1,...,T, and the external influence on the individual genes extq,...,ext, respectively, and X,,«,, =
(™, ..., 20 and Ext,, ., = (ext(V, ... ext™) be the matrices consisting of the above vectors for all
m experiments, and W,,,,, be the matrix of all weights w;;,1 < i,j < n. then the system of equations
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is:
d
dt
where X, «,, is the observed gene expression matrix and Ext,,«.,, is the observed external influences
matrix. The rate terms %me are approximated as zero for steady state or from the time-series data
as Ax;/At where At should be small (which may not be the case in practice). In this approximation
Ax; /At = (x;(t +1) — z;(t)) /At and the next state of gene i’s expression can be expressed as a function

of its previous regulators x;(t + 1) = At(z;(t) + X7, wijz;(t)).

XTL Xxm — Wﬂ, X ’ILXTI, Xm + Eth Xm (4)

2.2.3 Network reconstruction with linearized additive differential equations. With linear additive
models, the goal in network reconstruction is basically finding the weight matrix W,,,,, that is most
consistent with the observed data. There are n? unknowns and nm equations in the system of lin-
earized differential equations, thus depending on the m number of experiments and the » number of
linearly independent equations (< mm), the problem can be classified as exact, overconstrained, or
underconstrained. When the system is exact (r = n?) there is one solution; when the system is over-
constrained (r > n?) then a solution can be achieved through multiple regression; when the system is
under constrained (r < n?), there are many equally good solutions.

In practice, experiments generally have many genes n and few experiments m so m << n and
thus r << n?%. Choosing from among the number of good solutions however is not a straight-forward
task. Typically a solution with special properties or a pseudo-inverse is chosen as a starting point for
generating better solutions, e.g. Moore-Penrose pseudo-inverse or the Singular Value Decomposition
(SVD)[Weaver et al. 1999]. One method of refinement is known as the robust regression optimization
technique [Yeung et al. 2002].

Assumptions can be used to reduce the search space. For example, the assumption of network-
sparseness, i.e. each gene cannot be regulated by more than a fixed number & of other genes, allows
the problem to be translated into a combinatorial problem called Minimum Weight Solutions to Lin-
ear Equations which can be polynomially solvable albeit computationally expensive[Chen et al. 2001].
Under the assumption that gene levels can be interpolated between time points, it is possible to get
an over-constrained system by generating simulated data points which can then be solved using least
squares optimization which is reasonable if the time-points are close enough to capture most of the
behavior of the system[D’haeseleer et al. 1999]. Another approach is to cluster the genes to reduce the
dimensionality of W; through hierarchical clustering of the genes into co-regulated groups, the system
can become over-constrained and thus solvable.

LIMITATIONS: Linear DE models are limited to steady-state or slowly-dynamic systems which
must be measured with sufficient time resolution to capture the gene regulatory effects which may
be technically difficult. Analytical solutions to DE systems are generally unavailable but there are a
variety of methods to address these shortcomings.

2.3 Correlation Based Network

One of the most straightforward ways to explore the gene co-expression network is correlation-based
methods. In this type of methods, they usually define a gene co-expression similarity matrix S = [s; ;],
where s; ; is the pair-wise transcription correlation coefficients between gene i and j, and S is the
correlation matrix. Then either a hard or soft threshold is applied to s; ; to determine the biological
meaningfulness of the connections.

2.3.1 Limitations and Extensions. These co-expression based methods have been used in several
studies and have shown their usefulness in interpreting biological results and identifying important
gene modules . Taking weighted gene correlation network analysis (WGCNA) as example[Langfelder
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and Horvath 2008], it has been applied to identify several disease-related genes. The WGCNA de-
fine co-expression networks as undirected, weighted gene networks. In the network, the nodes rep-
resent the genes in the genes expression profile and edges correspond to the pairwise correlations
between gene expression. Then a threshold 8 > I (soft thresholding) is set to the absolute value of
the correlation. In WGCNA, the user is able to choose between unsigned network whose adjancy is
ai; = |cor(x;,x;)|? or the signed network where the adjacency is defined as a;; = |(I + cor(z;,z;))/2/°
as well.

One drawback for WGCNA is that it is limited to undirected networks[Langfelder and Horvath 2008]
and there are some other methods for orienting edges and constructing directed networks[Opgen-Rhein
and Strimmer 2007]. Another limitation for correlation-based model, is that in order to get a relative
biological meaningful correlation coefficient from a population, it usually requires large amount of
data. Thus, it work efficiently when dealing with large scale data for example projects with several
hundreds patients gene expression profile data. However, it does not work well when there are limited
informations such as dealing with sample only have biological replicates.

