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Gene set enrichment analysis is a data mining approach designed to facilitate the biological interpretation of gene expression
data. The main idea is to aggregate genes based on their commonalities, and assess the significant changes as a group. The

framework for most of the current implementations can be divided into five components, including data collection and pre-

processing, gene level statistics computation, gene set statistics computation, significance measurement, and multiple testing
correction. Three softwares are reviewed and compared: GSEA, PAGE, and GSA. The comparison focuses on their statistical

approaches in gene level statistics, gene set statistics, and significance measurement.
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1. INTRODUCTION

The advent of “omic” studies has provided a high-throughput screening to quantify the changes in
biological system. These studies include, but not limit to, genomics for gene expression profiling, pro-
teomics for protein level quantification, and metabolomics for measuring metabolites abundance. In
genomewide expression studies, the predominant technologies are DNA microarray and RNA Sequenc-
ing to monitor changes in expression of thousands of genes simultaneously. Similarly, liquid chromatog-
raphy or gas chromatography followed by mass spectrometry (LC-MS or GS-MS) allow a large scale
identification and quantification of proteins and metabolites in different biological systems. These -
omics approaches often generate a large list of candidates, ranging from hundreds to thousands of
genes, proteins, or metabolites. Consequently, mining through this large list of “interesting” candi-
dates becomes a daunting task. As Subramanian et al. [2005] stated that the challenge no longer lies
in obtaining molecular profiles, but rather in interpreting the results to gain insights into biological
mechanism.
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In order to facilitate the functional analysis across different phenotypes, many enrichment tools have
been developed in the past ten years. The main idea is to aggregate genes, proteins or metabolties into a
set that share a common theme, such as biological function, chromosomal location, protein interaction,
regulation, or biochemical pathway. If the members of the predefined set are over-represented in the
candidate list, then the list is said to be enriched by the predefined set [Hung et al. 2012]. The benefit
of the enrichment analysis is two-fold. First, from a statistical point of view, grouping the candidates
serves as a dimensionality reduction technique in data mining. The issues of false discovery rate in
multiple testing are alleviated with a smaller number of objects undergoing statistical analysis. Sec-
ond, from a biological point of view, placing the candidates into the context of biological understanding
provides a more meaningful interpretation of the experimental results.

Since the genomic approach is the most mature field among all the -omic studies, most of the en-
richment tools carry forward with the results from the microarray pipeline, and focus on identifying
the significant gene sets that are enriched in the phenotype of interests. In this article, I will give an
overview of the framework for these tools (Section 2), and discuss the statistical methods employed by
three popular softwares, GSEA, PAGE, and GSA (Section 3). Although these softwares are designed for
gene set analysis, the methods are applicable to identify the significant sets of proteins or metabolites.

2. OVERVIEW

Ackermann and Strimmer [2009] and Hung et al. [2012] summarized the framework of the Gene Set
Enrichment procedures into five key components before making a statistical conclusion: data collection
and preprocessing, gene level statistics for every single gene, gene set statistics for a predefined set,
significance measurement, and multiple testing correction. This framework is illustrated in Figure 1.

2.1 Data Preprocessing

A typical gene expression profiling experiment involves comparing the expression patterns between
two or more phenotypes. Data normalization is an essential step, which allow expression values from
different experiments to be directly comparable [Irizarry et al. 2003]. In DNA microarray analysis,
the expression values are represented by the color intensity of florescent dyes. The experimental ar-
tifacts are removed by normalization algorithms, such as RMA [Irizarry et al. 2003] for single color
microarray, and print-tips loess [Smyth and Speed 2003] for two-color cDNA microarray. Alternatively
in RNASeq data, the density of reads that map to a gene is normalized for the length of its transcript
and for the sequencing depth of the experiment. The abundance of a gene is quantified by Reads Per
Kilobase exon Model per million mapped reads (RPKM) [Mortazavi et al. 2008]. After normalization,
log transformation of the expression values is commonly applied to avoid bias toward highly expressed
genes.

2.2 Gene Level Statistics

The first step in a gene set enrichment analysis is to assess the amount of differential expression of the
individual gene between two phenotypes. The values of differential expression can be represented by
fold change, signal-to-noise ratio (mean to standard deviation ratio), regularized t-statistics, shrinkage
correlation coefficient, coefficient of linear/logistic regression, and penalized log-likelihood ratio [Acker-
mann and Strimmer 2009]. Since most of the gene set enrichment approaches include the entire list of
genes for downstream analysis, the choice of these methods is less critical. However, it is more suitable
to use regularized version of test statistics due to the small sample size found in most instances of the
experiment [Ackermann and Strimmer 2009]. In addition, the changes of gene expression can occur
in opposite directions (either up-regulation or down-regulation), especially in a feedback mechanism.
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: June 2014.
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If this type of mechanism is considered, it is recommended to eliminate the direction by taking the
absolute or square of the gene statistics [Saxena et al. 2006; Hung et al. 2012].

2.3 Gene Set Statistics

To incorporate biological knowledge into the analysis, genes are combined into sets if they share a
certain commonality. Gene Ontology [Ashburner et al. 2000] is the most commonly used knowledgebase
as it provides a controlled vocabulary to describe gene roles in biological process, molecular function,
and cellular component. Another common choice is the cascading pathways, where genes are grouped
together if they are involved in the same pathway.

Gene set statistic provides a value to evaluate whether a gene set is significantly altered for a phe-
notype, and is defined by the properties of the genes in the set. This statistic can be computed by the
sum or the mean or the median of the gene statistics, the modified Kolmogorov-Smirnov statistic, the
maxmean statistic, the Wilcoxon rank sum test statistic, the sign test statistic or the conditional lo-
cal FDR [Ackermann and Strimmer 2009]. The choice of these methods, together with the statistical
assessment depend on the stated null hypothesis, which is addressed next.

2.4 Significance Measurement

There are two types of null hypothesis defined by Tian et al. [2005] and Ackermann and Strimmer
[2009]. The first case, Q1, referred to as the “competitive null hypothesis”. Given a phenotype, the test
compares the phenotype association with genes in the set versus genes outside the set. This hypothesis
considers all genes. In the other case, Q2, referred to as the “self-contained null hypothesis”, which
focuses only on the given gene set. It compares the gene set association with a phenotype versus a
random phenotype. In general, Q2 is favored because it preserves the relationship of genes in a set,
and directly address the question of enrichment [Hung et al. 2012].

The significance of the gene set statistic is evaluated by calculating the p-value from the null dis-
tribution. The null distribution can be generated in three different ways [Ackermann and Strimmer
2009], depending on the choice of null hypothesis. The competitive null hypothesis considers all genes,
and therefore, the background distribution (null distribution) is obtained by shuffling genes in and out
of the gene set. The self-contained null hypothesis compares the enrichment between phenotypes, so
the background distribution can be simulated by randomly labeled the sample phenotypes. Both gene
sampling and label permutation can be applied at the same time, generating another type of back-
ground distribution. The p-value is described by the fraction of gene set statistics in the re-sampled
population that exceed (or fall below) the observed value.

2.5 Multiple Testing Correction

The multiple hypothesis testing problem arises when more than one gene sets are examined. A con-
servative approach is to use a sufficiently low corrected p-value, known as the Bonferroni correction
[Shaffer 1995]. An alternative common approach is to control the false discovery rate using Benjamini-
Hochberg procedure [Benjamini 1995].

3. IMPLEMENTATION

In this section, I choose three popular gene enrichment analysis softwares as examples, and focus on
reviewing their methods for gene level statistics, gene set statistics, and significance measurement.

3.1 GSEA

Gene Set Enrichment Analysis [Subramanian et al. 2005] is the pioneer tool for detecting enrichment.
To date, it has more than six thousand citations according to Google Scholar. The software also provides
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Fig. 1. The framework for gene set enrichment analysis.

a comprehensive molecular signatures database (MSigDB), which contains a wide range of collections
of annotated functional gene sets. It takes the molecular profile data as an input, and allows users to
select the gene set collection of interests.