3. NETWORK ANALYSIS

Once a network has been constructed it can be mined for useful knowledge. There are many levels
from which this task can be approached; one is to apply metrics on the network which allow for the
identification of various node or subnetwork properties which include:

—Degree k; =number of links connected to node ¢
—Distance d;;=shortest path between node i and j
—Clustering coefficient ¢; = % where e¢;=the number of existing edges among k; nodes
0
—Betweenness b; = ), ; ZJJ where p;; is the number of shortest paths between nodes i and j, and p§§>
is the number of shortest paths between ¢ and j that run through node !

Such topological metrics be used to identify interesting nodes based on their centrality (relative im-
portance within the graph). For example, interesting points of genetic control may include high-degree
nodes which may represent hub genes which have influence over a large number of neighboring genes,
or nodes with betweenness centrality which may represent genes that act as a convergence points for
intracellular signaling.

Another approach involves the identification of gene modules through performing clustering meth-
ods on the network to yield groups co-regulated genes. These modules often correspond to functional
genetic units that are involved in a specific process and thus the function of unknown member genes
can be inferred by association. The modular analysis is also valuable in that it decreases the stringency
of multiple hypothesis correction normally observed in gene expression association studies by dramat-
ically reducing the number of entities being tested. This reduction in complexity can also facilitate in
intuitive interpretation of genome-wide data.

The properties of networks can be studied on a global scale. For instance, a major finding in network
biology is that many biological networks can be approximated as having scale-free degree distribu-
tions, including metabolic and transcriptional networks[Albert 2005]. Scale-free networks have degree
distributions that follow an inverse power law of form P(k) = Ak~" where A and k are constants, P(k)
is the degree density function, and ~ is a network parameter[Albert and Barabasi 2002]. They are
known to have properties such as robustness against random failure but also imply weakness toward
hub failures.
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4. CHALLENGE AND FUTURE
4.1 Challenge

In biological network analysis, the main challenge is the integration of biology and mathematics. First,
how to interpret the network results biologically is a key issue in network analysis. For example, from
a gene expression network analysis, we identify some potential key drivers in the network. We then
should consider whether this result is biologically meaningful based on previous knowledge and next,
how can we validate those results biological experiments. For biologists, another key issue is how to
choose and apply the right models. Using the right math is really important because different models
may lead to totally different conclusions.

In February 2014, Lior Pachter who is a statistic professor at Standford university has published some
criticisms in his blog about network analysis. The reason why he made those criticisms is that from the
perspective of a statistician, he saw some absolute math errors in some papers that are even published
on high impact journals. One of the criticism he made is about the paper published by Baruch Barzel
and Albert Laszlé Barbadasi [Barzel and Barabasi 2013]. This paper is about the network link prediction
by global silencing indirect correlations. In the context of biology, link prediction refers to identify the
indirect interaction between genes that maybe confounded by some indirect effects. For example, if
gene A inhibits the expression of gene B while gene B inhibits the expression of gene C, then if the
expression of gene A increases, the expression of gene B will decrease and the expression level of gene
C might increase. Hence, we might observe the correlation between the expression of gene A and gene
C even though there is no direct interaction inside. In their model, they assume that a system of genes
is in equilibrium. In order to infer the functional and physical interactions in cell, it relies on both
“global response matrix”,

dfﬂi
i =
J da:j

()

where z; and z; are the expression levels of genes. The global response matrix is able to captures the
change in the node i’s activity in response to changes in node j’s. However, it’s not able to capture the
indirect effects. Thus, they focus on the ”local response matrix”,

ox;

Sij = — 6

oz, (6)
which could eliminate the contribution of confounders. To extract S;; from experimentally accessible
Gij, they link the 5 and 6 which lead to,

G = SG (off the diagonal) and G;; = 1 for all i. 7

The innovation of this paper is that they provide an approximation formula for solving S from G,
S~ (G-I+D(G-1G)! 8

However, one of the errors Lior Pachter mentioned is that just by applying the Sherman-Morrison
formula, the could get the exact solution:

S=1-— D(l/G‘*l)G*1 )
4.2 Future

Our current picture of how regulation is carried out is probably still missing several significant pieces.
As the development of next generation sequencing technology, we are able to get large amount of
experiment data. By applying network analysis, we could get a more broad understanding of how



8 . L. Wanlu, C. and Q. Austin

the genes are regulated. In addition to understanding regulation as a stand-alone process, models
for interplay of gene regulation with other processes need to be created for example metabolism and
cell-cell signaling. The benefits of accurate, large-scale regulatory network models for medicine and
biotechnology provide a strong incentive for cooperation between experimentalists and computational
scientists.
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