Following the framework discussed in Section 2, GSEA uses values that can reflect the gene corre-
lation with the phenotype of interests, such as the t-score or the signal-to-noise ratio, to represent the
gene level statistics. The main idea of this approach follows the assumption that if the examined gene
list is enriched by the member of a gene set, then these members tend to aggregate toward the top (or
the bottom) of the list. Thus, the null hypothesis can be formally stated as

Input : Gene List L = {l1, l2, · · · , ln},Gene Set S = {s1, s2, · · · , sm}
H0 : m genes in a gene set S are randomly spread out in the list L among n genes

Intuitively, the first step of the algorithm is to rank the genes in gene list L by sorting their gene
level statistics. Here, the gene level statistics is denoted by rj for gene lj in gene list L. Using the
ranked list, a weighted Kolmogorov-Smirnov statistic is computed, defined as the enrichment score
(ES) of gene set S. The enrichment score is defined by the maximum deviation from zero of a running
sum (running down the sorted list of genes). The score increases every time if a gene (lj) in the list
L is in the gene set S (Equation 1), and decreases otherwise (Equation 3). In addition, each gene set
member (si) can be weighted by its absolute correlation with the phenotype, denoted as wj . In another
word, genes with high correlations to the phenotype contribute more to the enrichment score.

Phit(S, i) =
∑

lj∈S;j≤i
|rj |wj

NR
(1)

NR =
∑

lj∈S |rj |
wj (2)
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Pmiss(S, i) =
∑

lj /∈S;j≤i
1

n−m (3)

ES(S) = max(Phit − Pmiss) (4)

To estimate the significance of the enrichment score, sample labels permutation is used to generate
the background distribution. ESNULL is computed from the average enrichment score of one thousand
permutations, where phenotype labels are randomly assigned to samples.

Although only the sample labels permutation is used to simulate the background distribution, the
enrichment score considered the effect of genes outside the gene set S. Hence, Ackermann and Strim-
mer [2009] argue that this approach uses a hybrid of competitive null hypothesis (Q1) and self-
contained null hypothesis (Q2).

3.2 PAGE

GSEA uses a non-parametric approach to evaluate the enrichment, and Kim and Volsky [2005] argue
that the method is not sensitive enough to detect the significantly altered gene sets. They propose a
parametric approach, Parametric Analysis of Gene Set Enrichment, which uses normal distribution
for statistical inference. They claim that a normal distribution paradigm requires observations to be
independent and identically distributed (iid). If the gene list L is enriched in the member of gene set S,
then these members are interdependent (for example, they are co-regulated). Thus, the distribution of
these interdependent genes deviates from the normal distribution. The null hypothesis can be formally
stated as

Input : Gene List L = {l1, l2, · · · , ln},Gene Set S = {s1, s2, · · · , sm}
H0 : all genes in gene list L are independent of each other and identically distributed

It uses Gene Ontology as the predefine gene sets, and the fold change values for each gene between
two phenotypes as the gene level statistics. The gene set statistic is defined by a “normalized” average
fold changes across m gene set members. The mean (µ) and standard deviation (σ) of total fold change
of gene list L are calculated. The average fold change for a gene set S is denoted by µS . The Z score is
calculated in Equation 5.

Z =
(µS − µ)×

√
m

σ
(5)

The p-value can be obtained directly for the Z score by comparing the observed distribution with the
standard normal distribution.

3.3 GSA

Following the same assumption as in PAGE, Efron and Tibshirani [2007] propose several improve-
ments over PAGE and GSEA. GSA uses t-score as the gene level statistics, and introduces a new test
statistic, maxmean, to describe the gene set statistic. In addition, the test specifically evaluates both
of the competitive null hypothesis (Q1) and the self-contained null hypothesis (Q2) as stated below:

Input : Gene List L = {l1, l2, · · · , ln},Gene Set S = {s1, s2, · · · , sm}
H0(Q1) : Gene set S has been chosen by random selection

H0(Q2) : Samples are independent and identically distributed among gene set S
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: June 2014.



0:6 • C. Ju.

The first step of the algorithm is to transform the t-score of each gene lj in gene list L to a z-value.
Theoretically, the z-value has a standard normal distribution (Equation 6), and the transformation is
defined in Equation 7, where Φ is the standard normal cumulative distribution function and Fn−2 is
the c.d.f for a t distribution having n− 2 degree of freedom.

zj ∼ N(0, 1) (6)
zj = Φ−1(Fn−2(tj)) (7)

The maxmean statistic of a gene set S containing m genes is defined as

Tmaxmean = max(Score+s , Score
−
s ) (8)

Score+s =
1

m

∑
lj∈S

z+j (9)

Score−s =
1

m

∑
lj∈S

z−j (10)

Equation 9 and Equation 10 referred to the averages of the positive and negative parts of the scores.
The separation allows detecting gene sets containing expression changes in both directions (up- and
down- regulation), and is more sensitive in picking up gene sets with moderately large positive and
negative z-values.

Taking two null hypotheses into consideration, the maxmean statistic is normalized by the means
and standard deviations obtained from both gene sampling and phenotype permutation distributions.
The procedure is referred to as “restandardization”, and is defined in Equation 11.

T ?? = µ† +
σ†

σ?

T ? − µ?

√
m

(11)

where µ† and σ† are the mean and standard deviation of the distribution obtained by gene shuf-
fling; µ? and σ? are the mean and standard deviation obtained from the sample label permutation
distribution, and T ? is the maxmean statistic computed from shuffling the phenotypes.

4. DISCUSSION

For the past ten years, the development of gene set enrichment tools has been greatly enhanced in ad-
dressing different statistical assumptions and incorporating various functional knowledgebase. Most
of the variants of gene set enrichment procedures follow the same framework as described in Section
2. Three implementations are discussed in details. GSEA employs the weighted modified Kolmogorov-
Smirnov statistic to represent the gene sets. This non-parametric statistic is distribution free, but may
be less sensitive in detecting the changes. In addition, the computation bottleneck falls in the per-
mutation step for background distribution simulation. PAGE uses a normal approximation approach,
which requires less computational effort, and the mathematical intuition is relatively straightforward.
It claims to detect more significantly altered gene sets than GSEA, but it fails to address the multiple
testing correction. GSA defines a new statistic, maxmean, which allows the detection of gene sets that
are moderately altered, and those contain both up- and down- regulated genes. The choice of gene level
statistics is rather inconsequential [Hung et al. 2012]; however, the gene set statistics and significance
measurement depends on the selection of null hypothesis, and can have different power in detecting
the significantly altered gene sets.
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: June 2014.
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APPENDIX

A.1 Kolmogorov-Smirnov Statistic

Kolmogorove-Smirnov Statistic is a non-parametric test. It facilitates the comparison between a sam-
ple and a reference probability distribution, or between two samples. The comparison is performed by
quantifying the largest distance between the empirical distribution function of a sample and the cumu-
lative distribution function of the reference distribution, or between two empirical distributions from
samples. http://www.physics.csbsju.edu/stats/KS-test.html provides an excellent resource explaining
the method. The procedures can be summarized into the following two steps.

(1) Compute the Empirical Distribution Function
The empirical distribution function Fn for n iid observations Xi is defined as

Fn(X) =
1

n

n∑
i=1

I(Xi ≤ x)

where I(Xi ≤ x) is an indicating function

I(Xi ≤ x) =

{
1 if(Xi ≤ x)
0 otherwise

(2) The Largest Distance between two Distributions
For a given cumulative distribution function F (X), the statistic is described by the largest distance
between two distributions

Dn = sup
x
|Fn(X)− F (X)|
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